SlideShare ist ein Scribd-Unternehmen logo
1 von 93
Aircraft Flight Instruments
SOLO HERMELIN
Updated: 04.12.12
1
Table of Content
SOLO
Aircraft Avionics
2
McDonnell Douglass F-4B Phantom Instrument Panel
3
McDonnell Douglass F-4 Phantom Cockpit
4
5
Earth Atmosphere
6
Earth Atmosphere
7
Earth Atmosphere
The basic variables representing the thermodynamics state of
the gas are the Density, ρ, Temperature, T and Pressure, p.
SOLO
8
Earth Atmosphere
• The Density, ρ, is defined as the mass, m, per unit volume, v,
and has units of kg/m3
.
v
m
v ∆
∆
=
→∆ 0
limρ
• The Temperature, T, with units in degrees Kelvin ( ͦ K). Is a
measure of the average kinetic energy of gas particles.
• The Pressure, p, exerted by a gas on a solid surface is defined
as the rate of change of normal momentum of the gas particles
striking per unit area.
It has units of N/m2
. Other pressure units are millibar (mbar),
Pascal (Pa), millimeter of mercury height (mHg)
S
f
p n
S ∆
∆
=
→∆ 0
lim
kPamNbar 100/101 25
==
( ) mmHginHgkPamkNmbar 00.7609213.29/325.10125.1013 2
===
The Atmospheric Pressure at Sea Level is:
Speed of Sound (a)
This is the speed of sound waves propagation in ambient
air. The speed of sound is given by
SOLO
9
Earth Atmosphere
Sa TRa ⋅⋅= γ
γ air = 1.4
Ra =287.0 J/kg--ͦ
K
TS – Static Air Temperature
True Airspeed (TAS)
The True Airspeed is the speed of the aircraft’s center of
mass with respect to the ambient air through which is
passing.
Indicated Airspeed (IAS)
The Indicated Airspeed is the speed indicated by a
differential-pressure airspeed indicator.
Mach Number (M)
Is the ratio of the TAS to the speed of sound at the
flight condition.
SOLO
10
Earth Atmosphere
aTASM /=
Dynamic Pressure (q)
The force per unit area required to bring an ideal
(incompressible) fluid to rest: q=1/2∙ρ∙VT
2
(where VT is
True Air Speed-TAS, and ρ is the density of the fluid).
Impact Pressure (QC)
The force per unit area required to bring moving air to
rest. It is the pressure exerted at the stagnation point on
the surface of a body in motion relative to the air.
PT – Total Pressure, PS – Static Pressure
2
2/1 TSTC VPPQ ⋅⋅=−= ρ
SOLO
Aircraft Avionics
11
Air Data Computer
Air Data Computer uses Total and Static Pressure and Static Temperature
of the external Air Flow, to compute Flight Parameters.
12
Earth Atmosphere
Atmospheric Constants
Definition Symbol Value Units
Sea-level pressure P0 1.013250 x 105
N/m2
Sea-level temperature T0 288.15 ͦ K
Sea-level density ρ0 1.225 kg/m3
Avogadro’s Number Na 6.0220978 x 1023
/kg-mole
Universal Gas Constant R* 8.31432 x 103
J/kg-mole -ͦ K
Gas constant (air) Ra=R*/M0 287.0 J/kg--ͦ
K
Adiabatic polytropic constant γ 1.405
Sea-level molecular weight M0 28.96643
Sea-level gravity acceleration g0 9.80665 m/s2
Radius of Earth (Equator) Re 6.3781 x 106
m
Thermal Constant β 1.458 x 10-6
Kg/(m-s-ͦ K1/2)
Sutherland’s Constant S 110.4 ͦ K
Collision diameter σ 3.65 x 10-10
m
SOLO
Aircraft Avionics
13
Flight Instruments
Air Data Calculation (Collison)
Geopotential Pressure Altitude
• Low Altitude (Troposphere) : H< 11000 m (36.089 ft ),
( ) kPaHPS
255879.55
1025577.21325.101 ⋅⋅−⋅= −
• Medium Altitude: 11000 m ≤ H ≤ 20000m (36.089 ft - 65.617 ft )
( )
kPaeP H
S
000,1110576885.1 4
6325.22 −⋅⋅− −
⋅=
Air Density Ratio ρ/ρ0
S
S
T
P
⋅
=
35164.00ρ
ρ
SOLO
Aircraft Avionics
14
Flight Instruments
Air Data Calculation (Collison)
Mach Number
• Subsonic Speeds (M ≤ 1),
( ) 2/72
2.01 M
P
P
S
T
⋅+=
• Supersonic Speeds (M ≥ 1),
Static Air Temperature TS ͦ K
10
2.01 2
<<
⋅⋅+
= r
Mr
T
T m
S
( ) 2/52
7
17
9.166
−⋅
⋅
=
M
M
P
P
S
T
True Airspeed (TAS) VT m/s
smTMV ST /0468.20 ⋅⋅=
SOLO
Aircraft Avionics
15
Flight Instruments
Air Data Calculation (Collison)
Speed of Sound a m/s
• Subsonic Speeds (VC ≤ a),
• Supersonic Speeds (VC ≥ a),
Sa TRa ⋅⋅= γ γ air = 1.4, Ra =287.0 J/kg--ͦ
K
Calibrated Airspeed (CAS) VC m/s
kPa
V
Q C
C








−














⋅+⋅= 1
294.340
2.01325.101
2/72
kPa
V
V
Q
C
C
C
















−








−





⋅






⋅
⋅= 1
1
294.340
7
294.340
92.166
325.101
2/7
2/52
2
16
Central Air Data Computer
Earth Atmosphere
17
Central Air Data Computer
Earth Atmosphere
Flight Instruments
SOLO
Aircraft Avionics
18
The Flight Panel - Understand Your Aircraft, Youtube
Flight Instruments
SOLO
Aircraft Avionics
19
Flight Instruments
SOLO
Aircraft Avionics
20
Flight Instruments
SOLO
Aircraft Avionics
21
zdgpd ⋅⋅−= ρ
TRp ⋅⋅= ρ KsmR 22
/287=
zdaTd ⋅−=
aR
g
T
za
p
p ⋅





 ⋅
−=
00
1
Flight Instruments
SOLO
Aircraft Avionics
22
Altimeter
SOLO
Aircraft Avionics
23
Flight Instruments
Airspeed Indicators
SOLO
Aircraft Avionics
Flight Instruments
Airspeed Indicators
Centurion T210 AirSpeed Gauge
SOLO
Aircraft Avionics
25
Flight Instruments
Airspeed Indicators
2
2
1
vpp StatTotal ⋅+= ρ
The airspeed directly given by the differential pressure is called
Indicated Airspeed (IAS). This indication is subject to positioning errors of the pitot
and static probes, airplane altitude and instrument systematic defects.
The airspeed corrected for those errors is called Callibrated Airspeed (CAS).
Depending on altitude, the critic airspeeds for maneuvre, flap operation etc change
because the aerodynamic forces are function of air density. An equivalent airspeed
VE (EAS) is defined as follows:
0ρ
ρ
VVE =
V – True Airspeed
ρ – Air Density
ρ0 – Air Density at Sea Level
SOLO
Aircraft Avionics
26
Flight Instruments
Airspeed Indicators
2
2
1
VPQPP StatCStatTotal ⋅+=+= ρ
V – True Airspeed
ρ – Air Density
ρ0 – Air Density at Sea Level
Air Density changes with altitude. Assuming an Adiabatic Flow, the
relation between Pressure and Density is given by
constC
P
==γ
ρ
γ = Cp/CV= 1.4 for air
Momentum differential equation for the Air Flow is
VdV
C
P
PdVdVPd
C
P
γρ
γ
ρ
/1
/1
0 





+=+=






=
Subsonic Speeds
SoundofSpeed
P
a S
ρ
γ ⋅
=
SOLO
Aircraft Avionics
27
Flight Instruments
Airspeed Indicators
In the free stream P = PS and V = VT,
At the Probe face P = PT and V=0
0
1 0
/1
/1
=+ ∫∫ T
T
S V
P
P
VdV
C
PdP γ
γ
Subsonic Speeds (continue)
2
1
1
2
/1
11
T
ST
V
C
PP γ
γ
γ
γ
γ
γ
γ
=


 −
−
−−
γγ
ρ
/1/1
1
SPC
=
1
2
12
2
1
1
2
1
1
2
−
=
−














⋅
−
+=





⋅⋅
−
+= γ
γ
ρ
γ
γ
γ
γ
γ
ργ
a
V
V
PP
P T
P
a
T
SS
T
S








−














⋅
−
+=





−=−= −
1
2
1
11 1
2
γ
γ
γ
a
V
P
P
P
PPPQ T
S
S
T
SSTC
SOLO
Aircraft Avionics
28
Flight Instruments
Airspeed Indicators
In the free stream P = PS and V = VT,
At the Probe face P = PT and V=0
Supersonic Speeds
1
1
2
12
1
1
1
2
2
1
−
−








+
−
−





⋅
+














⋅
+
=
γ
γ
γ
γ
γ
γ
γ
γ
a
V
a
V
P
P
T
T
S
T


















−








+
−
−





⋅
+














⋅
+
=





−=−=
−
−
1
1
1
1
2
2
1
1
1
1
2
12
γ
γ
γ
γ
γ
γ
γ
γ
a
V
a
V
P
P
P
PPPQ
T
T
S
S
T
SSTC
Assume Supersonic Adiabatic Air Flow
we obtain
SOLO
Aircraft Avionics
29
Flight Instruments
Airspeed Indicators
Mach Number
1
1
2
1
2
1
1
1
2
2
1
−
−






+
−
−⋅
+




⋅
+
=
γ
γ
γ
γ
γ
γ
γ
γ
M
M
P
P
S
T
Subsonic Speeds (M ≤ 1)
γ
γ
γ
1
1
2
1
−






⋅
−
−==
S
TT
P
P
a
V
M
12
2
1
1
2
−
=






⋅
−
+= γ
γρ
γ
γ
M
P
P
SP
a
S
T
From
Supersonic Speeds (M ≥ 1)
SOLO
Aircraft Avionics
30
Flight Instruments
Airspeed Indicators (Calibrated Airspeed)
Calibrated Airspeed is obtained by substituting
the Sea Level conditions, that is PS = PS0 ,
VT = VC , a0 = 340.294 m/s.
Subsonic Speeds (VC < a0=340.294 m/s)








−














⋅
−
+= −
1
2
1
1 1
2
0
0
γ
γ
γ
a
V
PQ C
SC
2
0
00
2
0
2
0
2
1
/2
1
2
1 C
S
C
S
C
S
aV
C V
P
V
P
a
V
PQ
C
⋅⋅=
⋅
⋅⋅=








−





⋅+≈
<<
ρ
ργ
γγ
Supersonic Speeds (VC > a0=340.294 m/s)


















−








+
−
−





⋅
+














⋅
+
=
−
−
1
1
1
1
2
2
1
1
1
2
0
12
0
0
γ
γ
γ
γ
γ
γ
γ
γ
a
V
a
V
PQ
C
C
SC
( ) mmHginHgkPamkNmbarPS 00.7609213.29/325.10125.1013 2
0 ====
γ air = 1.4
SOLO
Aircraft Avionics
31
Flight Instruments
Airspeed Indicators
By measuring (TT) the Temperature of Free
Airstream TS, we can compute the local Speed
of Sound
Sa TRa ⋅⋅= γ
True Airspeed (TAS)
By using the Mach Number computation we
can calculate the True Airspeed (TAS)
M
M
T
RMTRMaV T
aSaT ⋅
⋅
−
+
⋅⋅=⋅⋅⋅=⋅=
2
2
1
1
γ
γγ
SOLO
Aircraft Avionics
32
Flight Instruments
Goodrich Air Data Handbook – Basic Air Data Calculation
Altitude
• Low Altitude: h<36.089 ft = 11000 m, PS > 6.6832426 in Hg
( ) ( ) 190255.0
1
190255.0
190255.0190255.0
140000131252.092126.29
140000131252.0
92126.29
hP
P
h S
S
⋅−=
−
=
• Medium Altitude: 36.089 ft = 11000 m ≤ h ≤ 65.617 ft = 20000m
6.6832426 in Hg> PS > 1.6167295 in Hg
( )h
S
S
eP
P
h ⋅−
⋅=






−
= 30000480635.07345726.1
6832426.6
30000480635.0
6832426.6
ln7345726.1
163156.34
163156.34
1
96.710793
16.645177
6167295.116.645177
6167295.1
96.710793 −
−





 +
⋅=−





⋅=
h
P
P
h S
S
• High Altitude: h >65.617 ft = 20000m, PS < 1.6167295 in Hg
SOLO
Aircraft Avionics
33
Flight Instruments
Goodrich Air Data Handbook – Basic Air Data Calculation
Impact Pressure STC PPQ −=
where:
QC=½∙ ρ∙V2
= Impact Pressure
PT = Total Pressure
PS = True Static Pressure
Indicated Airspeed (IAS)
11
92126.29
1026.1479
7/2
−





+⋅= CQ
IAS
Subsonic Flight (M ≤ 1)








−














+⋅= 1
1026.1479
192126.29
2/72
IAS
QC
Supersonic Flight (M ≥ 1)














−












−





⋅






⋅= 1
1
4748.661
7
6
8411.603
92126.29
2/5
2
7
IAS
IAS
QC
where:
IAS = Indicated Airspeed in knots
QC = PT – PS Impact Pressure in Hg
SOLO
Aircraft Avionics
34
Flight Instruments
Goodrich Air Data Handbook – Basic Air Data Calculation
Mach Number M = TAS/a








−





⋅=








−





+⋅= 15115
7/27/2
S
T
S
C
P
P
P
Q
M
Subsonic Flight (M ≤ 1)
Supersonic Flight (M ≥ 1)
1
17
2.7
2.11
2/5
2
2
2
−





−⋅
⋅
⋅=−=
M
M
M
P
P
P
Q
S
T
S
C
where:
TAS = True Airspeed in knots
a = Speed of Sound in knots
where:
QC=½∙ ρ∙V2
= Impact Pressure in Hg
PT = Total Pressure in Hg
PS = True Static Pressure in Hg
SOLO
Aircraft Avionics
35
Flight Instruments
Goodrich Air Data Handbook – Basic Air Data Calculation
Mach Number M = TAS/a
Altitude
(feet)
75 KIAS
(Qc=0.2701
In Hg)
100 KIAS
(Qc=04814
In Hg)
200 KIAS
(Qc=1.9589
In Hg)
300 KIAS
(Qc=4.5343
In Hg)
400 KIAS
(Qc=8.3850
In Hg)
500 KIAS
(Qc=13.7756
In Hg)
600 KIAS
(Qc=21.0749
In Hg)
700 KIAS
(Qc=30.7642
In Hg)
S.L. .113 .151 .302 .454 .605 .756 .907 1.058
10,000 .137 .182 .363 .541 .716 .888 1.057 1.230
20,000 .167 .222 .440 .651 .854 1.047 1.242 1.453
30,000 .207 .276 .541 .791 1.023 1.248 1.489 1.754
40,000 .262 .347 .672 .965 1.236 1.520 1.829 2.171
50,000 .331 .438 .831 1.171 1.509 1.875 2.276 2.717
60,000 .418 .549 1.014 1.426 1.862 2.335 2.852 3.419
70,000 .524 .684 1.230 1.754 2.318 2.928 3.592 4.318
80,000 .653 .842 1.497 2.172 2.897 3.678 4.526 5.450
SOLO
Aircraft Avionics
36
Flight Instruments
Goodrich Air Data Handbook – Basic Air Data Calculation
Static Temperature
2
2.01 M
T
T T
S
⋅+
=
True Airspeed (TAS)
where:
TS = Static Temperature ͦK
TT = Total Temperature ͦK








⋅+
⋅⋅== 2
2.01
96695.38
M
T
MMTAS T
a
where:
TAS = True Airspeed
M = Mach
a = Speed of Sound
TT = Total Temperature ͦK
SOLO
Aircraft Avionics
37
Flight Instruments
Airspeed Indicators
Vertical Speed Indicator
SOLO
38
Aircraft Avionics
Flight Instruments
SOLO
39
Aircraft Avionics
Flight Instruments
Airspeed Indicator (ASI)
White Arc – Flaps Operation Range
VSO – Stalling Speed Flaps Down
VSI - Stalling Speed Flaps Up
VFE – Maximum Speed Flaps Down (Extendeed)
Green Arc – Normal Operation Range
VNO – Maximum Speed Normal Operation
Yellow Arc - Caution Range
VNE – Not to Exceed Speed
Private Pilot Airplane – Flight Instruments ASA, Movie
SOLO
40
Aircraft Avionics
Flight Instruments
Altimeters
SOLO
41
Aircraft Avionics
Flight Instruments
Altimeters
SOLO
42
Aircraft Avionics
Flight Instruments
Gyroscopic Flight Instruments
Turn Indicator
SOLO
43
Aircraft AvionicsFlight Instruments
Attitude Indicator
SOLO
44
Aircraft AvionicsFlight Instruments
Attitude Indicator
SOLO
45
Aircraft Avionics
Flight Instruments
Turn Coordinator
SOLO
46
Aircraft Avionics
Flight Instruments
Turn-and Slip Indicator
SOLO
47
Aircraft Avionics
Flight Instruments
Attitude Heading Reference
SOLO
48
Aircraft Avionics
Flight Instruments
Heading Indicator
The Magnetic Compass is sensitive
to Inertia Forces. It is a reliable
Heading Instrument in the long
yerm, but during maneuvers it may
swing and be hardly reliable. To
provide a more precise Heading
Instrument a Directional Gyro is
used.
SOLO
49
Aircraft Avionics
Flight Instruments
SOLO
50
Aircraft Avionics
Flight Instruments
Flux Gate Compass System
The Gate Compass System is connected to Radio Magnetic Indicator (RMI)
and to Heading Situation Indicator (HSI).
Heading Situation Indicator (HSI).Radio Magnetic Indicator (RMI)
SOLO
51
Aircraft Avionics
Flight Instruments
SOLO
52
Aircraft Avionics
Flight Instruments
SOLO
53
Aircraft Avionics
Flight Instruments
SOLO
54
Aircraft Avionics
Flight Displays
SOLO
55
Aircraft Avionics
Flight Instruments
SOLO
56
Aircraft Avionics
Flight Displays
Chelton’s Flight Logic Reconfigurable Panel Display
SOLO
57
Aircraft Avionics
Flight Displays
Avidyne’s Entegra Reconfigurable Panel Display
SOLO
58
Aircraft Avionics
Flight Cockpit
SOLO
59
Aircraft Avionics
Flight Displays
SOLO
60
Aircraft Avionics
Flight Instruments
SOLO
61
Aircraft Avionics
Flight Instruments
Automatic Dependent Surveillance
(ADS)
SOLO
62
Aircraft Avionics
Flight Instruments
SOLO
63
Aircraft Avionics
Flight Instruments
Alert Systems
SOLO
64
Aircraft Avionics
Flight Instruments
Alert Systems
SOLO
65
Aircraft Avionics
Flight Instruments
Alert Systems
SOLO
66
Aircraft Avionics
Flight Instruments
SOLO
67
Aircraft Avionics
Flight Instruments
Helmet-up-Display
SOLO
68
Aircraft Avionics
Navigation
Instrument Landing System (ILS)
SOLO
69
Aircraft Avionics
Flight Instruments
SOLO
70
Aircraft Avionics
SOLO
71
Aircraft Avionics
Cockpit
SOLO
72
Aircraft Avionics
Instrument Flight
SOLO
73
Aircraft Avionics
Flight Instruments
SOLO
74
Aircraft Avionics
To be replaced
SOLO
75
Aircraft Avionics
Aerodynamics of Flight
76
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 – 2013
Stanford University
1983 – 1986 PhD AA
77
SOUND WAVESSOLO
Disturbances propagate by molecular collision, at the sped of sound a,
along a spherical surface centered at the disturbances source position.
The source of disturbances moves with the velocity V.
-when the source moves at subsonic velocity V < a, it will stay inside the
family of spherical sound waves.
-when the source moves at supersonic velocity V > a, it will stay outside the
family of spherical sound waves. These wave fronts form a disturbance
envelope given by two lines tangent to the family of spherical sound waves.
Those lines are called Mach waves, and form an angle μ with the disturbance
source velocity:
a
V
M
M
=





= −
&
1
sin 1
µ
78
SOUND WAVESSOLO
Sound Wave Definition:
∆ p
p
p p
p1
2 1
1
1=
−
<<
ρ ρ ρ2 1
2 1
2 1
= +
= +
= +
∆
∆
∆
p p p
h h h
For weak shocks
u
p
1
2
=
∆
∆ρ
1
1
11
1
1
1
1
1
2
1
2
1
1
uuuuuu
ρ
ρ
ρ
ρρρ
ρ
ρ
ρ ∆
−≅
∆
+
=
∆+
==)C.M.(
( ) ( ) ppuuupuupu ∆++




 ∆
−=+=+ 11
1
11122111
2
11
ρ
ρ
ρρρ)C.L.M.(
Since the changes within the sound wave are small, the flow gradients are small.
Therefore the dissipative effects of friction and thermal conduction are negligible
and since no heat is added the sound wave is isotropic. Since
au =1
s
p
a 





∂
∂
=
ρ
2
valid for all gases
79
SPEED OF SOUND AND MACH NUMBERSOLO
Speed of Sound is given by
0=






∂
∂
=
ds
p
a
ρ
RT
p
C
C
T
dT
R
C
p
T
dT
R
C
d
dp
d
R
T
dT
Cds
p
dp
R
T
dT
Cds
v
p
v
p
ds
v
p
γ
ρ
ρ
ρ
ρ
ρ
===





⇒







=−=
=−=
=00
0
but for an ideal, calorically perfect gas
ρ
γγ
ρ p
RTa
TChPerfectyCaloricall
RTpIdeal
p
==






=
=
The Mach Number is defined as
RT
u
a
u
M
γ
==
∆
1
2
1
1
111
−−






=





=





=
γ
γ
γ
γ
γ
ρ
ρ
a
a
T
T
p
p
The Isentropic Chain:
a
ad
T
Tdd
p
pd
sd
1
2
1
0
−
=
−
==→=
γ
γ
γ
γ
ρ
ρ
γ
80
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
Mach Number Relations (1)
( )
( )
( )
  ( )
12
2
2
2
1
2
1
2
2
22
2
2
1
22
1
2
2
2
2
22
1
1
2
1
12
22
2
11
1
2
2
221
2
11
2211
2
1
2
1
2
1
2
1
*
12
1
2
1
12
1
1
4..
...
..
uu
u
a
u
a
uaa
uaa
au
h
a
u
h
a
EC
uu
u
p
u
p
pupuMLC
uuMC
p
a
−=−

















−
−
+
=
−
−
+
=
→
−
+
=+
−
=+
−
→−=−→



+=+
=
∗
∗
=
γγ
γγ
γγ
γ
γ
γγ
ρρρρ
ρρ ρ
γ
Field Equations:
122
2
2
1
1
2
2
1
2
1
2
1
2
1
uuu
u
a
u
u
a
−=
−
+
+
−
−
−
+ ∗∗
γ
γ
γ
γ
γ
γ
γ
γ
u u a1 2
2
= ∗
u
a
u
a
M M1 2
1 21 1∗ ∗
∗ ∗
= → =
Prandtl’s Relation
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
1
1
1
1
1
2
2
2
2
2
1 2
( )
γ
γ
γ
γ
γ
γ
γ
γ
γ
γ
2
1
2
1
1
2
1
2
1
2
1
21
2
1212
2
21
12 +
=
−
−=
+
→−=−
−
+
−+ ∗
∗
uu
a
uuuua
uu
uu
Ludwig Prandtl
(1875-1953)
81
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
Mach Number Relations (2)
( ) ( ) ( ) ( )
( )
( )
( )
( )
( )[ ]
( )( ) ( )
M
M
M
M
M
M
M
M
M
2
2
2
2
1
1
2
1
2
1
2
1
2
1
2
2
1
1
2
1 1
2
1
1
1 2
1
2 1 2
1 1 1 1 1
1
2
=
+
− −
=
+ − −
=
+
+
− +
− −
=
− +
+ / + − / / + − / + − −
∗
=
∗
∗
∗
γ
γ γ γ
γ
γ
γ
γ
γ
γ γ γ γ γ
or
( )
M
M
M
M
M
H H
A A
2
1
2
1
2
1
2
1
21 2
1 2
1
1
2
1
2
2
1
1
1
2
1
2
1
1
=
+
−
−
−
=
+
+
−
+
+
−
=
=
γ
γ
γ γ
γ
γ
γ
( )
( )
ρ
ρ
γ
γ
2
1
1
2
1
2
1 2
1
2
2 1
2 1
2
1
2
1 2 1
1 2
= = = = =
+
− +
=
∗
∗
A A u
u
u
u u
u
a
M
M
M
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
1
1
1
1
1
2
2
2
2
2
1 2
82
NORMAL SHOCK WAVESSOLO
Normal Shock Wave ( Adiabatic), Perfect Gas
 
G Q= =0 0,
Mach Number Relations (3)
( )
( )
( ) ( )
( )
p
p
u
p
u
u
u
a
M
M
M
M
M M
M
2
1
1
2
1
1
2
1
1
2
1
2
1
2
1
2 1
2
1
2 1
2 1
2
1
2
1
2
1 1 1 1
1 1
1 2
1
1
1 1 2
1
= + −





 = + −






= + −
− +
+





 = +
/ + − / − −
+
ρ
γ
ρ
ρ
γ
γ
γ
γ
γ γ
γ
or
(C.L.M.)
( )
p
p
M2
1
1
2
1
2
1
1= +
+
−
γ
γ
( )
( )
( )
h
h
T
T
p
p
M
M
M
a
a
h C T p RTp
2
1
2
1
2
1
1
2
1
2 1
2
1
2
2
1
1
2
1
1
1 2
1
= = = +
+
−






− +
+
=
= = ρ ρ
ρ
γ
γ
γ
γ
( )
( )
( )
s s
R
T
T
p
p
M
M
M
2 1 2
1
1
2
1
1
1
2
1
1
1
2
1
2
1
1
2
1
1
1 2
1
−
=






















= +
+
−






− +
+
















−
−
− −
ln ln
γ
γ
γ
γ
γ
γ
γ
γ
γ
γ
( )
( )
( )
( )
s s
R
M M
M
2 1
1 1
2 1
2 3
2
2 1
2 41
2
2
3 1
1
2
1
1
−
≈
+
− −
+
− +
− << γ
γ
γ
γ
K Shapiro p.125
u
p
ρ
T
e
u
p
ρ
T
e
τ 11
q
1
1
1
1
1
2
2
2
2
2
1 2
83
STEADY QUASI ONE-DIMENSIONAL FLOWSOLO
STAGNATION CONDITIONS
)C.E.( constuhuh =+=+ 2
22
2
11
2
1
2
1
The stagnation condition 0 is attained by reaching u = 0
2
/
21202
020
2
1
1
1
2
1
2
1
22
1
2
M
TR
u
Tc
u
T
T
c
u
TTuhh
TRa
auM
Rc
pp
Tch p
p
−
+=
−
+=+=→+=→+=
=
=
−
=
=
γ
γ
γ
γγ
γ
Using the Isentropic Chain relation, we obtain:
2
1
0102000
2
1
1 M
p
p
a
a
h
h
T
T −
+=





=





=





==
−
−
γ
ρ
ρ γ
γ
γ
Steady , Adiabatic + Inviscid = Reversible, , ( )
q Q= =0 0, ( )~ ~
τ = 0 ( )
 
G = 0
∂
∂ t
=





0
SOLO
84
Civilian Aircraft Avionics
Flight Cockpit
CIRRUS PERSPECTIVE
Cirrus Perspective Avionics Demo, Youtube Cirrus SR22 Tampa Landing in Heavy Rain, Movie
SOLO
85
Flight Displays
CIRRUS PERSPECTIVE
Civilian Aircraft Avionics
SOLO
86
Flight Displays
CIRRUS PERSPECTIVE
Civilian Aircraft Avionics
SOLO
87
Flight Displays
CIRRUS PERSPECTIVE
Civilian Aircraft Avionics
SOLO
88
Flight Displays
CIRRUS PERSPECTIVE
Civilian Aircraft Avionics
SOLO
89
Flight Displays
CIRRUS PERSPECTIVE
Civilian Aircraft Avionics
SOLO
90
Flight Displays
CIRRUS PERSPECTIVE
Civilian Aircraft Avionics
SOLO
91
Flight Displays
CIRRUS PERSPECTIVE
Civilian Aircraft Avionics
SOLO
92
Flight Displays
CIRRUS PERSPECTIVE
Civilian Aircraft Avionics
93
New integrated flight control system, Movie
https://www.youtube.com/watch?v=D3cH5ydHMzw
Civilian Aircraft Avionics

Weitere ähnliche Inhalte

Was ist angesagt?

5.1 Electronic Instrument Systems
5.1 Electronic Instrument Systems5.1 Electronic Instrument Systems
5.1 Electronic Instrument Systemslpapadop
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - iSolo Hermelin
 
EASA PART 66 MODULE 5.1 : ELECTRONIC INSTRUMENT SYSTEMS
EASA PART 66 MODULE 5.1 : ELECTRONIC INSTRUMENT SYSTEMSEASA PART 66 MODULE 5.1 : ELECTRONIC INSTRUMENT SYSTEMS
EASA PART 66 MODULE 5.1 : ELECTRONIC INSTRUMENT SYSTEMSsoulstalker
 
Aircraft instruments
Aircraft instrumentsAircraft instruments
Aircraft instrumentsKamaraja AS
 
Communication Navigation & Surveillance
 Communication Navigation & Surveillance Communication Navigation & Surveillance
Communication Navigation & SurveillanceRishi Kumar Sinha
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part ivSolo Hermelin
 
Mass and Balance
Mass and BalanceMass and Balance
Mass and Balanceactieman
 
EASA Part 66 Module 5.13 : Software Management Control
EASA Part 66 Module 5.13 : Software Management ControlEASA Part 66 Module 5.13 : Software Management Control
EASA Part 66 Module 5.13 : Software Management Controlsoulstalker
 
EASA Part-66 Module 5.6 : Basic Computer Structure
EASA Part-66 Module  5.6 : Basic Computer StructureEASA Part-66 Module  5.6 : Basic Computer Structure
EASA Part-66 Module 5.6 : Basic Computer Structuresoulstalker
 
Avionics Flight managment system
Avionics Flight managment systemAvionics Flight managment system
Avionics Flight managment systemostroumov
 
Basic Aerodynamics and Flight Controls
Basic  Aerodynamics and Flight ControlsBasic  Aerodynamics and Flight Controls
Basic Aerodynamics and Flight ControlsKevin McNulty
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iiiSolo Hermelin
 
Aircraft performance 2
Aircraft performance 2Aircraft performance 2
Aircraft performance 2Nazmul Alam
 
Alaska Airlines Airbus Study Presentation 2
Alaska Airlines Airbus Study Presentation 2Alaska Airlines Airbus Study Presentation 2
Alaska Airlines Airbus Study Presentation 2ShawnSmith231
 
032 aeroplane performance
032 aeroplane performance032 aeroplane performance
032 aeroplane performancechococrispis37
 
Traffic alert and collision avoidance system
Traffic alert and collision avoidance system  Traffic alert and collision avoidance system
Traffic alert and collision avoidance system Юра Камкін
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part iSolo Hermelin
 
EASA part 66 module exam Module - 5 EFIS(Electronic Flight instrument system)
EASA part 66 module exam Module - 5 EFIS(Electronic Flight instrument system)EASA part 66 module exam Module - 5 EFIS(Electronic Flight instrument system)
EASA part 66 module exam Module - 5 EFIS(Electronic Flight instrument system)Nisarg Mistry
 

Was ist angesagt? (20)

5.1 Electronic Instrument Systems
5.1 Electronic Instrument Systems5.1 Electronic Instrument Systems
5.1 Electronic Instrument Systems
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i
 
EASA PART 66 MODULE 5.1 : ELECTRONIC INSTRUMENT SYSTEMS
EASA PART 66 MODULE 5.1 : ELECTRONIC INSTRUMENT SYSTEMSEASA PART 66 MODULE 5.1 : ELECTRONIC INSTRUMENT SYSTEMS
EASA PART 66 MODULE 5.1 : ELECTRONIC INSTRUMENT SYSTEMS
 
Aircraft instruments
Aircraft instrumentsAircraft instruments
Aircraft instruments
 
Communication Navigation & Surveillance
 Communication Navigation & Surveillance Communication Navigation & Surveillance
Communication Navigation & Surveillance
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
Mass and Balance
Mass and BalanceMass and Balance
Mass and Balance
 
EASA Part 66 Module 5.13 : Software Management Control
EASA Part 66 Module 5.13 : Software Management ControlEASA Part 66 Module 5.13 : Software Management Control
EASA Part 66 Module 5.13 : Software Management Control
 
EASA Part-66 Module 5.6 : Basic Computer Structure
EASA Part-66 Module  5.6 : Basic Computer StructureEASA Part-66 Module  5.6 : Basic Computer Structure
EASA Part-66 Module 5.6 : Basic Computer Structure
 
Avionics Flight managment system
Avionics Flight managment systemAvionics Flight managment system
Avionics Flight managment system
 
Basic Aerodynamics and Flight Controls
Basic  Aerodynamics and Flight ControlsBasic  Aerodynamics and Flight Controls
Basic Aerodynamics and Flight Controls
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
 
MMEL MEL PPT.ppt
MMEL MEL PPT.pptMMEL MEL PPT.ppt
MMEL MEL PPT.ppt
 
Aircraft performance 2
Aircraft performance 2Aircraft performance 2
Aircraft performance 2
 
Alaska Airlines Airbus Study Presentation 2
Alaska Airlines Airbus Study Presentation 2Alaska Airlines Airbus Study Presentation 2
Alaska Airlines Airbus Study Presentation 2
 
032 aeroplane performance
032 aeroplane performance032 aeroplane performance
032 aeroplane performance
 
AE8751 - Unit V.pdf
AE8751 - Unit V.pdfAE8751 - Unit V.pdf
AE8751 - Unit V.pdf
 
Traffic alert and collision avoidance system
Traffic alert and collision avoidance system  Traffic alert and collision avoidance system
Traffic alert and collision avoidance system
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 
EASA part 66 module exam Module - 5 EFIS(Electronic Flight instrument system)
EASA part 66 module exam Module - 5 EFIS(Electronic Flight instrument system)EASA part 66 module exam Module - 5 EFIS(Electronic Flight instrument system)
EASA part 66 module exam Module - 5 EFIS(Electronic Flight instrument system)
 

Andere mochten auch

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanicsSolo Hermelin
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polarSolo Hermelin
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systemsSolo Hermelin
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachSolo Hermelin
 
Aerodynamics part ii
Aerodynamics   part iiAerodynamics   part ii
Aerodynamics part iiSolo Hermelin
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode ObserversSolo Hermelin
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - iiSolo Hermelin
 
Aerodynamics part iii
Aerodynamics   part iiiAerodynamics   part iii
Aerodynamics part iiiSolo Hermelin
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hmsSolo Hermelin
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Solo Hermelin
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles iiSolo Hermelin
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles iSolo Hermelin
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutawaySolo Hermelin
 
Aircraft instrumentsystems
Aircraft instrumentsystemsAircraft instrumentsystems
Aircraft instrumentsystemsMahnil
 
Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizationsSolo Hermelin
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observersSolo Hermelin
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectoriesSolo Hermelin
 

Andere mochten auch (20)

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
 
Aerodynamics part ii
Aerodynamics   part iiAerodynamics   part ii
Aerodynamics part ii
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii
 
Aerodynamics part iii
Aerodynamics   part iiiAerodynamics   part iii
Aerodynamics part iii
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 
Aerodynamics part i
Aerodynamics   part iAerodynamics   part i
Aerodynamics part i
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 
Aircraft instrumentsystems
Aircraft instrumentsystemsAircraft instrumentsystems
Aircraft instrumentsystems
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 

Ähnlich wie 2 aircraft flight instruments

cOMPRESSIBLE FLOW.pptx
cOMPRESSIBLE FLOW.pptxcOMPRESSIBLE FLOW.pptx
cOMPRESSIBLE FLOW.pptxSameerBara1
 
Aircraft propulsion turbomachine 2 d
Aircraft propulsion   turbomachine 2 dAircraft propulsion   turbomachine 2 d
Aircraft propulsion turbomachine 2 dAnurak Atthasit
 
LECTURE Notes on compressor
LECTURE Notes on compressorLECTURE Notes on compressor
LECTURE Notes on compressorYuri Melliza
 
Aircraft propulsion non ideal turbomachine 2 d
Aircraft propulsion   non ideal turbomachine 2 dAircraft propulsion   non ideal turbomachine 2 d
Aircraft propulsion non ideal turbomachine 2 dAnurak Atthasit
 
Aircraft propulsion non ideal turbofan cycle analysis
Aircraft propulsion   non ideal turbofan cycle analysisAircraft propulsion   non ideal turbofan cycle analysis
Aircraft propulsion non ideal turbofan cycle analysisAnurak Atthasit
 
Unit1 principle concepts of fluid mechanics
Unit1   principle concepts of fluid mechanicsUnit1   principle concepts of fluid mechanics
Unit1 principle concepts of fluid mechanicsMalaysia
 
Hydraulics for engineers
Hydraulics for engineersHydraulics for engineers
Hydraulics for engineersYuri Melliza
 
chap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdfchap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdf21M220KARTHIKEYANC
 
Chapter 1(terms and definition)
Chapter 1(terms and definition)Chapter 1(terms and definition)
Chapter 1(terms and definition)Yuri Melliza
 
Vacuum pump-sizing
Vacuum pump-sizingVacuum pump-sizing
Vacuum pump-sizingBrock Lesnar
 
Thermodynamics (2013 new edition) copy
Thermodynamics (2013 new edition)   copyThermodynamics (2013 new edition)   copy
Thermodynamics (2013 new edition) copyYuri Melliza
 
Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleMuhammad Surahman
 
Principle of turbomachinery
Principle of turbomachineryPrinciple of turbomachinery
Principle of turbomachineryWalid Mohammed
 
Airspeeds | Q & A | Question Analysis | Flight Mechanics | GATE Aerospace
Airspeeds | Q & A | Question Analysis | Flight Mechanics | GATE AerospaceAirspeeds | Q & A | Question Analysis | Flight Mechanics | GATE Aerospace
Airspeeds | Q & A | Question Analysis | Flight Mechanics | GATE AerospaceAge of Aerospace
 
Aircraft propulsion non ideal cycle analysis
Aircraft propulsion   non ideal cycle analysisAircraft propulsion   non ideal cycle analysis
Aircraft propulsion non ideal cycle analysisAnurak Atthasit
 
The International Standard Atmosphere (ISA)
The International Standard Atmosphere (ISA)The International Standard Atmosphere (ISA)
The International Standard Atmosphere (ISA)Sayogyo Rahman Doko
 
Primary Flight Instruments| Q & A
Primary Flight Instruments| Q & APrimary Flight Instruments| Q & A
Primary Flight Instruments| Q & AAge of Aerospace
 
lecture_eps133_chapter_2 (1).pptx
lecture_eps133_chapter_2 (1).pptxlecture_eps133_chapter_2 (1).pptx
lecture_eps133_chapter_2 (1).pptxSWASTIK68
 
Basic meteorological processes
Basic meteorological processesBasic meteorological processes
Basic meteorological processesSafdar Ali
 

Ähnlich wie 2 aircraft flight instruments (20)

CF.pptx
CF.pptxCF.pptx
CF.pptx
 
cOMPRESSIBLE FLOW.pptx
cOMPRESSIBLE FLOW.pptxcOMPRESSIBLE FLOW.pptx
cOMPRESSIBLE FLOW.pptx
 
Aircraft propulsion turbomachine 2 d
Aircraft propulsion   turbomachine 2 dAircraft propulsion   turbomachine 2 d
Aircraft propulsion turbomachine 2 d
 
LECTURE Notes on compressor
LECTURE Notes on compressorLECTURE Notes on compressor
LECTURE Notes on compressor
 
Aircraft propulsion non ideal turbomachine 2 d
Aircraft propulsion   non ideal turbomachine 2 dAircraft propulsion   non ideal turbomachine 2 d
Aircraft propulsion non ideal turbomachine 2 d
 
Aircraft propulsion non ideal turbofan cycle analysis
Aircraft propulsion   non ideal turbofan cycle analysisAircraft propulsion   non ideal turbofan cycle analysis
Aircraft propulsion non ideal turbofan cycle analysis
 
Unit1 principle concepts of fluid mechanics
Unit1   principle concepts of fluid mechanicsUnit1   principle concepts of fluid mechanics
Unit1 principle concepts of fluid mechanics
 
Hydraulics for engineers
Hydraulics for engineersHydraulics for engineers
Hydraulics for engineers
 
chap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdfchap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdf
 
Chapter 1(terms and definition)
Chapter 1(terms and definition)Chapter 1(terms and definition)
Chapter 1(terms and definition)
 
Vacuum pump-sizing
Vacuum pump-sizingVacuum pump-sizing
Vacuum pump-sizing
 
Thermodynamics (2013 new edition) copy
Thermodynamics (2013 new edition)   copyThermodynamics (2013 new edition)   copy
Thermodynamics (2013 new edition) copy
 
Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard Cycle
 
Principle of turbomachinery
Principle of turbomachineryPrinciple of turbomachinery
Principle of turbomachinery
 
Airspeeds | Q & A | Question Analysis | Flight Mechanics | GATE Aerospace
Airspeeds | Q & A | Question Analysis | Flight Mechanics | GATE AerospaceAirspeeds | Q & A | Question Analysis | Flight Mechanics | GATE Aerospace
Airspeeds | Q & A | Question Analysis | Flight Mechanics | GATE Aerospace
 
Aircraft propulsion non ideal cycle analysis
Aircraft propulsion   non ideal cycle analysisAircraft propulsion   non ideal cycle analysis
Aircraft propulsion non ideal cycle analysis
 
The International Standard Atmosphere (ISA)
The International Standard Atmosphere (ISA)The International Standard Atmosphere (ISA)
The International Standard Atmosphere (ISA)
 
Primary Flight Instruments| Q & A
Primary Flight Instruments| Q & APrimary Flight Instruments| Q & A
Primary Flight Instruments| Q & A
 
lecture_eps133_chapter_2 (1).pptx
lecture_eps133_chapter_2 (1).pptxlecture_eps133_chapter_2 (1).pptx
lecture_eps133_chapter_2 (1).pptx
 
Basic meteorological processes
Basic meteorological processesBasic meteorological processes
Basic meteorological processes
 

Mehr von Solo Hermelin

2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft WarheadSolo Hermelin
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerabilitySolo Hermelin
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problemsSolo Hermelin
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variationsSolo Hermelin
 

Mehr von Solo Hermelin (6)

2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerability
 
15 sky cars
15 sky cars15 sky cars
15 sky cars
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problems
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
7 air-to-air combat
7 air-to-air combat7 air-to-air combat
7 air-to-air combat
 

Kürzlich hochgeladen

(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentationtahreemzahra82
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubaikojalkojal131
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》rnrncn29
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...D. B. S. College Kanpur
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPirithiRaju
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
Four Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptFour Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptJoemSTuliba
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPirithiRaju
 

Kürzlich hochgeladen (20)

(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentation
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdf
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdf
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Four Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptFour Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.ppt
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
 

2 aircraft flight instruments

  • 1. Aircraft Flight Instruments SOLO HERMELIN Updated: 04.12.12 1
  • 3. McDonnell Douglass F-4B Phantom Instrument Panel 3
  • 4. McDonnell Douglass F-4 Phantom Cockpit 4
  • 8. The basic variables representing the thermodynamics state of the gas are the Density, ρ, Temperature, T and Pressure, p. SOLO 8 Earth Atmosphere • The Density, ρ, is defined as the mass, m, per unit volume, v, and has units of kg/m3 . v m v ∆ ∆ = →∆ 0 limρ • The Temperature, T, with units in degrees Kelvin ( ͦ K). Is a measure of the average kinetic energy of gas particles. • The Pressure, p, exerted by a gas on a solid surface is defined as the rate of change of normal momentum of the gas particles striking per unit area. It has units of N/m2 . Other pressure units are millibar (mbar), Pascal (Pa), millimeter of mercury height (mHg) S f p n S ∆ ∆ = →∆ 0 lim kPamNbar 100/101 25 == ( ) mmHginHgkPamkNmbar 00.7609213.29/325.10125.1013 2 === The Atmospheric Pressure at Sea Level is:
  • 9. Speed of Sound (a) This is the speed of sound waves propagation in ambient air. The speed of sound is given by SOLO 9 Earth Atmosphere Sa TRa ⋅⋅= γ γ air = 1.4 Ra =287.0 J/kg--ͦ K TS – Static Air Temperature True Airspeed (TAS) The True Airspeed is the speed of the aircraft’s center of mass with respect to the ambient air through which is passing. Indicated Airspeed (IAS) The Indicated Airspeed is the speed indicated by a differential-pressure airspeed indicator.
  • 10. Mach Number (M) Is the ratio of the TAS to the speed of sound at the flight condition. SOLO 10 Earth Atmosphere aTASM /= Dynamic Pressure (q) The force per unit area required to bring an ideal (incompressible) fluid to rest: q=1/2∙ρ∙VT 2 (where VT is True Air Speed-TAS, and ρ is the density of the fluid). Impact Pressure (QC) The force per unit area required to bring moving air to rest. It is the pressure exerted at the stagnation point on the surface of a body in motion relative to the air. PT – Total Pressure, PS – Static Pressure 2 2/1 TSTC VPPQ ⋅⋅=−= ρ
  • 11. SOLO Aircraft Avionics 11 Air Data Computer Air Data Computer uses Total and Static Pressure and Static Temperature of the external Air Flow, to compute Flight Parameters.
  • 12. 12 Earth Atmosphere Atmospheric Constants Definition Symbol Value Units Sea-level pressure P0 1.013250 x 105 N/m2 Sea-level temperature T0 288.15 ͦ K Sea-level density ρ0 1.225 kg/m3 Avogadro’s Number Na 6.0220978 x 1023 /kg-mole Universal Gas Constant R* 8.31432 x 103 J/kg-mole -ͦ K Gas constant (air) Ra=R*/M0 287.0 J/kg--ͦ K Adiabatic polytropic constant γ 1.405 Sea-level molecular weight M0 28.96643 Sea-level gravity acceleration g0 9.80665 m/s2 Radius of Earth (Equator) Re 6.3781 x 106 m Thermal Constant β 1.458 x 10-6 Kg/(m-s-ͦ K1/2) Sutherland’s Constant S 110.4 ͦ K Collision diameter σ 3.65 x 10-10 m
  • 13. SOLO Aircraft Avionics 13 Flight Instruments Air Data Calculation (Collison) Geopotential Pressure Altitude • Low Altitude (Troposphere) : H< 11000 m (36.089 ft ), ( ) kPaHPS 255879.55 1025577.21325.101 ⋅⋅−⋅= − • Medium Altitude: 11000 m ≤ H ≤ 20000m (36.089 ft - 65.617 ft ) ( ) kPaeP H S 000,1110576885.1 4 6325.22 −⋅⋅− − ⋅= Air Density Ratio ρ/ρ0 S S T P ⋅ = 35164.00ρ ρ
  • 14. SOLO Aircraft Avionics 14 Flight Instruments Air Data Calculation (Collison) Mach Number • Subsonic Speeds (M ≤ 1), ( ) 2/72 2.01 M P P S T ⋅+= • Supersonic Speeds (M ≥ 1), Static Air Temperature TS ͦ K 10 2.01 2 << ⋅⋅+ = r Mr T T m S ( ) 2/52 7 17 9.166 −⋅ ⋅ = M M P P S T True Airspeed (TAS) VT m/s smTMV ST /0468.20 ⋅⋅=
  • 15. SOLO Aircraft Avionics 15 Flight Instruments Air Data Calculation (Collison) Speed of Sound a m/s • Subsonic Speeds (VC ≤ a), • Supersonic Speeds (VC ≥ a), Sa TRa ⋅⋅= γ γ air = 1.4, Ra =287.0 J/kg--ͦ K Calibrated Airspeed (CAS) VC m/s kPa V Q C C         −               ⋅+⋅= 1 294.340 2.01325.101 2/72 kPa V V Q C C C                 −         −      ⋅       ⋅ ⋅= 1 1 294.340 7 294.340 92.166 325.101 2/7 2/52 2
  • 16. 16 Central Air Data Computer Earth Atmosphere
  • 17. 17 Central Air Data Computer Earth Atmosphere
  • 18. Flight Instruments SOLO Aircraft Avionics 18 The Flight Panel - Understand Your Aircraft, Youtube
  • 21. Flight Instruments SOLO Aircraft Avionics 21 zdgpd ⋅⋅−= ρ TRp ⋅⋅= ρ KsmR 22 /287= zdaTd ⋅−= aR g T za p p ⋅       ⋅ −= 00 1
  • 24. SOLO Aircraft Avionics Flight Instruments Airspeed Indicators Centurion T210 AirSpeed Gauge
  • 25. SOLO Aircraft Avionics 25 Flight Instruments Airspeed Indicators 2 2 1 vpp StatTotal ⋅+= ρ The airspeed directly given by the differential pressure is called Indicated Airspeed (IAS). This indication is subject to positioning errors of the pitot and static probes, airplane altitude and instrument systematic defects. The airspeed corrected for those errors is called Callibrated Airspeed (CAS). Depending on altitude, the critic airspeeds for maneuvre, flap operation etc change because the aerodynamic forces are function of air density. An equivalent airspeed VE (EAS) is defined as follows: 0ρ ρ VVE = V – True Airspeed ρ – Air Density ρ0 – Air Density at Sea Level
  • 26. SOLO Aircraft Avionics 26 Flight Instruments Airspeed Indicators 2 2 1 VPQPP StatCStatTotal ⋅+=+= ρ V – True Airspeed ρ – Air Density ρ0 – Air Density at Sea Level Air Density changes with altitude. Assuming an Adiabatic Flow, the relation between Pressure and Density is given by constC P ==γ ρ γ = Cp/CV= 1.4 for air Momentum differential equation for the Air Flow is VdV C P PdVdVPd C P γρ γ ρ /1 /1 0       +=+=       = Subsonic Speeds SoundofSpeed P a S ρ γ ⋅ =
  • 27. SOLO Aircraft Avionics 27 Flight Instruments Airspeed Indicators In the free stream P = PS and V = VT, At the Probe face P = PT and V=0 0 1 0 /1 /1 =+ ∫∫ T T S V P P VdV C PdP γ γ Subsonic Speeds (continue) 2 1 1 2 /1 11 T ST V C PP γ γ γ γ γ γ γ =    − − −− γγ ρ /1/1 1 SPC = 1 2 12 2 1 1 2 1 1 2 − = −               ⋅ − +=      ⋅⋅ − += γ γ ρ γ γ γ γ γ ργ a V V PP P T P a T SS T S         −               ⋅ − +=      −=−= − 1 2 1 11 1 2 γ γ γ a V P P P PPPQ T S S T SSTC
  • 28. SOLO Aircraft Avionics 28 Flight Instruments Airspeed Indicators In the free stream P = PS and V = VT, At the Probe face P = PT and V=0 Supersonic Speeds 1 1 2 12 1 1 1 2 2 1 − −         + − −      ⋅ +               ⋅ + = γ γ γ γ γ γ γ γ a V a V P P T T S T                   −         + − −      ⋅ +               ⋅ + =      −=−= − − 1 1 1 1 2 2 1 1 1 1 2 12 γ γ γ γ γ γ γ γ a V a V P P P PPPQ T T S S T SSTC Assume Supersonic Adiabatic Air Flow we obtain
  • 29. SOLO Aircraft Avionics 29 Flight Instruments Airspeed Indicators Mach Number 1 1 2 1 2 1 1 1 2 2 1 − −       + − −⋅ +     ⋅ + = γ γ γ γ γ γ γ γ M M P P S T Subsonic Speeds (M ≤ 1) γ γ γ 1 1 2 1 −       ⋅ − −== S TT P P a V M 12 2 1 1 2 − =       ⋅ − += γ γρ γ γ M P P SP a S T From Supersonic Speeds (M ≥ 1)
  • 30. SOLO Aircraft Avionics 30 Flight Instruments Airspeed Indicators (Calibrated Airspeed) Calibrated Airspeed is obtained by substituting the Sea Level conditions, that is PS = PS0 , VT = VC , a0 = 340.294 m/s. Subsonic Speeds (VC < a0=340.294 m/s)         −               ⋅ − += − 1 2 1 1 1 2 0 0 γ γ γ a V PQ C SC 2 0 00 2 0 2 0 2 1 /2 1 2 1 C S C S C S aV C V P V P a V PQ C ⋅⋅= ⋅ ⋅⋅=         −      ⋅+≈ << ρ ργ γγ Supersonic Speeds (VC > a0=340.294 m/s)                   −         + − −      ⋅ +               ⋅ + = − − 1 1 1 1 2 2 1 1 1 2 0 12 0 0 γ γ γ γ γ γ γ γ a V a V PQ C C SC ( ) mmHginHgkPamkNmbarPS 00.7609213.29/325.10125.1013 2 0 ==== γ air = 1.4
  • 31. SOLO Aircraft Avionics 31 Flight Instruments Airspeed Indicators By measuring (TT) the Temperature of Free Airstream TS, we can compute the local Speed of Sound Sa TRa ⋅⋅= γ True Airspeed (TAS) By using the Mach Number computation we can calculate the True Airspeed (TAS) M M T RMTRMaV T aSaT ⋅ ⋅ − + ⋅⋅=⋅⋅⋅=⋅= 2 2 1 1 γ γγ
  • 32. SOLO Aircraft Avionics 32 Flight Instruments Goodrich Air Data Handbook – Basic Air Data Calculation Altitude • Low Altitude: h<36.089 ft = 11000 m, PS > 6.6832426 in Hg ( ) ( ) 190255.0 1 190255.0 190255.0190255.0 140000131252.092126.29 140000131252.0 92126.29 hP P h S S ⋅−= − = • Medium Altitude: 36.089 ft = 11000 m ≤ h ≤ 65.617 ft = 20000m 6.6832426 in Hg> PS > 1.6167295 in Hg ( )h S S eP P h ⋅− ⋅=       − = 30000480635.07345726.1 6832426.6 30000480635.0 6832426.6 ln7345726.1 163156.34 163156.34 1 96.710793 16.645177 6167295.116.645177 6167295.1 96.710793 − −       + ⋅=−      ⋅= h P P h S S • High Altitude: h >65.617 ft = 20000m, PS < 1.6167295 in Hg
  • 33. SOLO Aircraft Avionics 33 Flight Instruments Goodrich Air Data Handbook – Basic Air Data Calculation Impact Pressure STC PPQ −= where: QC=½∙ ρ∙V2 = Impact Pressure PT = Total Pressure PS = True Static Pressure Indicated Airspeed (IAS) 11 92126.29 1026.1479 7/2 −      +⋅= CQ IAS Subsonic Flight (M ≤ 1)         −               +⋅= 1 1026.1479 192126.29 2/72 IAS QC Supersonic Flight (M ≥ 1)               −             −      ⋅       ⋅= 1 1 4748.661 7 6 8411.603 92126.29 2/5 2 7 IAS IAS QC where: IAS = Indicated Airspeed in knots QC = PT – PS Impact Pressure in Hg
  • 34. SOLO Aircraft Avionics 34 Flight Instruments Goodrich Air Data Handbook – Basic Air Data Calculation Mach Number M = TAS/a         −      ⋅=         −      +⋅= 15115 7/27/2 S T S C P P P Q M Subsonic Flight (M ≤ 1) Supersonic Flight (M ≥ 1) 1 17 2.7 2.11 2/5 2 2 2 −      −⋅ ⋅ ⋅=−= M M M P P P Q S T S C where: TAS = True Airspeed in knots a = Speed of Sound in knots where: QC=½∙ ρ∙V2 = Impact Pressure in Hg PT = Total Pressure in Hg PS = True Static Pressure in Hg
  • 35. SOLO Aircraft Avionics 35 Flight Instruments Goodrich Air Data Handbook – Basic Air Data Calculation Mach Number M = TAS/a Altitude (feet) 75 KIAS (Qc=0.2701 In Hg) 100 KIAS (Qc=04814 In Hg) 200 KIAS (Qc=1.9589 In Hg) 300 KIAS (Qc=4.5343 In Hg) 400 KIAS (Qc=8.3850 In Hg) 500 KIAS (Qc=13.7756 In Hg) 600 KIAS (Qc=21.0749 In Hg) 700 KIAS (Qc=30.7642 In Hg) S.L. .113 .151 .302 .454 .605 .756 .907 1.058 10,000 .137 .182 .363 .541 .716 .888 1.057 1.230 20,000 .167 .222 .440 .651 .854 1.047 1.242 1.453 30,000 .207 .276 .541 .791 1.023 1.248 1.489 1.754 40,000 .262 .347 .672 .965 1.236 1.520 1.829 2.171 50,000 .331 .438 .831 1.171 1.509 1.875 2.276 2.717 60,000 .418 .549 1.014 1.426 1.862 2.335 2.852 3.419 70,000 .524 .684 1.230 1.754 2.318 2.928 3.592 4.318 80,000 .653 .842 1.497 2.172 2.897 3.678 4.526 5.450
  • 36. SOLO Aircraft Avionics 36 Flight Instruments Goodrich Air Data Handbook – Basic Air Data Calculation Static Temperature 2 2.01 M T T T S ⋅+ = True Airspeed (TAS) where: TS = Static Temperature ͦK TT = Total Temperature ͦK         ⋅+ ⋅⋅== 2 2.01 96695.38 M T MMTAS T a where: TAS = True Airspeed M = Mach a = Speed of Sound TT = Total Temperature ͦK
  • 38. Vertical Speed Indicator SOLO 38 Aircraft Avionics Flight Instruments
  • 39. SOLO 39 Aircraft Avionics Flight Instruments Airspeed Indicator (ASI) White Arc – Flaps Operation Range VSO – Stalling Speed Flaps Down VSI - Stalling Speed Flaps Up VFE – Maximum Speed Flaps Down (Extendeed) Green Arc – Normal Operation Range VNO – Maximum Speed Normal Operation Yellow Arc - Caution Range VNE – Not to Exceed Speed Private Pilot Airplane – Flight Instruments ASA, Movie
  • 42. SOLO 42 Aircraft Avionics Flight Instruments Gyroscopic Flight Instruments Turn Indicator
  • 48. SOLO 48 Aircraft Avionics Flight Instruments Heading Indicator The Magnetic Compass is sensitive to Inertia Forces. It is a reliable Heading Instrument in the long yerm, but during maneuvers it may swing and be hardly reliable. To provide a more precise Heading Instrument a Directional Gyro is used.
  • 50. SOLO 50 Aircraft Avionics Flight Instruments Flux Gate Compass System The Gate Compass System is connected to Radio Magnetic Indicator (RMI) and to Heading Situation Indicator (HSI). Heading Situation Indicator (HSI).Radio Magnetic Indicator (RMI)
  • 56. SOLO 56 Aircraft Avionics Flight Displays Chelton’s Flight Logic Reconfigurable Panel Display
  • 57. SOLO 57 Aircraft Avionics Flight Displays Avidyne’s Entegra Reconfigurable Panel Display
  • 76. 76 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 – 2013 Stanford University 1983 – 1986 PhD AA
  • 77. 77 SOUND WAVESSOLO Disturbances propagate by molecular collision, at the sped of sound a, along a spherical surface centered at the disturbances source position. The source of disturbances moves with the velocity V. -when the source moves at subsonic velocity V < a, it will stay inside the family of spherical sound waves. -when the source moves at supersonic velocity V > a, it will stay outside the family of spherical sound waves. These wave fronts form a disturbance envelope given by two lines tangent to the family of spherical sound waves. Those lines are called Mach waves, and form an angle μ with the disturbance source velocity: a V M M =      = − & 1 sin 1 µ
  • 78. 78 SOUND WAVESSOLO Sound Wave Definition: ∆ p p p p p1 2 1 1 1= − << ρ ρ ρ2 1 2 1 2 1 = + = + = + ∆ ∆ ∆ p p p h h h For weak shocks u p 1 2 = ∆ ∆ρ 1 1 11 1 1 1 1 1 2 1 2 1 1 uuuuuu ρ ρ ρ ρρρ ρ ρ ρ ∆ −≅ ∆ + = ∆+ ==)C.M.( ( ) ( ) ppuuupuupu ∆++      ∆ −=+=+ 11 1 11122111 2 11 ρ ρ ρρρ)C.L.M.( Since the changes within the sound wave are small, the flow gradients are small. Therefore the dissipative effects of friction and thermal conduction are negligible and since no heat is added the sound wave is isotropic. Since au =1 s p a       ∂ ∂ = ρ 2 valid for all gases
  • 79. 79 SPEED OF SOUND AND MACH NUMBERSOLO Speed of Sound is given by 0=       ∂ ∂ = ds p a ρ RT p C C T dT R C p T dT R C d dp d R T dT Cds p dp R T dT Cds v p v p ds v p γ ρ ρ ρ ρ ρ ===      ⇒        =−= =−= =00 0 but for an ideal, calorically perfect gas ρ γγ ρ p RTa TChPerfectyCaloricall RTpIdeal p ==       = = The Mach Number is defined as RT u a u M γ == ∆ 1 2 1 1 111 −−       =      =      = γ γ γ γ γ ρ ρ a a T T p p The Isentropic Chain: a ad T Tdd p pd sd 1 2 1 0 − = − ==→= γ γ γ γ ρ ρ γ
  • 80. 80 NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, Mach Number Relations (1) ( ) ( ) ( )   ( ) 12 2 2 2 1 2 1 2 2 22 2 2 1 22 1 2 2 2 2 22 1 1 2 1 12 22 2 11 1 2 2 221 2 11 2211 2 1 2 1 2 1 2 1 * 12 1 2 1 12 1 1 4.. ... .. uu u a u a uaa uaa au h a u h a EC uu u p u p pupuMLC uuMC p a −=−                  − − + = − − + = → − + =+ − =+ − →−=−→    +=+ = ∗ ∗ = γγ γγ γγ γ γ γγ ρρρρ ρρ ρ γ Field Equations: 122 2 2 1 1 2 2 1 2 1 2 1 2 1 uuu u a u u a −= − + + − − − + ∗∗ γ γ γ γ γ γ γ γ u u a1 2 2 = ∗ u a u a M M1 2 1 21 1∗ ∗ ∗ ∗ = → = Prandtl’s Relation u p ρ T e u p ρ T e τ 11 q 1 1 1 1 1 2 2 2 2 2 1 2 ( ) γ γ γ γ γ γ γ γ γ γ 2 1 2 1 1 2 1 2 1 2 1 21 2 1212 2 21 12 + = − −= + →−=− − + −+ ∗ ∗ uu a uuuua uu uu Ludwig Prandtl (1875-1953)
  • 81. 81 NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, Mach Number Relations (2) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )( ) ( ) M M M M M M M M M 2 2 2 2 1 1 2 1 2 1 2 1 2 1 2 2 1 1 2 1 1 2 1 1 1 2 1 2 1 2 1 1 1 1 1 1 2 = + − − = + − − = + + − + − − = − + + / + − / / + − / + − − ∗ = ∗ ∗ ∗ γ γ γ γ γ γ γ γ γ γ γ γ γ γ or ( ) M M M M M H H A A 2 1 2 1 2 1 2 1 21 2 1 2 1 1 2 1 2 2 1 1 1 2 1 2 1 1 = + − − − = + + − + + − = = γ γ γ γ γ γ γ ( ) ( ) ρ ρ γ γ 2 1 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 1 2 = = = = = + − + = ∗ ∗ A A u u u u u u a M M M u p ρ T e u p ρ T e τ 11 q 1 1 1 1 1 2 2 2 2 2 1 2
  • 82. 82 NORMAL SHOCK WAVESSOLO Normal Shock Wave ( Adiabatic), Perfect Gas   G Q= =0 0, Mach Number Relations (3) ( ) ( ) ( ) ( ) ( ) p p u p u u u a M M M M M M M 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 2 1 1 1 1 2 1 = + −       = + −       = + − − + +       = + / + − / − − + ρ γ ρ ρ γ γ γ γ γ γ γ or (C.L.M.) ( ) p p M2 1 1 2 1 2 1 1= + + − γ γ ( ) ( ) ( ) h h T T p p M M M a a h C T p RTp 2 1 2 1 2 1 1 2 1 2 1 2 1 2 2 1 1 2 1 1 1 2 1 = = = + + −       − + + = = = ρ ρ ρ γ γ γ γ ( ) ( ) ( ) s s R T T p p M M M 2 1 2 1 1 2 1 1 1 2 1 1 1 2 1 2 1 1 2 1 1 1 2 1 − =                       = + + −       − + +                 − − − − ln ln γ γ γ γ γ γ γ γ γ γ ( ) ( ) ( ) ( ) s s R M M M 2 1 1 1 2 1 2 3 2 2 1 2 41 2 2 3 1 1 2 1 1 − ≈ + − − + − + − << γ γ γ γ K Shapiro p.125 u p ρ T e u p ρ T e τ 11 q 1 1 1 1 1 2 2 2 2 2 1 2
  • 83. 83 STEADY QUASI ONE-DIMENSIONAL FLOWSOLO STAGNATION CONDITIONS )C.E.( constuhuh =+=+ 2 22 2 11 2 1 2 1 The stagnation condition 0 is attained by reaching u = 0 2 / 21202 020 2 1 1 1 2 1 2 1 22 1 2 M TR u Tc u T T c u TTuhh TRa auM Rc pp Tch p p − += − +=+=→+=→+= = = − = = γ γ γ γγ γ Using the Isentropic Chain relation, we obtain: 2 1 0102000 2 1 1 M p p a a h h T T − +=      =      =      == − − γ ρ ρ γ γ γ Steady , Adiabatic + Inviscid = Reversible, , ( ) q Q= =0 0, ( )~ ~ τ = 0 ( )   G = 0 ∂ ∂ t =      0
  • 84. SOLO 84 Civilian Aircraft Avionics Flight Cockpit CIRRUS PERSPECTIVE Cirrus Perspective Avionics Demo, Youtube Cirrus SR22 Tampa Landing in Heavy Rain, Movie
  • 93. 93 New integrated flight control system, Movie https://www.youtube.com/watch?v=D3cH5ydHMzw Civilian Aircraft Avionics

Hinweis der Redaktion

  1. http://aviation.watergeek.eu/f4b-panel.html
  2. http://aviation.watergeek.eu/f4b-panel.html
  3. George M. Siouris, “Aerospace Avionics Systems, A Modern Synthesis”, Academic Press, Inc., 1993
  4. George M. Siouris, “Aerospace Avionics Systems, A Modern Synthesis”, Academic Press, Inc., 1993
  5. Collinson, R.,P.,G., “Introduction to Avionics”, Chapman &amp; Hall, 1996
  6. Frank J, Regan, Satya M. Anandakrishnan, “Dynamics of Atmospheric Re-Entry”, AIAA Education Series, 1993
  7. Collinson, R.,P.,G., “Introduction to Avionics”, Chapman &amp; Hall, 1996
  8. Collinson, R.,P.,G., “Introduction to Avionics”, Chapman &amp; Hall, 1996
  9. Collinson, R.,P.,G., “Introduction to Avionics”, Chapman &amp; Hall, 1996
  10. Collinson, R.,P.,G., “Introduction to Avionics”, Chapman &amp; Hall, 1996
  11. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  12. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  13. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  14. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  15. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  16. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  17. http://fsxtimes.wordpress.com/category/hardware/
  18. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  19. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  20. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  21. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf http://www.youtube.com/watch?v=vICokuUAVAM
  22. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  23. USNavy-Instrument Flightmanual.pdf
  24. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  25. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  26. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  27. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf Flight Instruments, Chapter 3, FAA-H-8083
  28. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf Flight Instruments, Chapter 3, FAA-H-8083
  29. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf Flight Instruments, Chapter 3, FAA-H-8083
  30. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  31. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  32. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  33. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf Flight Instruments, Chapter 3, FAA-H-8083
  34. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf Flight Instruments, Chapter 3, FAA-H-8083
  35. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf Flight Instruments, Chapter 3, FAA-H-8083
  36. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  37. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  38. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  39. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  40. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  41. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  42. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  43. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  44. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  45. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  46. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  47. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  48. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  49. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  50. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  51. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  52. Chapter 10 Aircraft Performance http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2010.pdf
  53. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  54. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  55. Chapter 7 Flight Instruments http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf
  56. Chapter 4 Aerodynamics of Flight http://www.gov/library/manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2004.pdf
  57. http://cirrusaircraft.com/multimedia/#primary http://www.youtube.com/watch?v=2-DZIysbrx0 http://www.youtube.com/watch?v=tq7eS1wXTeo
  58. http://cirrusaircraft.com/multimedia/#primary
  59. http://cirrusaircraft.com/multimedia/#primary
  60. http://cirrusaircraft.com/multimedia/#primary
  61. http://cirrusaircraft.com/multimedia/#primary
  62. http://cirrusaircraft.com/multimedia/#primary
  63. http://cirrusaircraft.com/multimedia/#primary
  64. http://cirrusaircraft.com/multimedia/#primary
  65. http://cirrusaircraft.com/multimedia/#primary
  66. http://www.youtube.com/watch?v=D3cH5ydHMzw