Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Special Right Triangles

  1. 1. Two Special Right Triangles 45°- 45°- 90° 30°- 60°- 90°
  2. 2. 45°- 45°- 90° The 45-45-90 triangle is based on the square with sides of 1 unit. 1 1 1 1
  3. 3. 45°- 45°- 90° If we draw the diagonals we form two 45-45-90 triangles. 45° 45° 45° 45° 1 1 1 1
  4. 4. 45°- 45°- 90° Using the Pythagorean Theorem we can find the length of the diagonal. 45° 45° 45° 45° 1 1 1 1
  5. 5. 45°- 45°- 90° 1 2 + 1 2 = c 2 1 + 1 = c 2 2 = c 2  2 = c 45° 45° 45° 45°  2 1 1 1 1
  6. 6. 45°- 45°- 90° Conclusion: the ratio of the sides in a 45-45-90 triangle is 1-1-  2 1 1  2 45° 45°
  7. 7. 45°- 45°- 90° Practice 4 4  2 SAME leg*  2 4 45° 45°
  8. 8. 45°- 45°- 90° Practice 9 9  2 SAME leg*  2 9 45° 45°
  9. 9. 45°- 45°- 90° Practice 2 2  2 SAME leg*  2 2 45° 45°
  10. 10. 45°- 45°- 90° Practice  14 SAME leg*  2  7  7 45° 45°
  11. 11. 45°- 45°- 90° Practice Now Let's Go Backward
  12. 12. 45°- 45°- 90° Practice 3  2 hypotenuse   2 45° 45°
  13. 13. 45°- 45°- 90° Practice = 3 3  2  2
  14. 14. 45°- 45°- 90° Practice 3  2 hypotenuse   2 3 SAME 3 45° 45°
  15. 15. 45°- 45°- 90° Practice 6  2 hypotenuse   2 45° 45°
  16. 16. 45°- 45°- 90° Practice = 6 6  2  2
  17. 17. 45°- 45°- 90° Practice 6  2 hypotenuse   2 6 SAME 6 45° 45°
  18. 18. 45°- 45°- 90° Practice 11  2 hypotenuse   2 45° 45°
  19. 19. 45°- 45°- 90° Practice = 11 11  2  2
  20. 20. 45°- 45°- 90° Practice 11  2 hypotenuse   2 11 SAME 11 45° 45°
  21. 21. 45°- 45°- 90° Practice 8 hypotenuse   2 45° 45°
  22. 22. 45°- 45°- 90° Practice = 4  2 8  2  2  2 * = 8  2 2
  23. 23. 45°- 45°- 90° Practice 8 hypotenuse   2 4  2 SAME 4  2 45° 45°
  24. 24. 45°- 45°- 90° Practice 4 hypotenuse   2 45° 45°
  25. 25. 45°- 45°- 90° Practice = 2  2 4  2  2  2 * = 4  2 2
  26. 26. 45°- 45°- 90° Practice 4 hypotenuse   2 2  2 SAME 2  2 45° 45°
  27. 27. 45°- 45°- 90° Practice 6 Hypotenuse   2 45° 45°
  28. 28. 45°- 45°- 90° Practice = 3  2 6  2  2  2 * = 6  2 2
  29. 29. 45°- 45°- 90° Practice 6 hypotenuse   2 3  2 SAME 3  2 45° 45°
  30. 30. 30°- 60°- 90° The 30-60-90 triangle is based on an equilateral triangle with sides of 2 units. 2 2 2 60 ° 60 °
  31. 31. 30°- 60°- 90° The altitude (also the angle bisector and median) cuts the triangle into two congruent triangles. 1 1 30 ° 30 ° 2 2 2 60 ° 60 °
  32. 32. 30°- 60°- 90° This creates the 30-60-90 triangle with a hypotenuse a short leg and a long leg. hypotenuse Short Leg Long Leg 30 ° 60 °
  33. 33. 30°- 60°- 90° Practice 1 2 We saw that the hypotenuse is twice the short leg. We can use the Pythagorean Theorem to find the long leg. 60° 30°
  34. 34. 30°- 60°- 90° Practice 1 2  3 A 2 + B 2 = C 2 A 2 + 1 2 = 2 2 A 2 + 1 = 4 A 2 = 3 A =  3 60° 30°
  35. 35. 30°- 60°- 90° Conclusion: the ratio of the sides in a 30-60-90 triangle is 1- 2 -  3  3 1 2 60° 30°
  36. 36. 30°- 60°- 90° Practice 4 8 Hypotenuse = short leg * 2 4  3 The key is to find the length of the short side. Long Leg = short leg *  3 60° 30°
  37. 37. 30°- 60°- 90° Practice 5 10 Hypotenuse = short leg * 2 5  3 Long Leg = short leg *  3 60° 30°
  38. 38. 30°- 60°- 90° Practice 7 14 Hypotenuse = short leg * 2 7  3 Long Leg = short leg *  3 60° 30°
  39. 39. 30°- 60°- 90° Practice  3 2  3 Hypotenuse = short leg * 2 3 Long Leg = short leg *  3 60° 30°
  40. 40. 30°- 60°- 90° Practice  10 2  10 Hypotenuse = short leg * 2  30 Long Leg = short leg *  3 60° 30°
  41. 41. 30°- 60°- 90° Practice Now Let's Go Backward
  42. 42. 30°- 60°- 90° Practice 11 22 Short Leg = Hypotenuse  2 11  3 Long Leg = short leg *  3 60° 30°
  43. 43. 30°- 60°- 90° Practice 2 4 Short Leg = Hypotenuse  2 2  3 Long Leg = short leg *  3 60° 30°
  44. 44. 30°- 60°- 90° Practice 9 18 Short Leg = Hypotenuse  2 9  3 Long Leg = short leg *  3 60° 30°
  45. 45. 30°- 60°- 90° Practice 15 30 Short Leg = Hypotenuse  2 15  3 Long Leg = short leg *  3 60° 30°
  46. 46. 30°- 60°- 90° Practice 23 46 Hypotenuse = Short Leg * 2 23  3 Short Leg = Long leg   3 60° 30°
  47. 47. 30°- 60°- 90° Practice 14 28 Hypotenuse = Short Leg * 2 14  3 Short Leg = Long leg   3 60° 30°
  48. 48. 30°- 60°- 90° Practice 16 32 Hypotenuse = Short Leg * 2 16  3 Short Leg = Long leg   3 60° 30°
  49. 49. 30°- 60°- 90° Practice 3  3 6  3 Hypotenuse = Short Leg * 2 9 Short Leg = Long leg   3 60° 30°
  50. 50. 30°- 60°- 90° Practice 4  3 8  3 Hypotenuse = Short Leg * 2 12 Short Leg = Long leg   3 60° 30°
  51. 51. 30°- 60°- 90° Practice 9  3 18  3 Hypotenuse = Short Leg * 2 27 Short Leg = Long leg   3 60° 30°
  52. 52. 30°- 60°- 90° Practice 7  3 14  3 Hypotenuse = Short Leg * 2 21 Short Leg = Long leg   3 60° 30°
  53. 53. 30°- 60°- 90° Practice 11  3 22  3 Hypotenuse = Short Leg * 2 33 Short Leg = Long leg   3 60° 30°
  54. 54. THE END

×