SlideShare ist ein Scribd-Unternehmen logo
1 von 141
Downloaden Sie, um offline zu lesen
Flat Slab Design
 Resources	
  used	
  for	
  compiling	
  this	
  presenta4on	
  
	
  are	
  acknowledged	
  
Flat Slab with
drop panels
Flat slab with
column head
Flat slab with
drop panel and
column head
Flat Slab resting
directly on
columns
1.  What is a flat slab?
31.1 General
The term flat slab means a
reinforced concrete slab
with or without drops,
supported generally without
beams, by columns with or
without flared column heads
A flat slab may be solid slab
or may have recesses
formed on the soffit so that
the soffit comprises a series
of ribs in two directions.
The recesses may be formed
by removable or permanent
filler blocks.	
  
2.  Types of flat slab
•  Flat Slab with drop panels
•  Flat slab with column head •  Flat slab with drop panel
and column head
•  Flat Slab resting
directly on columns
Drop	
  is	
  a	
  local	
  thickening	
  of	
  the	
  slab	
  in	
  
the	
  region	
  of	
  column	
  
Structural	
  Advantages	
  
•  increase	
  shear	
  strength	
  of	
  slab	
  
•  increase	
   nega5ve	
   moment	
   capacity	
  
of	
  slab	
  
•  s5ffen	
   the	
   slab	
   and	
   hence	
   reduce	
  
deflec5on 	
  
Column	
  head	
  is	
  a	
  local	
  enlargement	
  of	
  
the	
   column	
   at	
   the	
   junc5on	
   with	
   the	
  
slab	
  
Structural	
  Advantages	
  
•  increase shear strength of slab
(punching shear)
•  reduce the moment in the slab by
reducing the clear or effective span
A	
  flat	
  slab	
  may	
  have	
  recesses	
  formed	
  on	
  the	
  soffit	
  so	
  that	
  the	
  soffit	
  comprises	
  a	
  series	
  of	
  ribs	
  
in	
  two	
  direc5ons	
  (	
  waffle	
  Slabs).	
  	
  
Flat	
   slabs	
   with	
   capitals,	
   drop	
   panels,	
   or	
   both.	
   These	
   slabs	
   are	
   very	
   sa4sfactory	
   for	
  
heavy	
  loads	
  and	
  long	
  spans.	
  	
  
	
  
Although	
  the	
  formwork	
  is	
  more	
  expensive	
  than	
  for	
  flat	
  plates,	
  flat	
  slabs	
  will	
  require	
  
less	
  concrete	
  and	
  reinforcing	
  than	
  would	
  be	
  required	
  for	
  flat	
  plates	
  with	
  the	
  same	
  
loads	
  and	
  spans.	
  	
  
	
  
They	
   are	
   par4cularly	
   economical	
   for	
   warehouses,	
   parking	
   and	
   industrial	
   buildings,	
  
and	
  similar	
  structures,	
  where	
  exposed	
  drop	
  panels	
  or	
  capitals	
  are	
  acceptable.	
  
v Flexibility in room layout
•  Introduce partition walls anywhere required
•  Change the size of room layout
•  Omit false ceiling
v  Saving in building height
•  Lower storey height will reduce building weight
•  approx. saves 10% in vertical members
•  reduce foundation load
v Shorter construction time
•  flat plate design will facilitate the use of
big table formwork to increase productivity
v Ease of installation of M&E services
•  all M & E services can be mounted directly on
the underside of the slab instead of bending
them to avoid the beams
•  avoids hacking through beams	
  
3.  Benefits of flat slab
The	
  main	
  disadvantage	
  is	
  their	
  lack	
  of	
  resistance	
  to	
  lateral	
  loads	
  due	
  to	
  
wind	
   and	
   earthquakes.	
   Lateral	
   load	
   resis4ng	
   systems	
   such	
   as	
   shear	
  
walls	
  are	
  oDen	
  necessary	
  
	
  
When	
  the	
  loads	
  or	
  spans	
  or	
  both	
  become	
  quite	
  large,	
  the	
  slab	
  thickness	
  
and	
   column	
   sizes	
   required	
   for	
   flat	
   plates	
   or	
   flat	
   slabs	
   are	
   of	
   such	
  
magnitude	
   that	
   it	
   is	
   more	
   economical	
   to	
   use	
   two-­‐way	
   slabs	
   with	
  
beams,	
  despite	
  the	
  higher	
  formwork	
  costs.	
  
	
  
4.  Behaviour of Slab supported on Stiff , Flexible and no beams
Case	
  Study:	
  	
  
•  Panel	
  Size	
  =	
  4	
  m	
  x	
  4m	
  
•  Slab	
  Thickness	
  =	
  	
  125	
  mm	
  
•  Load	
  =	
  5	
  kN/m2	
  
•  S5ff	
  Supports	
  (	
  Bearing	
  wall)	
  
•  Flexible	
  Supports	
  (Beam)	
  :	
  300	
  x	
  300	
  ,	
  300	
  x	
  450	
  ,	
  300	
  x	
  600	
  ,	
  300	
  x	
  1000	
  mm	
  
•  Column	
  supports	
  at	
  corners	
  	
  
A.	
  Two	
  way	
  Slab	
  on	
  Rigid	
  Supports	
  (bearing	
  Walls)	
  
Mx	
  =	
  3.616	
  kNm/m	
   My	
  =	
  3.616	
  kNm/m	
  
IS	
  456	
  Values	
  (Table	
  27):	
  0.062	
  x	
  5	
  x	
  16	
  =	
  4.96	
  
Slab	
  Deflec6on	
  =	
  1.4	
  mm	
  	
  
B.	
  Two	
  way	
  Slab	
  on	
  Flexible	
  	
  Supports	
  (Beams	
  on	
  all	
  sides)	
  
	
  
1.	
  Beam	
  Size	
  :	
  300	
  x300	
  mm	
  
Mx	
  =	
  4.45	
  kNm/m	
   My	
  =	
  4.45	
  kNm/m	
  
IS	
  456	
  Values	
  (Type	
  9):	
  0.056	
  x	
  5	
  x	
  16	
  =	
  4.48	
  
Mxy	
  =	
  0.37	
  kNm/m	
  
Beam	
  Moment	
  =	
  12.2	
  kNm	
  
Beam	
  Deflec6on	
  =	
  1.33	
  mm	
   Slab	
  deflec6on=	
  2.9	
  mm	
  
2.	
  Beam	
  Size	
  :	
  300	
  x450	
  mm	
  
Mx	
  =	
  3	
  kNm/m	
   My	
  =	
  3	
  kNm/m	
  
IS	
  456	
  Values	
  (Type	
  9):	
  0.056	
  x	
  5	
  x	
  16	
  =	
  4.48	
  
Mxy	
  =	
  0.73	
  kNm/m	
  
Beam	
  Moment	
  =	
  15.6	
  kNm	
  
Beam	
  Deflec6on	
  =	
  0.5	
  mm	
  
Slab	
  deflec6on=	
  1.5	
  mm	
  
3.	
  Beam	
  Size	
  :	
  300	
  x	
  600	
  mm	
  
Mx	
  =	
  2.43	
  kNm/m	
   My	
  =	
  2.43	
  kNm/m	
  
IS	
  456	
  Values	
  (Type	
  9):	
  0.056	
  x	
  5	
  x	
  16	
  =	
  4.48	
  
Mxy	
  =	
  0.8	
  kNm/m	
  
Beam	
  Moment	
  =	
  17	
  kNm	
  
Beam	
  Deflec5on	
  =	
  0.24	
  mm	
  
Slab	
  Deflec5on	
  =	
  0.98	
  mm	
  
4.	
  Beam	
  Size	
  :	
  300	
  x	
  1000	
  mm	
  
Mx	
  =	
  2	
  kNm/m	
   My	
  =	
  2	
  kNm/m	
  
IS	
  456	
  Values	
  (Type	
  9):	
  0.056	
  x	
  5	
  x	
  16	
  =	
  4.48	
  
Mxy	
  =	
  0.8	
  kNm/m	
  
Beam	
  Moment	
  =	
  	
  18	
  kNm	
  
5.	
  Beam	
  Size	
  :	
  300	
  x	
  125	
  mm	
  (Concealed	
  Beams)	
  
Mx	
  =	
  9.8	
  kNm/m	
   My	
  =	
  9.8	
  kNm/m	
  
IS	
  456	
  Values	
  (Type	
  9):	
  0.056	
  x	
  5	
  x	
  16	
  =	
  4.48	
  
Mxy	
  =	
  3	
  kNm/m	
  
Beam	
  Moment	
  =	
  	
  2.9	
  kNm	
   Slab	
  Deflec6on	
  =	
  7.0	
  mm	
  
B.	
  Two	
  way	
  Slab	
  on	
  	
  Point	
  	
  Supports	
  	
  at	
  corners	
  (Flat	
  Slab)	
  
Mx	
  =	
  9.075	
  kNm/m	
  (Middle)	
  
	
  	
  	
  	
  	
  	
  	
  =12.4	
  kNm/m	
  (Edge	
  Strip)	
  
Mxy	
  =	
  7.76	
  kNm/m	
  My	
  =	
  9.075	
  kNm/m	
  (Middle)	
  
	
  	
  	
  	
  	
  	
  	
  =12.4	
  kNm/m	
  (Edge	
  Strip)	
  
Slab	
  Deflec6on	
  =	
  8.67	
  mm	
  
Type	
  of	
  
Support	
  
Mx	
   My	
   Mxy	
  
Beam	
  
Moment	
  
Deflec4on	
  
Slab	
   Beam	
  
Rigid	
   3.616	
   3.616	
   2.6	
   -­‐	
   1.4	
   -­‐	
  
300	
  x125	
  
(Concealed	
  
Beams)	
  
9.84	
   9.85	
   3.0	
   2.88	
   7.0	
   4.3	
  
300	
  x300	
   4.45	
   4.45	
   0.37	
   12.2	
   2.9	
   1.33	
  
300	
  x450	
   3	
   3	
   0.73	
   15.6	
   1.5	
   0.50	
  
300	
  x600	
   2.43	
   2.43	
   0.8	
   17.0	
   0.98	
   0.24	
  
300x1000	
   2	
   2	
   0.8	
   18.0	
   0.60	
   0.05	
  
Flat	
  Slab	
   9.0	
   9.0	
   7.76	
   -­‐	
   8.676	
   -­‐	
  
Results	
  Summary	
  
•  Two way Rectangular Slab supported on stiff beams, the shorter spans (stiffer portion
of the slab) carry larger load and subjected to larger moments. The longer spans
carry less load and subjected to less moment.
•  Results indicate that decrease in supporting beams stiffness leads to an increase in
bending moments of slabs and decrease in bending moment of the beams (behavior that
is not captured using code recommendations).
•  If the slab is supported on bearing walls, slab moments are distributed in similar way.
•  If the slab is supported only by the columns, the slab behaves like a two way slab with
an essential difference that all the load is carried in both directions to accumulate it
at the columns.
•  With Concealed beams it is reveled that the behaviour is close to Flat slabs rather than any useful
beam action.	
  
Observa4ons	
  
4.  Structural Behaviour of Flat Slab
Deflected	
  Shape	
  
Column	
  Strip	
  
Column	
  Strip	
  
Middle	
  Strip	
  
Column	
  Strip
Middle	
  
Strip	
  
A	
   Zone	
  of	
  –ve	
  BM	
  (Hogging)	
  in	
  both	
  direc7ons	
  
B	
   Zone	
  of	
  +ve	
  BM(Sagging)	
  and	
  –ve	
  BM	
  
C	
   Zone	
  of	
  -­‐ve	
  BM	
  and	
  +ve	
  BM	
  
D	
   Zone	
  of	
  +ve	
  BM	
  in	
  both	
  direc7ons	
  
-­‐m4	
  
-­‐m2	
  
-­‐m4	
  
m3	
  
m1	
  
m3	
  
m5	
  
m7	
  
-­‐m8	
  
-­‐m4	
  
-­‐m2	
  
-­‐m4	
  
m7	
  
A	
   A	
  
A	
   A	
  
C	
  
C	
  
B	
  
B	
  
D	
  
Column	
  Strip	
  
Middle	
  Strip	
  
Column	
  Strip	
  
Column	
  
Strip	
  
Middle	
  Strip	
   Column	
  
Strip	
  
-­‐m6	
  
-­‐m6	
  -­‐m8	
   -­‐m8	
  
-­‐m8	
  
5.  Distribution of Total Panel Moment in different zones
A	
   Zone	
  of	
  –ve	
  BM	
  (Hogging)	
  in	
  both	
  direc7ons	
  
B	
   Zone	
  of	
  +ve	
  BM(Sagging)	
  and	
  –ve	
  BM	
  
C	
   Zone	
  of	
  -­‐ve	
  BM	
  and	
  +ve	
  BM	
  
D	
   Zone	
  of	
  +ve	
  BM	
  in	
  both	
  direc7ons	
  
-­‐m4	
  
-­‐m2	
  
-­‐m4	
  
m3	
  
m1	
  
m3	
  
m5	
  
m7	
  
-­‐m8	
  
-­‐m4	
  
-­‐m2	
  
-­‐m4	
  
m7	
  
A	
   A	
  
A	
   A	
  
C	
  
C	
  
B	
  
B	
  
D	
  
Column	
  Strip	
  
Middle	
  Strip	
  
Column	
  Strip	
  
Column	
  
Strip	
  
Middle	
  Strip	
   Column	
  
Strip	
  
-­‐m6	
  
-­‐m6	
  
-­‐m8	
   -­‐m8	
  
-­‐m8	
  
m1	
  
-­‐m2	
   -­‐m2	
  D	
  
C	
   C	
  
m3	
  
-­‐m4	
   -­‐m4	
  B	
  
A	
   A	
  
m5	
  
-­‐m6	
  
-­‐m6	
  D	
  
B	
  B	
  
m7	
  
-­‐m8	
  
-­‐m8	
  
C	
  
A	
  A	
  
6.  Definitions
L2	
  
L1	
  
Moment	
  Direc5on	
  
MIDDLE	
  STRIP	
  
COLUMN	
  STRIP	
  
0.25L2	
  ≤	
  0.25L1	
  
COLUMN	
  STRIP	
  
0.25L1	
  ≤	
  0.25L2	
  
MIDDLE	
  
STRIP	
  
COLUMN	
  STRIP	
  
0.25L1	
  ≤	
  0.25L2	
  
Moment	
  Direc5on	
  
SPAN	
  
Region	
  
SPAN	
  Region:	
  
Bounded	
  on	
  all	
  the	
  four	
  sides	
  by	
  middle	
  strips	
  	
  
	
  
 
	
  
7.  General Design Considerations
CL 31.2 Proportioning
31.2.1 Thickness of Flat Slab
•  The thickness of the flat slab shall be
generally controlled by considerations of
span to effective depth ratios given in 23.2.
•  For slabs with drops conforming to 31.2.2,
span to effective depth ratios given in 23.2
shall be applied directly; otherwise the span
to effective depth ratios obtained in
accordance with provisions in 23.2 shall be
multiplied by 0.9. For this purpose, the
longer span shall be considered.
•  The minimum thickness of slab shall be 125
mm.
31.2.2 Drop
•  The drops when provided shall be
rectangular in plan, and have a length
in each direction not less than one-
third of the panel length in that
direction.
•  For exterior panels, the width of drops
at right angles to the non continuous
edge and measured from the centre-
line of the columns shall be equal to
one-half the width of drop for interior
panels.
•  Minimum thickness of Drop
> ¼ of Slab thickness and
> 100 mm	
  
31.2.3 Column Heads
Where column heads are provided, that portion of a column head which lies within the
largest right circular cone or pyramid that has a vertex angle of 900and can be included
entirely within the outlines of the column and the column head, shall be considered for
design purposes.	
  
8. Determination of Bending Moment CL 31.3
31.3.1. Methods of Analysis and Design
It shall be permissible to design the slab system by one of the following
methods:
a) The direct design method as specified in 31.4, and
b) The equivalent frame method as specified in 31.5.
In each case the applicable limitations given in 31.4 and 31.5 shall be met.	
  
9. Direct Design Method CL 31.4
A. Limitations : 31.4.1
Slab system designed by the direct design method shall fulfil the following conditions:
a)  There shall be minimum of three continuous spans in each direction,
b)  The panels shall be rectangular, and the ratio of the longer span to the shorter span within
a panel shall not be greater than 2.0
c)  It shall be permissible to offset columns to a maximum of 10percent of the span in the
direction of the offset notwithstanding the provision in (b)
d)  The successive span lengths in each direction shall not differ by more than one-third of
the longer span. The end spans may be shorter but not longer than the interior spans, and
e)  The design live load shall not exceed three times the design dead load.
Note:
Applicable to gravity loading condition alone (and not to the lateral loading condition) 	
  
1	
   2	
   3	
  
2	
  
3	
  
Lx1	
  
Lx2	
  
Lx3	
  
Ly1	
  
Ly2	
  
Ly3	
  
≤	
  0.1Ly2	
  
≤	
  0.1Lx1	
  
Lx1	
  ≤	
  Lx2	
  
Lx3	
  ≤	
  Lx2	
  
Ly1	
  ≤	
  Ly2	
  
Ly3	
  ≤	
  Ly2	
  
Lx1	
  ≥	
  2Lx2/3	
  
Lx3	
  ≥	
  2Lx2/3	
  
Ly1	
  ≥	
  2Ly2/3	
  
Ly3	
  ≥	
  2Ly2/3	
  
wuL/wuD	
  ≤	
  3	
  
For	
  any	
  Panel	
  
Longer	
  Span/Shorter	
  Span≤	
  2	
  
B. Total Design Moment for a Span: CL31.4.2
CL	
  of	
  Panel	
  1	
  
CL	
  of	
  Panel	
  2	
  
1	
  
2	
  
DESIGN	
  
STRIP	
  
31.4.2.1 In the direct design
method, the total design moment
for a span shall be determined
for a strip bounded laterally by
the centre-line of the panel on
each side of the centre-line of
the supports.
31.4.2.2 The absolute sum of the
positive and average negative
bending moments in each
direction shall be taken as:
1	
  
2	
  
M0x	
  
M0y	
  
lnx
wu	
  kN/m	
  
L1	
  
L2	
  Ln	
  Ln	
  
(L1)	
  
(L2)	
  
Note:	
  	
  
1.  It	
  is	
  the	
  same	
  as	
  the	
  total	
  moment	
  that	
  occurs	
  in	
  a	
  
simply	
  supported	
  slab	
  
2.  The	
  moment	
  that	
  actually	
  occurs	
  in	
  such	
  a	
  slab	
  has	
  been	
  shown	
  by	
  experience	
  and	
  tests	
  
to	
  be	
  somewhat	
  less	
  than	
  the	
  value	
  determined	
  by	
  the	
  Mo	
  expression.	
  For	
  this	
  reason,	
  l1	
  
is	
  replaced	
  with	
  ln
•  It	
  is	
  next	
  necessary	
  to	
  know	
  what	
  propor4ons	
  of	
  these	
  total	
  moments	
  are	
  posi4ve	
  and	
  
what	
  propor4ons	
  are	
  nega4ve.	
  	
  
10. Distribution of Total Panel Moment M0
•  If	
   a	
   slab	
   was	
   completely	
   fixed	
   at	
   the	
   end	
   of	
   each	
  
panel,	
  the	
  division	
  would	
  be	
  as	
  it	
  is	
  in	
  a	
  fixed-­‐end	
  
beam,	
   two-­‐thirds	
   nega4ve	
   and	
   one-­‐third	
   posi4ve,	
  
as	
  shown	
  in	
  Figure.	
  	
  
	
  
•  This	
   division	
   is	
   reasonably	
   accurate	
   for	
   interior	
  
panels	
   where	
   the	
   slab	
   is	
   con4nuous	
   for	
   several	
  
spans	
  in	
  each	
  direc4on	
  with	
  equal	
  span	
  lengths	
  and	
  
loads.	
  	
  
Interior	
  Panel	
  
•  The	
  rela4ve	
  s4ffnesses	
  of	
  the	
  columns	
  and	
  slabs	
  of	
  exterior	
  panels	
  are	
  of	
  
far	
  greater	
  significance	
  in	
  their	
  effect	
  on	
  the	
  moments	
  than	
  is	
  the	
  case	
  
for	
  interior	
  panels.	
  	
  
•  The	
   magnitudes	
   of	
   the	
   moments	
   are	
   very	
   sensi4ve	
   to	
   the	
   amount	
   of	
  
torsional	
  restraint	
  supplied	
  at	
  the	
  discon4nuous	
  edges.	
  	
  
•  This	
  restraint	
  is	
  provided	
  both	
  by	
  the	
  flexural	
  s4ffness	
  of	
  the	
  slab	
  and	
  by	
  
the	
  flexural	
  s4ffness	
  of	
  the	
  exterior	
  column.	
  	
  
	
  
Exterior	
  Panel	
  
Code Recommendations
Distribution of Bending Moments across panel width Code Recommendations
11. Rebar Detailing - Code Recommendations
Bent	
   bars	
   are	
   	
   also	
   used.	
  
There	
   seems	
   to	
   be	
   a	
   trend	
  
among	
   designers	
   to	
   use	
  
straight	
   bars	
   more	
   than	
  
bent	
  bars.	
  
ELEVATION	
  
Rebar Detailing - Code Recommendations
e	
  e	
   e	
   e	
   e	
  
b	
   b	
   b	
   b	
  b	
  
Ln	
  greater	
  of	
  adjacent	
  clear	
  spans	
  CL	
  31.7.3	
  (b)	
  
Sec6on	
  through	
  Middle	
  Strip	
  
12. Two way Shear in Flat Slab
•  Flat	
  plates	
  present	
  a	
  possible	
  problem	
  in	
  transferring	
  the	
  
shear	
  at	
  the	
  perimeter	
  of	
  the	
  columns.	
  
•  There	
  is	
  a	
  danger	
  that	
  the	
  columns	
  may	
  punch	
  through	
  
the	
  slabs.	
  
•  As	
  a	
  result,	
  it	
  is	
  frequently	
  necessary	
  to	
  increase	
  column	
  
sizes	
   or	
   slab	
   thicknesses	
   or	
   to	
   use	
   shear	
   heads.	
   Shear	
  
heads	
   consist	
   of	
   steel	
   I	
   or	
   channel	
   shapes	
   placed	
   in	
   the	
  
slab	
  over	
  the	
  columns	
  
Note:	
  
Flat	
  Slab	
  with	
  drop	
  panel	
  and	
  capital,	
  shear	
  is	
  required	
  to	
  be	
  checked	
  at	
  two	
  sec4ons	
  
1.  at	
  a	
  distance	
  d/2	
  from	
  the	
  face	
  of	
  column	
  capital	
  
2.  at	
  a	
  distance	
  d/2	
  from	
  the	
  face	
  of	
  drop	
  panel	
  
Design	
  Example	
  #1	
  
Design	
   by	
   DDM	
   flat	
   plate	
   supported	
   on	
  
columns	
  450	
  mm	
  square,	
  for	
  	
  a	
  Live	
  Load	
  
=	
   3	
   kN/m2,	
   Floor	
   Finish	
   =	
   	
   1	
   kN/m2	
   use	
  
M20	
  and	
  Fe415.	
  Assume	
  clear	
  cover	
  =	
  20	
  
mm.	
   Effec6ve	
   Column	
   Height	
   =	
   3.35m.	
  
Bay	
  spacing	
  in	
  X	
  and	
  Y	
  direc6on	
  =	
  5m	
  c/c	
  
	
  
•  Interior	
  Panel	
  P5	
  
•  Corner	
  Panel	
  P7	
  
3	
  bays	
  @	
  5	
  m	
  c/c	
  
A.	
  Interior	
  Panel	
  Design	
  
5	
  m	
  
5	
  m	
  
2.5m	
  	
  
2.5	
  
m	
  A A
A A
B
B
C
CD
Zone	
  A	
  –	
  Corner	
  Strip	
  
Zone	
  B	
  –	
  Middle	
  Strip	
  along	
  X	
  
Zone	
  C	
  –	
  Middle	
  Strip	
  along	
  Y	
  
Zone	
  D	
  –	
  Interior	
  Region	
  
	
  
	
  Step 1: Panel Division into Strips 	
  31.1.1(a)	
  	
  
Moment	
  
direc6on	
  
Along	
  
L1	
   L2	
  
Width	
  of	
  Column	
  Strip	
  on	
  
either	
  side	
  of	
  Centre	
  Line	
  
=	
  0.25L2	
   and	
  	
  	
  	
  ≤	
  0.25	
  L1	
  
Middle	
  
Strip	
  
X	
   5	
   5	
  
1.25	
  and	
  ≤1.25	
  m	
  
Adopt	
  1.25	
  m	
  
2.5m	
  
Y	
   5	
   5	
  
1.25	
  and	
  ≤1.25	
  m	
  
Adopt	
  1.25	
  m	
  
2.5m	
  
Step 2: Trial Depth CL 31.2.1	
  	
  
•  L/d	
  =	
  26	
  
•  Modifica5on	
  Factor	
  =	
  1.33,	
  Assuming	
  pt	
  =	
  0.4%,	
  FIG	
  4	
  IS	
  456	
  
•  d	
  =	
  5000/(26	
  x	
  1.33)	
  =	
  	
  	
  145	
  mm	
  >	
  125	
   	
   	
   	
   	
  CL	
  31.2.1	
  
•  DS=	
  145	
  +	
  20	
  +	
  18	
  =	
  183	
  mm	
  (	
  assume	
  #12	
  bars,	
  and	
  bars	
  in	
  two	
  layers)	
  
•  Provide	
  Ds=	
  200	
  mm	
  d	
  =	
  200-­‐20-­‐18	
  =	
  162	
  mm	
  	
  
Step 3 Design Loads / m width of Slab
•  wuD = 1.5(25x 0.2 + 1) = 9kN/m
•  wuL = 1.5 x 3 = 4.5kN/m
•  wu = 13.5 kN/m
Step 4: Check for Applicability of DDM: CL 31.4.1
•  No.	
  of	
  Con5nuous	
  Spans	
  in	
  each	
  direc5on	
  =	
  3	
  ;	
  OK	
   	
   	
   	
   	
  31.4.1(a)	
  	
  
•  Long	
  Span/Short	
  Span	
  	
  =	
  5/5	
  =	
  1	
  <2	
  ;	
  OK	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  31.4.1(b)	
  	
  
•  Successive	
  spans	
  in	
  each	
  direc5on	
  =	
  Equal;	
  OK	
   	
   	
   	
   	
  31.4.1(d)	
  	
  
•  wuL/wuD	
  	
   =	
  4.5/9	
  =	
  0.5	
  <	
  3	
  ;	
  OK	
   	
   	
   	
   	
   	
   	
  31.4.1(e)	
  	
  
Step 5: Check for punching shear around Column
Assumed	
  d	
  =	
  162	
  mm	
  
Sec4on	
  1:	
  
•  Cri5cal	
  Sec5on	
  at	
  d/2	
  around	
  the	
  column	
  	
  
•  Perimeter	
  of	
  Cri5cal	
  Sec5on	
  =	
  	
  4	
  x	
  0.612=	
  2.448	
  m	
  	
  
•  Design	
  Shear	
  at	
  cri5cal	
  sec5on	
  Vu	
  
•  Vu	
  =	
  13.5	
  (	
  52	
  –	
  0.6122)	
  =	
  333kN	
  
•  τc	
  =	
  0.25√fck	
  =	
  1.12	
  MPa	
  
•  ks	
  =	
  0.5	
  +1	
  =	
  1.5	
  	
  <=1	
  ;	
  ks=1	
  ;	
  ks	
  τc	
  =	
  1.12	
  
•  Shear	
  Resistance	
  of	
  Concrete	
  =	
  1.12	
  x	
  2448	
  x	
  162	
  =	
  444kN	
  >	
  333	
  kN 	
   	
  OK	
  
Cri4cal	
  Sec4on	
  
0.612m	
  
0.612m	
  
5m	
  
5m	
  
Contributory	
  Area	
  
Step 6:Design Moments CL 31.4.2.2
Parameters	
   Along	
  X	
   Along	
  Y	
  
L1	
  (Span	
  in	
  direc4on	
  of	
  Mo)	
   5	
   5	
   m	
  
0.65L1	
  	
   3.25	
   3.25	
   m	
  
Ln	
  (clear	
  span	
  extending	
  from	
  face	
  to	
  
face	
  of	
  columns,	
  capitals)	
  
(5-­‐0.45)	
  =	
  
4.55	
  
4.55	
   m	
  
Ln	
  >	
  0.65L1	
   4.55	
   4.55	
   m	
  
L2	
  (Span	
  transverse	
  to	
  L1)	
   5	
   5	
   m	
  
W	
  =	
  wu	
  L2Ln	
   307.2	
   307.2	
   kN	
  
M0	
  	
  =	
  W	
  Ln	
  /	
  8	
  	
   174.72	
   174.72	
   kNm	
  
wu = 13.5 kN /m
Step 7 : Distribution of Bending Moment across panel width ;
CL: 31.4.3.2, 31.5.5
Moment	
  Direc5on	
  along	
   X	
   Y	
  
Nega4ve	
  	
  Design	
  Moment	
  
	
  MN	
  =	
  -­‐	
  0.65*M0	
  
113.6	
   113.6	
   kNm	
   	
  31.4.3.2	
  
•  Column	
  Strip	
  M1	
  =	
  	
  0.75MN	
  	
   85.2	
   85.2	
   kNm	
   31.5.5.1	
  
Width	
  of	
  Column	
  Strip	
  resis4ng	
  M1	
  (Csw)	
   	
  2x1.25	
  =2.5	
   2x1.25	
  =2.5	
   m	
  
•  -­‐m1	
  =	
  M1/	
  Csw	
  	
  (Zone	
  A)	
   34.1	
   34.1	
   kNm/m	
  
•  Middle	
  Strip	
  M2	
  =	
  0.25MN	
   28.4	
   28.4	
   kNm	
   	
  31.5.5.4(a)	
  
Width	
  of	
  Middle	
  Strip	
  resis4ng	
  M2	
  (Msw)	
   2.5	
   2.5	
   m	
  
•  -­‐m2	
  =	
  	
  M2/Msw	
  	
  
(Zone	
  B	
  &	
  C)	
  
11.4	
   11.4	
   kNm/m	
  
Posi5ve	
  Design	
  Moment	
  	
  
MP	
  =	
  0.35*M0	
  
61.2	
   61.2	
   kNm	
   	
  31.4.3.2	
  
•  Column	
  Strip	
  M1	
  =	
  0.6MP	
  	
   36.7	
   36.7	
   kNm	
   	
  31.5.5.3	
  
•  +m1	
  =	
  M1/	
  Csw	
  	
  
(Zone	
  B	
  &C)	
  
14.7	
   14.7	
   kNm/m	
  
•  Mid	
  Span	
  M2	
  =	
  0.4MP	
   24.5	
   24.5	
   kNm	
   	
  31.5.5.4(a)	
  
•  +m2	
  =	
  	
  M2/Msw	
  (Zone	
  D)	
   9.8	
   9.8	
   kNm/m	
  
-­‐ve	
  sign	
  :	
  Hogging	
  Moment	
  (tension	
  at	
  top)	
  
+ve	
  sign	
  :	
  Sagging	
  Moment	
  (tension	
  at	
  borom)	
  
-­‐34.1	
  
-­‐11.4	
  
-­‐34.1	
  
14.7	
  
9.8	
  
14.7	
  
-­‐34.1	
   -­‐11.4	
   -­‐34.1	
  
9.8	
  14.7	
  
-­‐11.4	
  
-­‐34.1	
   -­‐34.1	
  
-­‐34.1	
  
-­‐11.4	
  
-­‐34.1	
  
14.7	
  
A B A
D
C C
A
AB
Step 8 : Check for adequacy of Depth
•  Max	
  Design	
  Bending	
  moment	
  =	
  34.1	
  kNm/m	
  
•  Mu,lim	
  	
  =	
  72.41	
  	
  kNm/m	
  >	
  34.1,	
  
•  	
  Depth	
  is	
  adequate	
  	
  G-­‐1.1(c)	
  	
  
Loca6on	
   Moment	
  
(kNm/m)	
  
Ast	
  	
  
(mm2
/m)	
  
Ast	
  	
  (prov)	
  
Bar	
  	
  
dia	
  
Spacing	
  
mm	
  
Along	
  X	
  
Zone	
  A	
   (-­‐)	
  34.1	
   635	
   635	
   10	
   120	
  -­‐	
  T	
  
	
  Zone	
  B	
   14.7	
   260	
   260	
   8	
   190	
  -­‐	
  B	
  
Zone	
  C	
   (-­‐)11.4	
   200	
   240	
   8	
   	
  200	
  -­‐	
  T	
  
Zone	
  D	
   9.8	
   171	
   240	
   8	
   200	
  -­‐	
  B	
  
Along	
  Y	
  
Zone	
  A	
   (-­‐)34.1	
   635	
   635	
   10	
   120	
  -­‐	
  T	
  
Zone	
  B	
   (-­‐)11.4	
   200	
   240	
   8	
   	
  200	
  -­‐	
  T	
  
Zone	
  C	
   14.7	
   260	
   260	
   8	
   190	
  -­‐	
  B	
  
Zone	
  D	
   9.8	
   171	
   240	
   8	
   200	
  -­‐	
  B	
  
•  7.5	
  Ast2	
  –	
  58490Ast	
  +	
  Mu	
  =	
  0	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  G-­‐1.1(b)	
  	
  
Step 9 :Rebar Details
•  Ast,min	
  	
  =	
  0.12	
  x	
  200	
  x	
  1000	
  /100	
  =	
  240	
  mm2/m	
   	
   	
   	
   	
   	
  26.5.2.1	
  
•  Minimum	
  Effec5ve	
  Depth	
  	
  of	
  Slab	
  =	
  162	
  mm	
  	
  
#8@190	
  #8@200	
  #8@190	
  
#8@200	
  #8@190	
   #8@190	
  
0.15Ln	
  
0.15Ln	
   0.125Ln	
  
0.125Ln	
  
Borom	
  Rebar	
  Details	
  in	
  
Interior	
  Panel	
  	
  
A	
   B	
   A	
  
A	
   B	
   A	
  
C	
   D	
   C	
  
TOP	
  Rebar	
  Details	
  in	
  
Interior	
  Panel	
  	
  
#10@120	
  
#10@120	
  
#8@200	
  
#8@200	
  
#8@200	
  
0.3Ln	
  
0.2Ln	
  
0.3Ln	
  
0.2Ln	
  
Note:	
  
Distances	
  for	
  curtailment	
  of	
  rebars	
  are	
  
measured	
  from	
  column	
  face	
  
A	
   B	
   A	
  
C	
   D	
   C	
  
B.	
  Corner	
  Panel	
  Design	
  
Step 5: Check for punching shear around Column
Assumed	
  d	
  =	
  162	
  mm	
  
	
  
Sec4on	
  1:	
  
•  Cri5cal	
  Sec5on	
  at	
  d/2	
  around	
  the	
  column	
  	
  
•  Perimeter	
  of	
  Cri5cal	
  Sec5on	
  =	
  	
  2	
  x	
  0.531=	
  1.062	
  m	
  	
  
•  Design	
  Shear	
  at	
  cri5cal	
  sec5on	
  Vu	
  
•  Vu	
  =	
  13.5	
  (	
  2.52	
  –	
  0.5312)	
  =	
  81kN	
  
•  τc	
  =	
  0.25√fck	
  =	
  1.12	
  MPa	
  
•  ks	
  =	
  0.5	
  +1	
  =	
  1.5	
  	
  <=1	
  ;	
  ks=1	
  ;	
  ks	
  τc	
  =	
  1.12	
  
•  Shear	
  Resistance	
  of	
  Concrete	
  =	
  1.12	
  x	
  1062	
  x	
  162	
  =	
  
192kN	
  >	
  81	
  kN 	
   	
  OK	
  
450	
  
162/2	
  =	
  81	
  mm	
  
Step 7 : Distribution of Bending Moment across panel width ; CL 31.4.3.3 , 31.5.5
​ 𝛼↓𝑐 =​∑↑▒​ 𝑘↓𝑐  /​ 𝑘↓𝑠  	
  
Assume	
  Columns	
  and	
  Slab	
  panels	
  are	
  with	
  same	
  
modulus	
  of	
  elas5city	
  
5	
  m	
  
5	
  m	
  
1.25m	
  	
  
1.25m	
  A A
A A
B
B
C
CD
Step 6:Design Moments CL 31.4.2.2
M0 = 174.72 kNm
Parameters	
   Along	
  X	
   Along	
  Y	
  
Sum	
   of	
   column	
  
s4ffness	
   above	
   and	
  
below	
  the	
  slab	
  	
  
2	
  (4EcIc)/Lc	
  
	
  
(2	
  x	
  4	
  x	
  Ec	
  x	
  450	
  x	
  4503/12)	
  /3350	
  =	
  	
  8.16	
  Ec	
  x	
  106	
  	
  	
  	
  	
  
	
  
Slab	
  s4ffness	
  	
  
ks	
  =	
  4EsIs/Ls	
  	
  
	
  (4	
  Es	
  x	
  5000	
  x	
  2003/12)/5000	
  
	
  =	
  2.67Es	
  x	
  106	
  	
  	
  	
  
2.67Es	
  x	
  106	
  	
  
αc	
  =	
  ∑kc	
  /ks	
   3.06	
   3.06	
  
β	
  =	
  	
  1+	
  (1/αc)	
   1.33	
   1.33	
  
Moment	
  Direc5on	
  along	
   X	
   Y	
  
Nega4ve	
  	
  Design	
  Moment	
  
	
  MN	
  =	
  -­‐	
  0.65*M0/β	
  
85.4	
   85.4	
   kNm	
   	
  31.4.3.3	
  
•  Column	
  Strip	
  M1	
  =	
  	
  MN	
  	
   85.4	
   85.4	
   kNm	
   31.55.2(a)	
  
Width	
  of	
  Column	
  Strip	
  Csw	
  resis4ng	
  M1	
  
2x1.25	
  =	
  2.5	
   2.5	
   m	
  
-­‐m1	
  =	
  M1/Csw	
   34.2	
   34.2	
   kNm/m	
  
•  Middle	
  Strip	
  M2=0	
   0	
   0	
   kNm	
   	
  31.5.5.4(a)	
  
-­‐m2	
  =	
  	
  0	
   0	
   0	
   kNm/m	
  
A.	
  Exterior	
  nega4ve	
  design	
  moment:	
  
-­‐m1	
  
-­‐m1	
  
-­‐m1	
  
-­‐m1	
  
Exterior	
  
Exterior	
  
Interior	
  
Interior	
  
1.25	
  
1.25	
  
-­‐m2	
  
-­‐m2	
  
X	
  
Y	
  
Moment	
  Direc5on	
  along	
   X	
   Y	
  
Nega4ve	
  	
  Design	
  Moment	
  
	
  MN	
  =	
  -­‐	
  (0.75	
  –	
  0.1/β)Mo	
  
118	
   118	
   kNm	
   	
  31.4.3.3	
  
•  Column	
  Strip	
  M1	
  =	
  0.75	
  MN	
  	
   88.5	
   88.5	
   kNm	
   31.5.5.1	
  
Width	
  of	
  Column	
  Strip	
  Csw	
  resis4ng	
  M1	
   	
  2x1.25	
  =2.5	
   2.5	
   m	
  
•  -­‐m1	
  =	
  M1/	
  Csw	
   -­‐35.4	
   -­‐35.4	
   kNm/m	
  
•  Middle	
  Strip	
  M2	
  =	
  0.25	
  MN	
  	
   22.12	
   22.12	
   kNm	
   	
  31.5.5.4(a)	
  
Width	
  of	
  Middle	
  Strip	
  Msw	
  resis4ng	
  M2	
   2.5	
   2.5	
   m	
  
•  -­‐m2	
  =	
  	
  M2/Msw	
   -­‐8.85	
   -­‐8.85	
   kNm/m	
  
B.	
  Interior	
  nega4ve	
  design	
  moment:	
  
-­‐	
  m1	
  
-­‐	
  m1	
  
-­‐	
  m2	
  
m1	
  -­‐m1	
   -­‐m1	
  
-­‐m2	
  
X	
  
Y	
  
Exterior	
  
Exterior	
  
Interior	
  
Interior	
  
Moment	
  Direc5on	
  along	
   X	
   Y	
  
Design	
  Moment	
  
	
  MP	
  =	
  	
  (0.63	
  –	
  0.28/β)Mo	
  
73.29	
   73.29	
   kNm	
   	
  31.4.3.3	
  
•  Column	
  Strip	
  M1	
  =	
  0.6	
  MP	
  	
   43.98	
   43.98	
   kNm	
   31.5.5.3	
  
Width	
  of	
  Column	
  Strip	
  Csw	
  resis4ng	
  M1	
   	
  2x1.25	
  =2.5	
   2.5	
   m	
  
•  m1	
  =	
  M1/	
  Csw	
   17.6	
   17.6	
   kNm/m	
  
•  Middle	
  Strip	
  M2	
  =	
  0.4	
  MP	
  	
   29.32	
   29.32	
   kNm	
   	
  31.5.5.4(a)	
  
Width	
  of	
  Middle	
  Strip	
  Msw	
  resis4ng	
  M2	
   2.5	
   2.5	
   m	
  
•  m2	
  =	
  	
  M2/Msw	
   11.73	
   11.73	
   kNm/m	
  
C.	
  Posi4ve	
  Moment	
  in	
  Mid	
  Span:	
  
m1	
  
m1	
  
m1	
  
m1	
  
m1	
  
m1	
  
m2	
  
X	
  
Y	
  
Exterior	
  
Exterior	
  
Interior	
  
Interior	
  
m2	
  
-­‐ve	
  sign	
  :	
  Hogging	
  Moment	
  (tension	
  at	
  top)	
  
+ve	
  sign	
  :	
  Sagging	
  Moment	
  (tension	
  at	
  borom)	
  
17.6	
  
11.73	
  
17.6	
  
-­‐8.85	
   -­‐35.4	
  
11.73	
  17.6	
   17.6	
  
A B A
D
C C
A
AB
-­‐35.4	
  
-­‐35.4	
  
-­‐8.85	
  
-­‐35.4	
  
-­‐34.2	
  
-­‐34.2	
  
0	
  
-­‐34.2	
   -­‐34.2	
  -­‐0	
  
Exterior	
  
Exterior	
  
Interior	
  
Interior	
  
Step 7 : Check for adequacy of Depth
•  Max	
  Design	
  Bending	
  moment	
  =	
  35.4	
  kNm/m	
  
•  Mu,lim	
  	
  =	
  72.41	
  kNm/m	
  >	
  35.4,	
  Depth	
  is	
  adequate	
  	
  G-­‐1.1(c)	
  	
  
Strip	
  Loca6on	
   Moment	
  
(kNm/m)	
  
Ast	
  	
  
(mm2
/m)	
  
Ast	
  	
  (prov)	
  
Bar	
  	
  
dia	
  
Spacing	
  
mm	
  
Along	
  X	
  
Zone	
  A(Exterior)	
   (-­‐)34.2	
   637	
   637	
   10	
   120(T)	
  
	
  Zone	
  A(Interior)	
   (-­‐)35.4	
   662	
   662	
   10	
   115(T)	
  
Zone	
  B	
   17.6	
   314	
   314	
   8	
   160(B)	
  
Zone	
  C(Interior)	
   (-­‐)8.85	
   155	
   240	
   8	
   200(T)	
  
Zone	
  D	
   11.73	
   206	
   240	
   8	
   200(B)	
  
Along	
  Y	
  
Zone	
  A	
  (Exterior)	
   (-­‐)34.2	
   637	
   637	
   10	
   120(T)	
  
Zone	
  A(Interior)	
   (-­‐)35.4	
   662	
   662	
   10	
   115(T)	
  
Zone	
  B	
  (Interior)	
   (-­‐)8.85	
   155	
   240	
   8	
   200(T)	
  
Zone	
  C	
   17.6	
   314	
   314	
   8	
   160(B)	
  
Zone	
  D	
   11.73	
   206	
   240	
   8	
   200(B)	
  
Step 8 :Rebar Details
•  Ast,min	
  	
  =	
  0.12	
  x	
  200	
  x	
  1000	
  /100	
  =	
  240	
  mm2/m	
   	
   	
   	
   	
   	
  26.5.2.1	
  
7.5	
  Ast2	
  –	
  58490Ast	
  +	
  Mu	
  =	
  0	
  	
  	
  
17.6	
  
11.73	
  
17.6	
  
11.73	
  17.6	
   17.6	
  
A	
   B	
   A	
  
D	
  
C	
  
C	
  
A	
   A	
  B	
  
Exterior	
  
Exterior	
  
Interior	
  
Interior	
  
-­‐8.85	
   -­‐35.4	
  
A B A
D
C C
A
AB
-­‐35.4	
  
-­‐35.4	
  
-­‐8.85	
  
-­‐35.4	
  
-­‐34.2	
  
-­‐34.2	
  
0	
  
-­‐34.2	
   -­‐34.2	
  -­‐0	
  
Exterior	
  
Exterior	
  
Interior	
  
Interior	
  
#8@200	
  
#10@120	
  
#10@115	
  
#10@120	
  
#10@120	
  
#8@200	
  
#8@200	
  
#10@115	
  
#10@115	
  
#8@200	
  
TOP	
  Rebar	
  details	
  in	
  Corner	
  Panel	
  
Design	
  Example	
  #2	
  
Design	
   by	
   DDM	
   flat	
   plate	
   supported	
   on	
  
columns	
  500	
  mm	
  square,	
  for	
  	
  a	
  Live	
  Load	
  
=	
   4	
   kN/m2,	
   Floor	
   Finish	
   =	
   	
   1	
   kN/m2	
   use	
  
M25	
  and	
  Fe415.	
  Floor	
  slab	
  is	
  exposed	
  to	
  
moderate	
  environment.	
  Column	
  Height	
  =	
  
3.5m	
   (c/c).	
   Bay	
   spacing	
   in	
   X	
   and	
   Y	
  
direc6on	
   =	
   5.5m	
   c/c.	
   Assume	
   that	
  
building	
  is	
  not	
  restrained	
  against	
  sway	
  
	
  
	
  
•  Interior	
  Panel	
  P5	
  
•  Corner	
  Panel	
  P7	
  
3	
  bays	
  @	
  5.5	
  m	
  c/c	
  
A.	
  Interior	
  Panel	
  Design	
  
5.5	
  m	
  
5.5	
  m	
  
2.75m	
  	
  
2.75	
  
m	
  A A
A A
B
B
C
CD
Zone	
  A	
  –	
  Corner	
  Strip	
  
Zone	
  B	
  –	
  Middle	
  Strip	
  along	
  X	
  
Zone	
  C	
  –	
  Middle	
  Strip	
  along	
  Y	
  
Zone	
  D	
  –	
  Interior	
  Region	
  
	
  
	
  Step 1: Panel Division into Strips 	
  31.1.1(a)	
  	
  
Moment	
  
direc6on	
  
Along	
  
L1	
   L2	
  
Width	
  of	
  Column	
  Strip	
  on	
  
either	
  side	
  of	
  Centre	
  Line	
  
=	
  0.25L2	
   and	
  	
  	
  	
  ≤	
  0.25	
  L1	
  
Middle	
  
Strip	
  
X	
   5	
   5	
  
1.375	
  and	
  ≤1.375	
  m	
  
Adopt	
  1.375	
  m	
  
2.75m	
  
Y	
   5	
   5	
  
1.375	
  and	
  ≤1.375	
  m	
  
Adopt	
  1.375	
  m	
  
2.75m	
  
Step 2: Trial Depth CL 31.2.1	
  	
  
•  L/d	
  =	
  26	
  
•  Modifica5on	
  Factor	
  =	
  1.33,	
  Assuming	
  pt	
  =	
  0.4%,	
  FIG	
  4	
  IS	
  456	
  
•  d	
  =	
  5500/(26	
  x	
  1.33)	
  =	
  	
  	
  160	
  mm	
  >	
  125	
   	
   	
   	
   	
  CL	
  31.2.1	
  
•  DS=	
  160	
  +	
  30	
  +	
  18	
  =	
  208	
  mm	
  (	
  assume	
  #12	
  bars,	
  and	
  bars	
  in	
  two	
  layers)	
  
•  Provide	
  Ds=	
  225	
  mm	
  d	
  =	
  225-­‐30-­‐18	
  =	
  177	
  mm	
  	
  
Step 3 Design Loads / m width of Slab
•  wuD = 1.5(25x 0.225 + 1) = 9.94kN/m
•  wuL = 1.5 x 4 = 6kN/m
•  wu = 15.94 ≈ 16 kN/m
Step 4: Check for Applicability of DDM: CL 31.4.1
•  No.	
  of	
  Con5nuous	
  Spans	
  in	
  each	
  direc5on	
  =	
  3	
  ;	
  OK	
   	
   	
   	
   	
  31.4.1(a)	
  	
  
•  Long	
  Span/Short	
  Span	
  	
  =	
  5.5/5.5	
  =	
  1	
  <2	
  ;	
  OK	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  31.4.1(b)	
  	
  
•  Successive	
  spans	
  in	
  each	
  direc5on	
  =	
  Equal;	
  OK	
   	
   	
   	
   	
  31.4.1(d)	
  	
  
•  wuL/wuD	
  	
   =	
  6/9.94	
  =	
  0.6	
  <	
  3	
  ;	
  OK	
   	
   	
   	
   	
   	
   	
  31.4.1(e)	
  	
  
Step 5: Check for punching shear around Column
Assumed	
  d	
  =	
  177	
  mm	
  
Sec4on	
  1:	
  
•  Cri5cal	
  Sec5on	
  at	
  d/2	
  around	
  the	
  column	
  	
  
•  Perimeter	
  of	
  Cri5cal	
  Sec5on	
  =	
  	
  4	
  x	
  0.677=	
  2.708	
  m	
  	
  
•  Vu	
  =	
  16	
  (	
  5.52	
  –	
  0.6772)	
  =	
  477kN	
  
•  τc	
  =	
  0.25√fck	
  =	
  1.25	
  MPa	
  
•  ks	
  =	
  0.5	
  +1	
  =	
  1.5	
  	
  <=1	
  ;	
  ks=1	
  ;	
  ks	
  τc	
  =	
  1.25	
  
•  Shear	
  Resistance	
  of	
  Concrete	
  =	
  1.25	
  x	
  2708	
  x	
  177	
  =	
  599kN	
  >	
  477	
  kN 	
   	
  OK	
  
Cri4cal	
  Sec4on	
  
0.677m	
  
0.677m	
  
5.5m	
  
5.5m	
  
Contributory	
  Area	
  
Step 6:Design Moments CL 31.4.2.2
Parameters	
   Along	
  X	
   Along	
  Y	
  
L1	
  (Span	
  in	
  direc4on	
  of	
  Mo)	
   5.5	
   5.5	
   m	
  
0.65L1	
  	
   3.575	
   3.575	
   m	
  
Ln	
  (clear	
  span	
  extending	
  from	
  face	
  to	
  
face	
  of	
  columns,	
  capitals)	
  
(5.5-­‐0.5)	
  =	
  
5	
  
5	
   m	
  
Ln	
  >	
  0.65L1	
   5	
   5	
   m	
  
L2	
  (Span	
  transverse	
  to	
  L1)	
   5.5	
   5.5	
   m	
  
W	
  =	
  wu	
  L2Ln	
   440	
   440	
   kN	
  
M0	
  	
  =	
  W	
  Ln	
  /	
  8	
  	
   275	
   275	
   kNm	
  
wu = 16 kN /m
Step 7 : Distribution of Bending Moment across panel width ;
CL: 31.4.3.2, 31.5.5
Moment	
  Direc5on	
  along	
   X	
   Y	
  
Nega4ve	
  	
  Design	
  Moment	
  
	
  MN	
  =	
  -­‐	
  0.65*M0	
  
179	
   179	
   kNm	
   	
  31.4.3.2	
  
•  Column	
  Strip	
  M1	
  =	
  	
  0.75MN	
  	
   134.3	
   134.3	
   kNm	
   31.5.5.1	
  
Width	
  of	
  Column	
  Strip	
  resis4ng	
  M1	
  (Csw)	
   2.75	
   2.75	
   m	
  
•  -­‐m1	
  =	
  M1/	
  Csw	
  	
  (Zone	
  A)	
   48.8	
   48.8	
   kNm/m	
  
•  Middle	
  Strip	
  M2	
  =	
  0.25MN	
   44.8	
   44.8	
   kNm	
   	
  31.5.5.4(a)	
  
Width	
  of	
  Middle	
  Strip	
  resis4ng	
  M2	
  (Msw)	
   2.75	
   2.75	
   m	
  
•  -­‐m2	
  =	
  	
  M2/Msw	
  	
  
(Zone	
  B	
  &	
  C)	
  
16.3	
   16.3	
   kNm/m	
  
Posi5ve	
  Design	
  Moment	
  	
  
MP	
  =	
  0.35*M0	
  
96.3	
   96.3	
   kNm	
   	
  31.4.3.2	
  
•  Column	
  Strip	
  M1	
  =	
  0.6MP	
  	
   57.8	
   57.8	
   kNm	
   	
  31.5.5.3	
  
•  +m1	
  =	
  M1/	
  Csw	
  	
  
(Zone	
  B	
  &C)	
  
21	
   21	
   kNm/m	
  
•  Mid	
  Span	
  M2	
  =	
  0.4MP	
   38.5	
   38.5	
   kNm	
   	
  31.5.5.4(a)	
  
•  +m2	
  =	
  	
  M2/Msw	
  (Zone	
  D)	
   14	
   14	
   kNm/m	
  
-­‐ve	
  sign	
  :	
  Hogging	
  Moment	
  (tension	
  at	
  top)	
  
+ve	
  sign	
  :	
  Sagging	
  Moment	
  (tension	
  at	
  borom)	
  
-­‐48.8	
  
-­‐16.3	
  
-­‐48.8	
  
21	
  
14	
  
21	
  
-­‐48.8	
   -­‐16.3	
   -­‐48.8	
  
14	
  21	
  
-­‐16.3	
  
-­‐48.8	
   -­‐48.8	
  
-­‐48.8	
  
-­‐16.3	
  
-­‐48.8	
  
21	
  
A B A
D
C C
A
AB
Step 8 : Check for adequacy of Depth
•  Max	
  Design	
  Bending	
  moment	
  =	
  48.8	
  kNm/m	
  
•  Mu,lim	
  	
  =	
  108	
  	
  kNm/m	
  >	
  48.8	
  
•  	
  Depth	
  is	
  adequate	
  	
  G-­‐1.1(c)	
  	
  
Loca6on	
   Moment	
  
(kNm/m)	
  
Ast	
  	
  
(mm2
/m)	
  
Ast	
  	
  (prov)	
  
Bar	
  	
  
dia	
  
Spacing	
  
mm	
  
Along	
  X	
  
Zone	
  A	
   (-­‐)	
  48.8	
   828	
   828	
   10	
   90	
  -­‐	
  T	
  
	
  Zone	
  B	
   21	
   340	
   340	
   8	
   145	
  -­‐	
  B	
  
Zone	
  C	
   (-­‐)16.3	
   262	
   270	
   8	
   	
  180	
  -­‐	
  T	
  
Zone	
  D	
   14	
   224	
   270	
   8	
   180	
  -­‐	
  B	
  
Along	
  Y	
  
Zone	
  A	
   (-­‐)	
  48.8	
   828	
   828	
   10	
   90	
  -­‐	
  T	
  
Zone	
  B	
   -­‐16.3	
   262	
   270	
   8	
   	
  180	
  -­‐	
  T	
  
Zone	
  C	
   21	
   340	
   340	
   8	
   145	
  -­‐	
  B	
  
Zone	
  D	
   14	
   224	
   270	
   8	
   180	
  -­‐	
  B	
  
•  6	
  Ast2	
  –	
  63906Ast	
  +	
  Mu	
  =	
  0	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  G-­‐1.1(b)	
  	
  
Step 9 :Rebar Details
•  Ast,min	
  	
  =	
  0.12	
  x	
  225	
  x	
  1000	
  /100	
  =	
  270	
  mm2/m	
   	
   	
   	
   	
   	
  26.5.2.1	
  
•  Minimum	
  Effec5ve	
  Depth	
  	
  of	
  Slab	
  =	
  177	
  mm	
  	
  
#8@145	
  #8@180	
  #8@145	
  
#8@180	
  #8@145	
   #8@145	
  
0.15Ln	
  
0.15Ln	
   0.125Ln	
  
0.125Ln	
  
Borom	
  Rebar	
  Details	
  in	
  
Interior	
  Panel	
  	
  
A	
   B	
   A	
  
A	
   B	
   A	
  
C	
   D	
   C	
  
TOP	
  Rebar	
  Details	
  in	
  
Interior	
  Panel	
  	
  
#10@90	
  
#10@90	
  
#8@180	
  
#8@200	
  
#8@180	
  
0.3Ln	
  
0.2Ln	
  
0.3Ln	
  
0.2Ln	
  
Note:	
  
Distances	
  for	
  curtailment	
  of	
  rebars	
  are	
  
measured	
  from	
  column	
  face	
  
A	
   B	
   A	
  
C	
   D	
   C	
  
B.	
  Corner	
  Panel	
  Design	
  
Step 5: Check for punching shear around Column
Assumed	
  d	
  =	
  177	
  mm	
  
	
  
Sec4on	
  1:	
  
•  Cri5cal	
  Sec5on	
  at	
  d/2	
  around	
  the	
  column	
  	
  
•  Perimeter	
  of	
  Cri5cal	
  Sec5on	
  =	
  	
  2	
  x	
  0.5885=	
  1.177	
  m	
  	
  
•  Vu	
  =	
  16	
  (	
  2.752	
  –	
  0.58852)	
  =	
  115.5kN	
  
•  τc	
  =	
  0.25√fck	
  =	
  1.25	
  MPa	
  
•  ks	
  =	
  0.5	
  +1	
  =	
  1.5	
  	
  <=1	
  ;	
  ks=1	
  ;	
  ks	
  τc	
  =	
  1.25	
  
•  Shear	
  Resistance	
  of	
  Concrete	
  =	
  1.25	
  x	
  1177	
  x	
  177	
  =	
  
260kN	
  >	
  115.5	
  kN 	
   	
  OK	
  
500	
  
177/2	
  =	
  88.5	
  mm	
  
2.75m	
  
2.75m	
  
Step 7 : Distribution of Bending Moment across panel width ; CL 31.4.3.3 , 31.5.5
​ 𝛼↓𝑐 =​∑↑▒​ 𝑘↓𝑐  /​ 𝑘↓𝑠  	
  
Assume	
  Columns	
  and	
  Slab	
  panels	
  are	
  with	
  same	
  
modulus	
  of	
  elas5city	
  
5	
  m	
  
5	
  m	
  
1.25m	
  	
  
1.25m	
  A A
A A
B
B
C
CD
Step 6:Design Moments CL 31.4.2.2
M0 = 275 kNm
Parameters	
   Along	
  X	
   Along	
  Y	
  
Sum	
   of	
   column	
  
s4ffness	
   above	
   and	
  
below	
  the	
  slab	
  	
  
2	
  (4EcIc)/Lc	
  
Leff	
  =	
  1.2	
  Lc	
  (CL	
  E1)	
  
Lc	
  =	
  3.5-­‐0.225	
  =	
  3.275	
  
(2	
  x	
  4	
  x	
  Ec	
  x	
  500	
  x	
  5003/12)	
  /1.2*3275	
  =	
  	
  10.6	
  Ec	
  x	
  106	
  	
  	
  	
  	
  
	
  
Slab	
  s4ffness	
  	
  
ks	
  =	
  4EsIs/Ls	
  	
  
	
  (4	
  Es	
  x	
  5500	
  x	
  2253/12)/5500	
  
	
  =	
  2.67Es	
  x	
  106	
  	
  	
  	
  
3.8Es	
  x	
  106	
  	
  
αc	
  =	
  ∑kc	
  /ks	
   2.8	
   2.8	
  
αc	
  min	
  (Table	
  17)	
   (0.7/0.5)*0.1	
  =0.14	
  <	
  αc.	
  Adopt	
  αc	
  =	
  2.8	
  
β	
  =	
  	
  1+	
  (1/αc)	
   1.36	
   1.36	
  
Moment	
  Direc5on	
  along	
   X	
   Y	
  
Nega4ve	
  	
  Design	
  Moment	
  
	
  MN	
  =	
  -­‐	
  0.65*M0/β	
  
131.4	
   131.4	
   kNm	
   	
  31.4.3.3	
  
•  Column	
  Strip	
  M1	
  =	
  	
  MN	
  	
   131.4	
   131.4	
   kNm	
   31.55.2(a)	
  
Width	
  of	
  Column	
  Strip	
  Csw	
  resis4ng	
  M1	
  
2.75	
   2.75	
   m	
  
-­‐m1	
  =	
  M1/Csw	
   47.8	
   47.8	
   kNm/m	
  
•  Middle	
  Strip	
  M2=0	
   0	
   0	
   kNm	
   	
  31.5.5.4(a)	
  
-­‐m2	
  =	
  	
  0	
   0	
   0	
   kNm/m	
  
A.	
  Exterior	
  nega4ve	
  design	
  moment:	
  
-­‐m1	
  
-­‐m1	
  
-­‐m1	
  
-­‐m1	
  
Exterior	
  
Exterior	
  
Interior	
  
Interior	
  
1.25	
  
1.25	
  
-­‐m2	
  
-­‐m2	
  
X	
  
Y	
  
M0 = 275 kNm
Moment	
  Direc5on	
  along	
   X	
   Y	
  
Nega4ve	
  	
  Design	
  Moment	
  
	
  MN	
  =	
  -­‐	
  (0.75	
  –	
  0.1/β)Mo	
  
186	
   186	
   kNm	
   	
  31.4.3.3	
  
•  Column	
  Strip	
  M1	
  =	
  0.75	
  MN	
  	
   139.5	
   139.5	
   kNm	
   31.5.5.1	
  
Width	
  of	
  Column	
  Strip	
  Csw	
  resis4ng	
  M1	
   	
  2.75	
   2.75	
   m	
  
•  -­‐m1	
  =	
  M1/	
  Csw	
   50.73	
   50.73	
   kNm/m	
  
•  Middle	
  Strip	
  M2	
  =	
  0.25	
  MN	
  	
   46.5	
   46.5	
   kNm	
   	
  31.5.5.4(a)	
  
Width	
  of	
  Middle	
  Strip	
  Msw	
  resis4ng	
  M2	
   2.75	
   2.75	
   m	
  
•  -­‐m2	
  =	
  	
  M2/Msw	
   17	
   17	
   kNm/m	
  
B.	
  Interior	
  nega4ve	
  design	
  moment:	
  
-­‐	
  m1	
  
-­‐	
  m1	
  
-­‐	
  m2	
  
m1	
  -­‐m1	
   -­‐m1	
  
-­‐m2	
  
X	
  
Y	
  
Exterior	
  
Exterior	
  
Interior	
  
Interior	
  
Moment	
  Direc5on	
  along	
   X	
   Y	
  
Design	
  Moment	
  
	
  MP	
  =	
  	
  (0.63	
  –	
  0.28/β)Mo	
  
116.6	
   116.6	
   kNm	
   	
  31.4.3.3	
  
•  Column	
  Strip	
  M1	
  =	
  0.6	
  MP	
  	
   70	
   70	
   kNm	
   31.5.5.3	
  
Width	
  of	
  Column	
  Strip	
  Csw	
  resis4ng	
  M1	
   2.75	
   2.75	
   m	
  
•  m1	
  =	
  M1/	
  Csw	
   25.5	
   25.5	
   kNm/m	
  
•  Middle	
  Strip	
  M2	
  =	
  0.4	
  MP	
  	
   46.7	
   46.7	
   kNm	
   	
  31.5.5.4(a)	
  
Width	
  of	
  Middle	
  Strip	
  Msw	
  resis4ng	
  M2	
   2.75	
   2.75	
   m	
  
•  m2	
  =	
  	
  M2/Msw	
   17	
   17	
   kNm/m	
  
C.	
  Posi4ve	
  Moment	
  in	
  Mid	
  Span:	
  
m1	
  
m1	
  
m1	
  
m1	
  
m1	
  
m1	
  
m2	
  
X	
  
Y	
  
Exterior	
  
Exterior	
  
Interior	
  
Interior	
  
m2	
  
-­‐ve	
  sign	
  :	
  Hogging	
  Moment	
  (tension	
  at	
  top)	
  
+ve	
  sign	
  :	
  Sagging	
  Moment	
  (tension	
  at	
  borom)	
  
25.5	
  
17	
  
25.5	
  
-­‐17	
   -­‐50.73	
  
17	
  25.5	
   25.5	
  
A B A
D
C C
A
AB
-­‐50.73	
  
-­‐50.73	
  
-­‐17	
  
-­‐50.73	
  
-­‐47.8	
  
-­‐47.8	
  
0	
  
-­‐47.8	
   -­‐47.8	
  -­‐0	
  
Exterior	
  
Exterior	
  
Interior	
  
Interior	
  
Step 7 : Check for adequacy of Depth
•  Max	
  Design	
  Bending	
  moment	
  =	
  50.73	
  kNm/m	
  
•  Mu,lim	
  	
  =	
  108	
  kNm/m	
  >	
  50.73,	
  Depth	
  is	
  adequate	
  	
  G-­‐1.1(c)	
  	
  
Strip	
  Loca6on	
   Moment	
  
(kNm/m)	
  
Ast	
  	
  
(mm2
/m)	
  
Ast	
  	
  (prov)	
  
Bar	
  	
  
dia	
  
Spacing	
  
mm	
  
Along	
  X	
  
Zone	
  A(Exterior)	
   (-­‐)47.8	
   810	
   810	
   10	
   90(T)	
  
	
  Zone	
  A(Interior)	
   (-­‐)50.73	
   864	
   864	
   10	
   90(T)	
  
Zone	
  B	
   25.5	
   415	
   415	
   10	
   180(B)	
  
Zone	
  C(Interior)	
   (-­‐)17	
   273	
   273	
   8	
   180(T)	
  
Zone	
  D	
   17	
   273	
   273	
   8	
   180(B)	
  
Along	
  Y	
  
Zone	
  A	
  (Exterior)	
   (-­‐)47.8	
   810	
   810	
   10	
   90(T)	
  
Zone	
  A(Interior)	
   (-­‐)50.73	
   864	
   864	
   10	
   90(T)	
  
Zone	
  B	
  (Interior)	
   (-­‐)17	
   273	
   273	
   8	
   180(T)	
  
Zone	
  C	
   25.5	
   415	
   415	
   10	
   180(B)	
  
Zone	
  D	
   17	
   273	
   273	
   8	
   180(B)	
  
Step 8 :Rebar Details
•  Ast,min	
  	
  =	
  0.12	
  x	
  225	
  x	
  1000	
  /100	
  =	
  270	
  mm2/m	
   	
   	
   	
   	
   	
  26.5.2.1	
  
6	
  Ast2	
  –	
  63906Ast	
  +	
  Mu	
  =	
  0	
  
7.2m	
   7.2m	
   7.2m	
  
6.4m	
  
6.4m	
  
6.4m	
  
Design	
  Example	
  #3	
  
Design	
   by	
   DDM	
   flat	
   plate	
   supported	
   on	
  
columns	
  of	
  dia	
  =	
  450	
  mm,	
  Column	
  head	
  =	
  
1.5	
  m	
  dia,	
  Drop	
  panel	
  size	
  =	
  3.2	
  x	
  3.2	
  m,	
  
for	
  	
  a	
  Live	
  Load	
  =	
  4	
  kN/m2,	
  Floor	
  Finish	
  =	
  	
  
1	
   kN/m2	
   use	
   M20	
   and	
   Fe415.	
   Assume	
  
clear	
   cover	
   =	
   20	
   mm.	
   Column	
   Height	
   =	
  
3.35m	
  
	
  
•  Interior	
  Panel	
  P5	
  
•  Exterior	
  Panel	
  P2/P4	
  
•  Corner	
  Panel	
  P1	
  
Step 1: Panel Division into Strips 31.1.1(a)
	
  	
  
Moment	
  
direc6on	
  
Along	
  
L1	
   L2	
  
Width	
  of	
  Column	
  
Strip	
  on	
  either	
  side	
  of	
  
Centre	
  Line	
  
=	
  0.25L2	
   and	
  	
  	
  	
  	
  	
  	
  	
  	
  
≤	
  0.25	
  L1	
  
Middle	
  
Strip	
  
X	
   7.2	
   6.4	
   1.6	
  <	
  1.8	
  m;	
  1.6	
  m	
   4m	
  
Y	
   6.4	
   7.2	
   1.8	
  >	
  1.6	
  m;	
  1.6	
  m	
   3.2m	
  
Lx	
  =	
  7.2	
  	
  
Ly	
  =	
  6.4	
  	
  
1.6	
  
1.6	
  
1.6	
  1.6	
  
CSx	
   CSx	
  MSx	
  
CSy	
  
MSy	
  
CSy	
  
A.  Interior	
  Panel	
  Design	
  
Zone	
  A	
  –	
  Corner	
  Strip	
  
Zone	
  B	
  –	
  Middle	
  Strip	
  along	
  X	
  
Zone	
  C	
  –	
  Middle	
  Strip	
  along	
  Y	
  
Zone	
  D	
  –	
  Interior	
  Region	
  
Step 2: Trial Depth CL 31.2.1	
  	
  
•  L/d	
  =	
  26	
  
•  Modifica5on	
  Factor	
  =	
  1.4,	
  Assuming	
  pt	
  ≈0.4%,	
  FIG	
  4	
  IS	
  456	
  
•  d	
  =	
  7200/(26	
  x	
  1.4)	
  =	
  	
  	
  198	
  mm	
  >	
  125	
   	
   	
   	
   	
  CL	
  31.2.1	
  
•  DS=	
  198+20+18=	
  236	
  mm	
  (	
  assume	
  #12	
  bars)	
  
•  Provide	
  Ds=	
  240	
  mm	
  ,	
  d	
  =	
  198mm	
  	
  
Step 3: Design Loads / m width of Slab
•  wuD = 1.5(25 x 0.24 + 1) = 10.5kN
•  wuL = 1.5 x 4 = 6.0kN
•  wu = 16.5 kN
Step 4: Check for Applicability of DDM: CL 31.4.1
•  No.	
  of	
  Con5nuous	
  Spans	
  in	
  each	
  direc5on	
  =	
  3	
  ;	
  OK	
   	
   	
   	
   	
  31.4.1(a)	
  	
  
•  Long	
  Span/Short	
  Span	
  	
  =	
  7.2/6.4	
  =	
  1.125	
  <2	
  ;	
  OK	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  31.4.1(b)	
  	
  
•  Successive	
  spans	
  in	
  each	
  direc5on	
  =	
  Equal;	
  OK	
   	
   	
   	
   	
  31.4.1(d)	
  	
  
•  wuL/wuD	
  	
   =	
  6/10.5	
  =	
  0.571	
  <	
  3	
  ;	
  OK	
   	
   	
   	
   	
   	
   	
  31.4.1(e)	
  	
  
Step 5: Drop Panel Size : CL	
  31.2.2	
  
	
  
•  Length	
  along	
  X	
  ≥	
  Lx/3	
  =	
  2.4	
  m	
  	
  
•  Length	
  along	
  Y	
  ≥	
  Ly/3	
  =	
  2.13	
  m	
  
•  	
  Generally	
  Drop	
  Panel	
  Size	
  is	
  set	
  equal	
  to	
  Width	
  of	
  Column	
  Strip	
  
•  Proposed	
  size	
  3.2	
  x	
  3.2	
  meets	
  all	
  the	
  requirements.	
  
•  Minimum	
  thickness	
  	
  =	
  ¼	
  DS	
  =	
  60	
  mm	
  or	
  100	
  mm;	
  Adopt	
  100	
  mm	
  
Step 6:Column Head
•  1/4	
  to	
  1/5	
  of	
  average	
  span	
  =	
  7.2/5	
  =	
  	
  1.44	
  m	
  	
  
•  Provided	
  =	
  1.5	
  m	
  ;	
  Ok	
  
•  Equivalent	
  Square	
  Capital	
  =0.89D	
  =	
  1.335	
  m	
  
Step 7 : Check for Shear around Column Capital
•  Minimum	
  Effec5ve	
  Depth	
  	
  of	
  Slab	
  =	
  198	
  mm	
  	
  
•  Effec5ve	
  Depth	
  at	
  	
  Drop	
  loca5on	
  =	
  298	
  mm	
  
Sec4on	
  1:	
  
•  Cri5cal	
  Sec5on	
  at	
  d/2	
  around	
  the	
  column	
  capital	
  
•  Perimeter	
  of	
  Cri5cal	
  Sec5on	
  =	
  π	
  (	
  1.5	
  +	
  0.298)	
  =	
  5.65	
  m	
  	
  
•  Weight	
  of	
  Drop	
  Projec5on	
  below	
  slab	
  =	
  0.1x	
  25	
  x	
  1.5	
  =	
  3.75	
  kN/m2	
  
•  Design	
  Shear	
  at	
  cri5cal	
  sec5on	
  around	
  capital	
  Vu	
  
•  Vu	
  =	
  16.5	
  (	
  7.2	
  x	
  6.4	
  -­‐	
  π	
  x	
  1.7982/4)	
  +	
  3.75(3.2	
  x	
  3.2	
  -­‐	
  π	
  x	
  1.7982/4)	
  	
  
•  	
  	
  	
  	
  	
  =	
  747	
  kN	
  
•  τc	
  =	
  0.25√fck	
  =	
  1.12	
  MPa	
  
•  ks	
  =	
  0.5	
  +1	
  =	
  1.5	
  	
  <=1	
  ;	
  ks=1	
  ;	
  ks	
  τc	
  =	
  1.12	
  
•  Shear	
  Resistance	
  of	
  Concrete	
  =	
  1.12	
  x	
  5650	
  x	
  298	
  =	
  1885kN	
  >	
  747	
  kN 	
   	
  OK	
  
1.5	
  
Cri4cal	
  Sec4on	
  
DROP
3.2	
  m	
  
3.2	
  m	
  
1.798	
  
Capital	
  
Sec4on	
  2	
  :	
  Check	
  for	
  Shear	
  around	
  drop	
  
1.5	
  
Cri4cal	
  Sec4on	
  
DROP
3.2	
  m	
  
3.2	
  m	
  
Capital	
  
3.2	
  +	
  0.198	
  =	
  3.4	
  
•  Cri5cal	
  Sec5on	
  at	
  d/2	
  around	
  the	
  drop	
  
•  d	
  =	
  198mm	
  
•  Perimeter	
  of	
  Cri5cal	
  Sec5on	
  =	
  	
  4	
  x	
  3.4	
  =	
  13.6m	
  
•  Design	
  Shear	
  at	
  cri5cal	
  sec5on	
  	
  
•  Vu	
  =	
  16.5	
  (	
  7.2	
  x	
  6.4	
  –	
  3.42)	
  =	
  569	
  kN	
  
•  Shear	
  Resistance	
  of	
  Concrete	
  =	
  1.12	
  x	
  13600	
  x	
  198	
  =	
  
3015kN	
  >	
  569	
  kN	
  
Step 8:Design Moments CL 31.4.2.2
Parameters	
   Along	
  X	
   Along	
  Y	
  
L1	
  (Span	
  in	
  direc4on	
  of	
  Mo)	
   7.2	
   6.4	
   m	
  
0.65L1	
  	
   4.68	
   4.16	
   m	
  
Ln	
  (clear	
  span	
  extending	
  from	
  face	
  to	
  
face	
  of	
  columns,	
  capitals)	
  
(7.2-­‐1.335)	
  
=	
  
5.865	
  
(6.4-­‐1.335)	
  
=	
  
5.065	
  
m	
  
Ln	
  >	
  0.65L1	
   5.865	
   5.065	
   m	
  
L2	
  (Span	
  transverse	
  to	
  L1)	
   6.4	
   7.2	
   m	
  
W	
  =	
  wu	
  L2Ln	
   619.34	
   601.72	
   kN	
  
M0	
  	
  =	
  W	
  Ln	
  /	
  8	
  	
   454	
   381	
   kNm	
  
wu = 16.5 kN /m
Step 9 : Distribution of Bending Moment across panel width ;
CL: 31.4.3.2, 31.5.5
Moment	
  Direc5on	
  along	
   X	
   Y	
  
Nega4ve	
  	
  Design	
  Moment	
  
	
  MN	
  =	
  -­‐	
  0.65*M0	
  
295.1	
   247.65	
   kNm	
   	
  31.4.3.2	
  
•  Column	
  Strip	
  M1	
  =	
  	
  0.75MN	
  	
   221.33	
   185.74	
   kNm	
   31.5.5.1	
  
Width	
  of	
  Column	
  Strip	
  Csw	
   	
  2x1.6	
  =3.2	
   2x1.6	
  =3.2	
   m	
  
•  -­‐m1	
  =	
  M1/	
  Csw	
   69.17	
   58.04	
   kNm/m	
  
•  Middle	
  Strip	
  M2	
  =	
  0.25MN	
   73.78	
   61.91	
   kNm	
   	
  31.5.5.4(a)	
  
Width	
  of	
  Middle	
  Strip	
  Msw	
   3.2	
   4	
  
•  -­‐m2	
  =	
  	
  M2/Msw	
   23.06	
   15.48	
   kNm/m	
  
Posi5ve	
  Design	
  Moment	
  	
  
MP	
  =	
  0.35*M0	
  
158.9	
   133.35	
   kNm	
   	
  31.4.3.2	
  
•  Column	
  Strip	
  M1	
  =	
  0.6MP	
  	
   95.34	
   80.01	
   kNm	
   	
  31.5.5.3	
  
•  +m1	
  =	
  M1/	
  Csw	
   29.79	
   25	
   kNm/m	
  
•  Middle	
  Strip	
  M2	
  =	
  0.4MP	
   63.56	
   53.34	
   kNm	
   	
  31.5.5.4(a)	
  
•  +m2	
  =	
  	
  M2/Msw	
   19.86	
   13.34	
   kNm/m	
  
-­‐ve	
  sign	
  :	
  Hogging	
  Moment	
  (tension	
  at	
  top)	
  
+ve	
  sign	
  :	
  Sagging	
  Moment	
  (tension	
  at	
  borom)	
  -­‐69.17	
  
-­‐23.06	
  
-­‐69.17	
  
29.79	
  
19.86	
  
29.79	
  
-­‐58.04	
   -­‐15.48	
   -­‐58.04	
  
13.34	
  25	
  
-­‐15.48	
  
-­‐58.04	
   -­‐58.04	
  
-­‐69.17	
  
-­‐23.06	
  
-­‐69.17	
  
25	
  
A B A
D
C C
A
AB
Step 10 : Check for adequacy of Depth
•  Max	
  Design	
  Bending	
  moment	
  =	
  69.17	
  kNm/m	
  
•  Mu,lim	
  	
  =	
  126.36	
  	
  kNm/m	
  >	
  69.17,	
  G-­‐1.1(c)	
  	
  
•  Depth	
  is	
  adequate	
  
Moment	
  
Direc4on	
  
Moment	
  
Direc4on	
  
CS	
  
MS	
  
CS	
  
FE	
  Results	
  from	
  
ETAB	
  
Strip	
  Loca6on	
   Moment	
  
(kNm/m)	
  
Ast	
  	
  
(mm2
/m)	
  
Ast	
  	
  (prov)	
  
Bar	
  	
  
dia	
  
Spacing	
  
mm	
  
Along	
  X	
  
Zone	
  A	
   (-­‐)	
  69.17	
   1093	
   1093	
   10	
   70	
  -­‐	
  T	
  
	
  Zone	
  B	
   29.79	
   437	
   437	
   8	
   110	
  -­‐	
  B	
  
Zone	
  C	
   (-­‐)23.06	
   334	
   334	
   8	
   	
  150	
  -­‐T	
  
Zone	
  D	
   19.86	
   286	
   288	
   8	
   170	
  -­‐	
  B	
  
Along	
  Y	
  
Zone	
  A	
   (-­‐)58.04	
   896	
   896	
   10	
   85	
  -­‐	
  T	
  
Zone	
  B	
   (-­‐)15.48	
   222	
   288	
   8	
   170-­‐T	
  
Zone	
  C	
   25	
   364	
   364	
   8	
   135	
  -­‐B	
  
Zone	
  D	
   13.34	
   190	
   288	
   8	
   170	
  -­‐	
  B	
  
•  7.5	
  Ast2	
  –	
  71488Ast	
  +	
  Mu	
  =	
  0	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  G-­‐1.1(b)	
  	
  
Step 11 :Rebar Details
•  Ast,min	
  	
  =	
  0.12	
  x	
  240	
  x	
  1000	
  /100	
  =	
  288	
  mm2/m	
   	
   	
   	
   	
   	
  26.5.2.1	
  
•  Minimum	
  Effec5ve	
  Depth	
  	
  of	
  Slab	
  =	
  198	
  mm	
  	
  
#8@170	
  #8@135	
   #8@135	
  
#8@170	
  
#8@110	
  
#8@110	
  
7.2	
  m	
  
6.4	
  m	
  0.15Ln	
  
0.15Ln	
  
Borom	
  Rebar	
  Details	
  in	
  
Interior	
  Panel	
  	
  
LAP	
  ZONE	
  
A	
   A	
  
A	
   A	
  
B	
  
B	
  
C	
   D	
   C	
  
0.125Ln	
  
0.125Ln	
  
#8@170	
  #10@85	
  
#8@150	
  #10@	
  70	
  
0.22Ln	
  0.22Ln	
  
0.22Ln	
  
0.22Ln	
  
0.33Ln	
  0.33Ln	
  
0.2Ln	
  0.2Ln	
  
0.33Ln	
  
0.2Ln	
  
Top	
  Rebar	
  Details	
  in	
  
Interior	
  Panel	
  	
  
	
  
Note:	
  
Distances	
  for	
  curtailment	
  of	
  rebars	
  are	
  
measured	
  from	
  column	
  face	
  
A	
   B	
   A	
  
0.33Ln	
  
0.2Ln	
  
Sec6on	
  Through	
  
Middle	
  Strip	
  -­‐	
  CDC	
  
#8@170	
  	
  
7.2	
  m	
  
#8@340	
  
#8@150	
  
#8@135	
  	
  
Sec6on	
  Through	
  
Column	
  Strip	
  -­‐	
  ABA	
  
#10@70	
  
#10@140	
  
#10@85	
  
#8@170	
  	
  
#8@340	
  
#8@170	
  	
  
Step 7 : Check for Shear around Column Capital
•  Minimum	
  Effec5ve	
  Depth	
  	
  of	
  Slab	
  =	
  198	
  mm	
  	
  
•  Effec5ve	
  Depth	
  at	
  	
  Drop	
  loca5on	
  =	
  298	
  mm	
  
Sec4on	
  1:	
  
•  Cri5cal	
  Sec5on	
  at	
  d/2	
  around	
  the	
  column	
  capital	
  
•  Perimeter	
  of	
  Cri5cal	
  Sec5on	
  =	
  π	
  (	
  1.5	
  +	
  0.298)/4	
  =	
  1.412	
  m	
  	
  
•  Weight	
  of	
  Drop	
  Projec5on	
  below	
  slab	
  =	
  0.1x	
  25	
  x	
  1.5	
  =	
  3.75	
  kN/m2	
  
•  Design	
  Shear	
  at	
  cri5cal	
  sec5on	
  around	
  capital	
  Vu	
  
•  Vu	
  =	
  16.5	
  (	
  3.6x	
  3.2	
  –	
  (π	
  x	
  1.7982/4)/4)	
  +	
  3.75(1.6	
  x	
  1.6	
  –	
  (π	
  x	
  1.7982/4)/4))	
  	
  
•  	
  	
  	
  	
  	
  =	
  187	
  kN	
  
•  τc	
  =	
  0.25√fck	
  =	
  1.12	
  MPa	
  
•  ks	
  =	
  0.5	
  +1	
  =	
  1.5	
  	
  <=1	
  ;	
  ks=1	
  ;	
  ks	
  τc	
  =	
  1.12	
  
•  Shear	
  Resistance	
  of	
  Concrete	
  =	
  1.12	
  x	
  1412	
  x	
  298	
  =	
  471kN	
  >	
  187	
  kN 	
   	
  OK	
  
2.	
  Corner	
  Panel	
  Design	
  
Sec4on	
  2	
  :	
  Check	
  for	
  Shear	
  around	
  drop	
  
•  Cri5cal	
  Sec5on	
  at	
  d/2	
  around	
  the	
  drop	
  
•  d	
  =	
  198mm	
  
•  Perimeter	
  of	
  Cri5cal	
  Sec5on	
  =	
  2	
  (1.7)=3.4m	
  
•  Design	
  Shear	
  at	
  cri5cal	
  sec5on	
  	
  
•  Vu	
  =	
  16.5	
  (	
  3.6	
  x	
  3.2	
  –	
  1.72)	
  =	
  143	
  kN	
  
•  Shear	
  Resistance	
  of	
  Concrete	
  =	
  1.12	
  x	
  3400	
  x	
  198	
  =	
  754kN	
  >	
  143	
  kN	
  
CRITICAL	
  
SECTION	
  
drop	
  
free	
  edge	
  
free	
  edge	
  
=1.6	
  +	
  0.198/2	
  
=	
  1.7	
  m	
  	
  
Step 8:Design Moments CL 31.4.2.2
Along	
  X	
   Along	
  Y	
  
M0	
  	
  =	
  W	
  Ln	
  /	
  8	
  	
   454	
   381	
   kNm	
  
Step 9 : Distribution of Bending Moment across panel width ;
CL 31.4.3.3 , 31.5.5
​ 𝛼↓𝑐 =​∑↑▒​ 𝑘↓𝑐  /​ 𝑘↓𝑠  	
  
Equivalent	
  side	
  of	
  circular	
  column	
  =	
  0.89D	
  =	
  0.89x	
  450	
  =	
  400	
  mm	
  	
  
	
  
Assume	
  Ec	
  =	
  Es	
  
	
  
Parameters	
   Along	
  X	
   Along	
  Y	
  
Sum	
   of	
   column	
  
s4ffness	
   above	
   and	
  
below	
  the	
  slab	
  	
  
2	
  (4EcIc)/Lc	
  
(2	
  x	
  4	
  x	
  Ec	
  x	
  400	
  x	
  4003/12)	
  /3350	
  =	
  	
  5.09	
  Ec	
  x	
  106	
  	
  	
  	
  	
  
	
  
Slab	
  s4ffness	
  	
  
ks	
  =	
  4EsIs/Ls	
  	
  
	
  (4	
  Es	
  x	
  6400	
  x	
  2403/12)/7200	
  
	
  =	
  4.1Es	
  x	
  106	
  	
  	
  	
  
(4	
  Es	
  x	
  7200	
  x	
  2403/12)/6400	
  	
  
=	
  5.184Es	
  x	
  106	
  	
  
αc	
  =	
  ∑kc	
  /ks	
   1.24	
   0.98	
  
αc	
  min	
  (Table	
  17)	
  
l2/l1	
  =	
  6.4/7.2	
  =	
  0.89,	
  	
  
WuL/WuD	
  =	
  0.571	
  
(0.7/0.5)*0.071	
  =	
  0.1	
  <αc	
  
Adopt	
  αc	
  
7.2/6.4	
  =	
  1.125,	
  WuL/WuD	
  =	
  0.571	
  
	
  
≈(0.8/0.5)*0.071	
  =	
  0.113	
  <αc	
  
Adopt	
  αc	
  
β	
  =	
  	
  1+	
  (1/αc)	
   1.8	
   2.02	
  
Moment	
  Direc5on	
  along	
   X	
   Y	
  
Nega4ve	
  	
  Design	
  Moment	
  
	
  MN	
  =	
  -­‐	
  0.65*M0/β	
  
164	
   122.6	
   kNm	
   	
  31.4.3.3	
  
•  Column	
  Strip	
  M1	
  =	
  	
  MN	
  	
   164	
   122.6	
   kNm	
   31.55.2(a)	
  
Width	
  of	
  Column	
  Strip	
  Csw	
  resis4ng	
  M1	
   	
  2x1.6	
  =3.2	
   2x1.6	
  =3.2	
   m	
  
-­‐m1	
  =	
  M1/	
  3.2	
   -­‐51.3	
   -­‐38.3	
   kNm/m	
  
•  Middle	
  Strip	
  M2=0	
   0	
   0	
   kNm	
   	
  31.5.5.4(a)	
  
Width	
  of	
  Middle	
  Strip	
  Msw	
  resis4ng	
  M2	
   3.2	
   4	
  
-­‐m2	
  =	
  	
  0	
   0	
   0	
   kNm/m	
  
A.	
  Exterior	
  nega4ve	
  design	
  moment:	
  
-­‐m1	
  
-­‐m1	
  
-­‐m1	
  
-­‐m1	
  
Exterior	
  
Exterior	
  
Interior	
  
Interior	
  
1.6	
  
1.6	
  
-­‐m2	
  
-­‐m2	
  
X	
  
Y	
  
Moment	
  Direc5on	
  along	
   X	
   Y	
  
Nega4ve	
  	
  Design	
  Moment	
  
	
  MN	
  =	
  -­‐	
  (0.75	
  –	
  0.1/β)Mo	
  
315.3	
   266.9	
   kNm	
   	
  31.4.3.3	
  
•  Column	
  Strip	
  M1	
  =	
  0.75	
  MN	
  	
   236.5	
   200.2	
   kNm	
   31.5.5.1	
  
Width	
  of	
  Column	
  Strip	
  Csw	
  resis4ng	
  M1	
   	
  2x1.6	
  =3.2	
   2x1.6	
  =3.2	
   m	
  
•  -­‐m1	
  =	
  M1/	
  Csw	
   -­‐73.9	
   -­‐62.6	
   kNm/m	
  
•  Middle	
  Strip	
  M2	
  =	
  0.25	
  MN	
  	
   78.83	
   66.7	
   kNm	
   	
  31.5.5.4(a)	
  
Width	
  of	
  Middle	
  Strip	
  Msw	
  resis4ng	
  M2	
   3.2	
   4	
   m	
  
•  -­‐m2	
  =	
  	
  M2/Msw	
   -­‐24.7	
   -­‐16.7	
   kNm/m	
  
B.	
  Interior	
  nega4ve	
  design	
  moment:	
  
-­‐	
  m1	
  
-­‐	
  m1	
  
-­‐	
  m2	
  
m1	
  -­‐m1	
   -­‐m1	
  
-­‐m2	
  
X	
  
Y	
  
Exterior	
  
Exterior	
  
Interior	
  
Interior	
  
Moment	
  Direc5on	
  along	
   X	
   Y	
  
Design	
  Moment	
  
	
  MP	
  =	
  	
  (0.63	
  –	
  0.28/β)Mo	
  
215.4	
   187.2	
   kNm	
   	
  31.4.3.3	
  
•  Column	
  Strip	
  M1	
  =	
  0.6	
  MP	
  	
   129.3	
   112.3	
   kNm	
   31.5.5.3	
  
Width	
  of	
  Column	
  Strip	
  Csw	
  resis4ng	
  M1	
   	
  2x1.6	
  =3.2	
   2x1.6	
  =3.2	
   m	
  
•  m1	
  =	
  M1/	
  Csw	
   40.4	
   35.1	
   kNm/m	
  
•  Middle	
  Strip	
  M2	
  =	
  0.4	
  MP	
  	
   86.2	
   74.9	
   kNm	
   	
  31.5.5.4(a)	
  
Width	
  of	
  Middle	
  Strip	
  Msw	
  resis4ng	
  M2	
   3.2	
   4	
   m	
  
•  m2	
  =	
  	
  M2/Msw	
   26.94	
   18.7	
   kNm/m	
  
C.	
  Posi4ve	
  Moment	
  in	
  Mid	
  Span:	
  
m1	
  
m1	
  
m1	
  
m1	
  
m1	
  
m1	
  
m2	
  
X	
  
Y	
  
Exterior	
  
Exterior	
  
Interior	
  
Interior	
  
m2	
  
-­‐ve	
  sign	
  :	
  Hogging	
  Moment	
  (tension	
  at	
  top)	
  
+ve	
  sign	
  :	
  Sagging	
  Moment	
  (tension	
  at	
  borom)	
  
40.4	
  
26.94	
  
40.4	
  
-­‐16.7	
   -­‐62.6	
  
18.7	
  35.1	
   35.1	
  
A B A
D
C C
A
AB
-­‐73.9	
  
-­‐73.9	
  
-­‐24.7	
  
-­‐62.6	
  
-­‐51.3	
  
-­‐51.3	
  
0	
  
-­‐38.3	
   -­‐38.3	
  -­‐0	
  
Exterior	
  
Exterior	
  
Interior	
  
Interior	
  
Step 10 : Check for adequacy of Depth
•  Max	
  Design	
  Bending	
  moment	
  =	
  73.9	
  kNm/m	
  
•  Mu,lim	
  	
  =	
  126.36	
  	
  kNm/m	
  >	
  73.9,	
  Depth	
  is	
  adequate	
  	
  G-­‐1.1(c)	
  	
  
Strip	
  Loca6on	
   Moment	
  
(kNm/m)	
  
Ast	
  	
  
(mm2
/m)	
  
Ast	
  	
  (prov)	
  
Bar	
  	
  
dia	
  
Spacing	
  
mm	
  
Along	
  X	
  
Zone	
  A(Exterior)	
   (-­‐)51.3	
   782	
   782	
   10	
   100	
  -­‐	
  T	
  
	
  Zone	
  A(Interior)	
   (-­‐)73.9	
   1180	
   1180	
   10	
   65	
  -­‐	
  T	
  
Zone	
  B	
   40.4	
   604	
   604	
   8	
   	
  80	
  -­‐B	
  
Zone	
  C(Interior)	
   (-­‐)24.7	
   359	
   359	
   8	
   140	
  -­‐	
  T	
  
Zone	
  D	
   26.94	
   393	
   393	
   8	
   125-­‐B	
  
Along	
  Y	
  
Zone	
  A	
  (Exterior)	
   (-­‐)38.3	
   570	
   570	
   10	
   135	
  
Zone	
  A(Interior)	
   (-­‐)62.6	
   976	
   976	
   10	
   80	
  
Zone	
  B	
  (Interior)	
   (-­‐)16.7	
   240	
   288	
   8	
   170	
  
Zone	
  C	
   35.1	
   520	
   520	
   8	
   95	
  
Zone	
  D	
   18.7	
   270	
   288	
   8	
   170	
  
•  7.5	
  Ast2	
  –	
  71488Ast	
  +	
  Mu	
  =	
  0	
   	
   	
   	
   	
   	
   	
  G-­‐1.1(b)	
  
Step 11 :Rebar Details
•  Ast,min	
  	
  =	
  0.12	
  x	
  240	
  x	
  1000	
  /100	
  =	
  288	
  mm2/m	
   	
   	
   	
   	
   	
  26.5.2.1	
  
•  Minimum	
  Effec5ve	
  Depth	
  	
  of	
  Slab	
  =	
  198	
  mm	
  	
  
Strip	
  Loca6on	
   Moment	
  
(kNm/m)	
  
Bar	
  	
  
dia	
  
Spacing	
  
mm	
  
Along	
  X	
  
Zone	
  B	
   40.4	
   8	
   	
  80	
  -­‐B	
  
Zone	
  D	
   26.94	
   8	
   125-­‐B	
  
Along	
  Y	
  
Zone	
  C	
   35.1	
   8	
   95	
  
Zone	
  D	
   18.7	
   8	
   170	
  
#8@80	
  #8@125	
  
#8@95	
   #8@95	
  #8@170	
  
#8@80	
  
40.4	
  
26.94	
  
40.4	
  
-­‐16.7	
   -­‐62.6	
  
18.7	
  35.1	
   35.1	
  
A	
   B	
   A	
  
D	
  C	
   C	
  
A	
  
A	
  B	
  
-­‐73.9	
  
-­‐73.9	
  
-­‐24.7	
  
-­‐62.6	
  
-­‐51.3	
  
-­‐51.3	
  
0	
  
-­‐38.3	
   -­‐38.3	
  -­‐0	
  
Exterior	
  
Exterior	
  
Interior	
  
Interior	
  
#10@100	
  #10@100	
  
#10@65	
  #10@65	
  
#8@140	
  
#10@135	
   #10@80	
  
#8@170(Min)*	
  
#10@135	
  
#8@170	
  
#8@170(Min)*	
  
*	
  Op4onal	
  Top	
  Rebars	
  
#10@80	
  
Strip	
  Loca6on	
   Moment	
  
(kNm/m)	
  
Bar	
  	
  
dia	
  
Spacing	
  
mm	
  
Along	
  X	
  
Zone	
  A(Exterior)	
   (-­‐)51.3	
   10	
   100	
  -­‐	
  T	
  
	
  Zone	
  A(Interior)	
   (-­‐)73.9	
   10	
   65	
  -­‐	
  T	
  
Zone	
  C(Interior)	
   (-­‐)24.7	
   8	
   140	
  -­‐	
  T	
  
Along	
  Y	
  
Zone	
  A	
  (Exterior)	
   (-­‐)38.3	
   10	
   135	
  
Zone	
  A(Interior)	
   (-­‐)62.6	
   10	
   80	
  
Zone	
  B	
  (Interior)	
   (-­‐)16.7	
   8	
   170	
  
Transfer	
  of	
  Moments	
  and	
  Shears	
  between	
  Slabs	
  and	
  Columns	
  	
  
	
  
•  The	
  maximum	
  load	
  that	
  a	
  flat	
  	
  slab	
  can	
  support	
  is	
  dependent	
  upon	
  the	
  strength	
  of	
  
the	
  joint	
  between	
  the	
  column	
  and	
  the	
  slab.	
  
•  Load	
  is	
  transferred	
  by	
  shear	
  from	
  the	
  slab	
  to	
  the	
  column	
  along	
  an	
  area	
  around	
  the	
  
column	
  
•  In	
  addi7on	
  moments	
  are	
  also	
  transferred.	
  	
  
•  The	
  moment	
  situa7on	
  is	
  usually	
  most	
  cri7cal	
  at	
  the	
  exterior	
  columns.	
  	
  
•  Shear	
  forces	
  resul7ng	
  from	
  moment	
  transfer	
  must	
  be	
  considered	
  in	
  the	
  design	
  of	
  
the	
  lateral	
  column	
  reinforcement	
  (i.e.,	
  7es	
  and	
  spirals).	
  
EXAMPLE	
  
Compute	
  moment	
  transferred	
  to	
  Interior	
  	
  and	
  corner	
  Column	
  in	
  example	
  2	
  
Interior	
  Column	
  
	
  
•  As	
  spans	
  are	
  same	
  in	
  both	
  direc5ons	
  
•  M	
  =	
  0.08	
  (0.5	
  wL	
  L2	
  Ln
2	
  /(1+1/αc)	
  =	
  0.08	
  x	
  0.5	
  x	
  6	
  x	
  5.5	
  x	
  52	
  /	
  1.36	
  	
  =	
  24.3	
  kNm	
  
•  this	
  moment	
  is	
  distributed	
  to	
  top	
  and	
  borom	
  column	
  at	
  junc5on	
  in	
  propor5on	
  to	
  their	
  
s5ffness.	
  
•  M	
  =	
  24.3/2	
  =	
  12.2	
  kNm	
  
	
  
Corner	
  Column	
  
M	
  =	
  131.4	
  kNm	
  
Equivalent	
  Frame	
  Method	
  (EFM)	
  	
  
CL	
  31.5	
  
•  More	
  Comprehensive	
  and	
  Logical	
  method	
  
•  Used	
  when	
  limita7ons	
  of	
  DDM	
  are	
  not	
  
complied	
  with	
  
•  Applicable	
  when	
  subjected	
  to	
  horizontal	
  
loads	
  
31.5.1	
  (a)	
  
Idealizing	
  the	
  3D	
  slab	
  –column	
  system	
  to	
  2D	
  
frames	
  along	
  column	
  Centre	
  lines	
  in	
  both	
  
longitudinal	
  and	
  transverse	
  direc6ons.	
  
Longitudinal	
  Frame	
  
Transverse	
  Frame	
  Edge	
  Frame	
  
For	
   ver6cal	
   loads,	
   each	
   floor,	
   together	
  
with	
   the	
   columns	
   above	
   and	
   below,	
   is	
  
analyzed	
  separately.	
  For	
  such	
  an	
  analysis,	
  
the	
  far	
  ends	
  of	
  the	
  columns	
  are	
  considered	
  
fixed.	
  	
  
	
  
If	
   there	
   are	
   large	
   number	
   of	
   panels,	
   the	
  
moment	
   at	
   a	
   par6cular	
   joint	
   in	
   a	
   slab	
  
beam	
   can	
   be	
   sa6sfactorily	
   obtained	
   by	
  
assuming	
   that	
   the	
   member	
   is	
   fixed	
   two	
  
panels	
  away.	
  	
  
This	
   simplifica6on	
   is	
   permissible	
   because	
   ver6cal	
  
loads	
   in	
   one	
   panel	
   only	
   appreciably	
   affect	
   the	
  
forces	
  in	
  that	
  panel	
  and	
  in	
  the	
  one	
  adjacent	
  to	
  it	
  on	
  
each	
  side.	
  	
  
	
  
31.5.1(b)	
  
En6re	
  Frame	
  Analysis	
  
Gravity	
  +	
  Lateral	
  Loads	
  
For	
   lateral	
   loads,	
   it	
   is	
   necessary	
   to	
   consider	
   an	
   equivalent	
  
frame	
   that	
   extends	
   for	
   the	
   en4re	
   height	
   of	
   the	
   building,	
  
because	
  the	
  forces	
  in	
  a	
  par4cular	
  member	
  are	
  affected	
  by	
  the	
  
lateral	
   forces	
   on	
   all	
   the	
   stories	
   above	
   the	
   floor	
   being	
  
considered.	
  	
  
31.5.1(C	
  and	
  d)	
  
	
  
I2	
  =	
  moment	
  of	
  iner4a	
  at	
  the	
  face	
  of	
  the	
  column	
  /	
  column	
  capital	
  	
  
c2
	
  =	
  dimension	
  of	
  column	
  capital	
  in	
  the	
  transverse	
  direc4on	
  	
  
l2	
  =	
  width	
  of	
  equivalent	
  frame.	
  	
  
	
  
varia6on	
  of	
  the	
  flexural	
  
moment	
  of	
  iner6a	
  	
  
•  Varia4ons	
  of	
  moment	
  of	
  iner4a	
  along	
  the	
  axis	
  0f	
  the	
  slab	
  on	
  account	
  of	
  provision	
  of	
  
drops	
  shall	
  be	
  taken	
  into	
  account	
  
•  The	
  s4ffening	
  effect	
  of	
  flared	
  column	
  heads	
  may	
  be	
  ignored	
  
31.5.2	
  Loading	
  Paiern	
  
wu	
  LL
	
  >	
  ¾	
  wu,DL
	
  	
  
Cri5cal	
  Sec5on	
   Interior	
  Column	
  Centre	
  Line	
  
Column	
  /Capital	
  face	
  
C	
  
<	
  =	
  C/2	
  
Results	
  in	
  Significant	
  reduc4on	
  of	
  design	
  moments	
  
Design	
  Posi5ve	
  Moment	
  (Span	
  region)	
  
M3	
  =	
  M0	
  –	
  (M1+M2)/2	
  
Distribu5on	
  of	
  Moment	
  
Similar	
  to	
  DDM	
  
Example	
  3	
  :	
  	
  Compute	
  moments	
  in	
  exterior/interior	
  Panel	
  along	
  Longitudinal	
  Span	
  
Longitudinal	
  Span	
  =	
  7.2m,	
  Transverse	
  Span	
  =	
  6.4	
  m,	
  Interior	
  Column	
  =	
  450mm	
  dia,	
  Column	
  Capital	
  =	
  
1500mm	
  dia,	
  Exterior	
  Column	
  =	
  400x400mm,	
  Column	
  Capital	
  =	
  870mm(square),	
  Floor	
  to	
  Floor	
  =	
  3.35	
  m,	
  
Slab	
  Thickness	
  =	
  240	
  mm,	
  number	
  of	
  Panels	
  =	
  4	
  in	
  each	
  direc6on	
  
7.2	
  m	
  
6.4m	
  
6.4m	
  
7.2	
  m	
   7.2	
  m	
  7.2	
  m	
  
6.4m	
  
Step	
  1:	
  S5ffness	
  Computa5ons	
  
Exterior	
  Column	
  	
  (Kce)	
  =	
  	
  4E	
  x	
  (4004	
  /12)	
  /3350	
  =	
  2.55E106	
  =	
  1	
  
Interior	
  Column	
  	
  (KcI)	
  =	
  	
  4E	
  x	
  π(4504	
  /64)	
  /3350	
  =	
  2.4E106	
  =	
  0.957	
  
Slab(Ks)	
  =4E	
  x	
  (6400	
  x	
  2403/12)	
  /7200	
  =	
  4.1E106	
  =	
  1.608	
  
	
  
Step	
  2:	
  Simplified	
  frame	
  for	
  analysis	
  31.5.1	
  (b)	
  
7200	
   7200	
  
3350	
  
3350	
  
1	
   2	
   3	
  
A	
   B	
  
C	
   D	
  
Joint	
   Member	
  
	
  Rela5ve	
  
S5ffness	
  
Sum	
  
Distribu5on	
  
Factors	
  
1	
  
1-­‐A	
   1	
  
3.608	
  
0.277	
  
1-­‐2	
   1.608	
   0.446	
  
1-­‐C	
   1	
   0.277	
  
2	
  
2-­‐B	
   0.957	
  
5.13	
  
0.187	
  
2-­‐1	
   1.608	
   0.314	
  
2-­‐3	
   1.608	
   0.314	
  
2-­‐D	
   0.957	
   0.187	
  
Fixed	
  End	
  Moments	
  =	
  (16.5	
  x	
  6.4)	
  x	
  7.22/12	
  	
  =	
  456.2	
  kNm	
  	
  
Joint	
   1	
   2	
   3	
  
Members	
  
FIXED	
  
1A+1C	
  
1-­‐2	
   2-­‐1	
  
FIXED	
  
2B+2D	
  
2-­‐3	
  
FIXED	
  
3-­‐2	
  
DF	
   0.554	
   0.446	
   0.314	
   0.374	
   0.314	
   -­‐	
  
FEM	
   456.2	
   -­‐456.2	
   456.2	
   -­‐456.2	
  
Bal	
   -­‐252.74	
   -­‐203.46	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  
CO	
   -­‐	
   -­‐	
   -­‐101.73	
   -­‐	
   -­‐	
   -­‐	
  
Bal	
   -­‐	
   -­‐	
   31.94	
   38.04	
   31.94	
   -­‐	
  
CO	
   -­‐	
   15.97	
   -­‐	
   -­‐	
   -­‐	
   15.97	
  
Bal	
   -­‐8.85	
   -­‐7.12	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  
CO	
   -­‐	
   -­‐	
   -­‐3.56	
   -­‐	
   -­‐	
   -­‐	
  
Bal	
   1.12	
   1.33	
   1.12	
  
Final	
  end	
  
Moments	
  
-­‐261.6	
   261.6	
   -­‐528.43	
   39.37	
   489.26	
   -­‐440.23	
  
1	
   2	
   3	
  
261.6	
  
528.43	
   489.26	
   440.23	
  
Counter	
  Clockwise	
  
end	
  moments	
  are	
  
posi4ve	
  
Step	
  3:	
  Design	
  Moments	
  in	
  Exterior	
  Panel	
  
A.	
  Design	
  Nega6ve	
  Moments	
  at	
  Cri6cal	
  Sec6on	
  	
  
At	
  Exterior	
  Support	
  :	
  CL	
  31.5.3.2	
  
870	
  
400	
   470	
  
235	
  
Cri6cal	
  Sec6on	
  from	
  Column	
  Centre	
  line	
  =	
  435	
  mm	
  
261.6	
   528.43	
  
16.5	
  x	
  6.4	
  =	
  105.6	
  kN/m	
  
105.6	
  x	
  7.2/2	
  -­‐	
  (528.43-­‐261.6)/7.2	
  
	
  =	
  343	
  kN	
  
0.435	
  	
  
Design	
  Moment	
  =	
  343	
  x	
  0.435	
  -­‐261.6	
  -­‐105.6x0.4352/2	
  =	
  -­‐122.4	
  kNm	
  (Hogging)	
  
At	
  Interior	
  Support	
  :	
  CL	
  31.5.3.1	
  
Width	
  of	
  equivalent	
  square	
  
=	
  0.89D	
  =	
  1335	
  mm	
  
667.5	
  
mm	
  
Cri4cal	
  Sec4on	
  loca4on	
  is	
  at	
  capital	
  face	
  
≤	
  0.175x7200	
  =	
  1260mm	
  	
  
261.6	
   528.43	
  
16.5	
  x	
  6.4	
  =	
  105.6	
  kN/m	
  
	
  	
  	
  343	
  kN	
   0.6675	
  	
  
Design	
  Moment	
  =	
  417.32	
  x	
  0.6675	
  -­‐528.3	
  -­‐105.6x0.66752/2	
  =	
  -­‐273.26	
  kNm	
  (Hogging)	
  
417.32	
  
B.	
  Design	
  Posi4ve	
  Moment	
  
M(+)	
  =	
  (16.5	
  x	
  6.4x7.2)7.2/8	
  –	
  (	
  528.43	
  +	
  261.6)/2	
  =	
  	
  289.3	
  kNm	
  
Moments	
   DDM	
   EFM	
  
Posi4ve	
  Moment	
  (Span)	
   215.4	
   289.3	
  
Nega4ve	
  Moment(Exterior	
  Support)	
   164	
   122.4	
  
Nega4ve	
  Moment	
  (Interior	
  Support)	
   315.3	
   273.3	
  
Step	
  4:	
  Design	
  Moments	
  in	
  Interior	
  Panel	
  
	
  
A.	
  Design	
  Nega6ve	
  Moments	
  at	
  Cri6cal	
  Sec6on	
  	
  
At	
  Interior	
  Support	
  :	
  CL	
  31.5.3.1	
  
16.5	
  x	
  6.4	
  =	
  105.6	
  kN/m	
  
	
  	
  	
  387	
  kN	
  
0.6675	
  	
  
Design	
  Moment	
  at	
  A=	
  387	
  x	
  0.6675	
  -­‐	
  489.26	
  -­‐105.6x0.66752/2	
  =	
  -­‐254.5	
  kNm	
  (Hogging)	
  
373.32	
  
489.26	
   440.23	
  
Design	
  Moment	
  at	
  B	
  =	
  373.32	
  x	
  0.6675	
  -­‐	
  440.23	
  -­‐105.6x0.66752/2	
  =	
  -­‐214.6	
  kNm	
  (Hogging)	
  
0.6675	
  	
  
A B
B.	
  Design	
  Posi4ve	
  Moment	
  
M(+)	
  =	
  (16.5	
  x	
  6.4x7.2)7.2/8	
  –	
  (	
  489.26	
  +	
  440.23)/2	
  =	
  	
  219.5	
  kNm	
  
Moments	
   DDM	
   EFM	
  
Posi4ve	
  Moment	
  (Span)	
   158.9	
   219.5	
  
Nega4ve	
  Moment	
  (Interior	
  Support)	
   295.1	
   254.5/214.6	
  
Need	
  for	
  Computer	
  Analysis	
  	
  
	
  
The	
  equivalent	
  frame	
  method	
  is	
  not	
  sa6sfactory	
  for	
  hand	
  calcula6ons.	
  	
  
	
  
It	
   is	
   possible,	
   however,	
   to	
   use	
   computers	
   and	
   plane	
   frame	
   analysis	
  
programs	
  if	
  the	
  structure	
  is	
  modeled	
  such	
  that	
  	
  various	
  nodal	
  points	
  in	
  
the	
  structure	
  can	
  account	
  for	
  the	
  changing	
  moments	
  of	
  iner6a	
  along	
  
the	
  member	
  axis.	
  
SLAB	
  
Drop	
  Panel	
  
Column	
  Head	
  
Column	
  
Column	
  
FE	
  Analysis	
  of	
  Slab	
  
At	
   any	
   point	
   in	
   the	
   plate	
   bending,	
   there	
   will	
   generally	
   be	
  
two	
   bending	
   moments	
   Mx	
   ,	
   My	
   in	
   two	
   	
   mutually	
  
perpendicular	
   direc5ons	
   coupled	
   with	
   a	
   complimentary	
  
twis5ng	
  moment	
  Mxy	
  
	
  
Design	
   for	
   flexure	
   involves	
   providing	
   reinforcing	
   steels	
   in	
  
two	
  orthogonal	
  direc5ons	
  to	
  resist	
  the	
  moment	
  field.	
  Mx,	
  
My	
  and	
  Mxy.	
  	
  
	
  
Slab	
  is	
  idealized	
  as	
  an	
  assembly	
  of	
  discrete	
  plate	
  bending	
  elements	
  joined	
  at	
  nodes	
  
Wood	
  –Armer	
  equa4ons	
  are	
  used	
  for	
  this	
  purpose.	
  
Wood	
  –Armer	
  equa5ons	
  (1968)	
  	
  
	
  
•  This	
   method	
   was	
   developed	
   by	
   considering	
   the	
   normal	
   moment	
   yield	
  
criterion	
   (Johansen’s	
   yield	
   criterion)	
   aiming	
   to	
   prevent	
   yielding	
   in	
   all	
  
direc4ons.	
  	
  
•  At	
  any	
  point	
  in	
  the	
  slab,	
  the	
  moment	
  normal	
  to	
  a	
  direc4on,	
  resul4ng	
  due	
  to	
  
design	
   moments	
   Mx	
   ,	
   My	
   ,	
   and	
   Mxy	
   must	
   not	
   exceed	
   the	
   ul4mate	
   normal	
  
resis4ng	
  moment	
  in	
  that	
  direc4on.	
  
•  Mx
*	
  cos2θ	
  +	
  My
*	
  sin2θ	
  -­‐	
  flexural	
  strength	
  of	
  plate	
  in	
  the	
  direc4on	
  of	
  θ	
  	
  
with	
  X	
  axis.	
  
•  Mx	
  cos2θ	
  +	
  Mysin2θ	
  +	
  2	
  Mxy	
  cosθ	
  sinθ	
  -­‐	
  normal	
  bending	
  moment	
  in	
  
the	
  direc4on	
  of	
  θ	
  	
  
A.	
  For	
  bomom	
  steel	
  (	
  Sagging	
  Moment	
  +ve,	
  Hogging	
  Moment	
  –ve)	
  
Compute	
  :	
  Mx
*	
  =	
  Mx	
  +|Mxy|	
  and	
  My
*	
  =	
  My	
  +|Mxy|	
  	
  
Case	
  1:	
  If	
  Mx
*	
  ≥	
  0	
  and	
  MY
*	
  ≥	
  0	
  then	
  no	
  change	
  in	
  computed	
  values	
  of	
  Mx
*	
  and	
  My
*	
  
Case	
  2:	
  If	
  Mx
*	
  <	
  0	
  then	
  Mx
*	
  =	
  0	
  and	
  MY
*	
  =	
  MY	
  +	
  |	
  Mxy
2/Mx|	
  
Case	
  3:	
  If	
  My
*	
  <	
  0	
  then	
  My
*	
  =	
  0	
  and	
  Mx
*	
  =	
  Mx	
  +	
  |	
  Mxy
2/My|	
  
B.	
  For	
  Top	
  steel	
  (	
  Sagging	
  Moment	
  +ve,	
  Hogging	
  Moment	
  –ve)	
  
Compute	
  :	
  Mx
*	
  =	
  Mx	
  -­‐|Mxy|	
  and	
  My
*	
  =	
  My	
  -­‐|Mxy|	
  	
  
Case	
  1:	
  If	
  Mx
*	
  ≤	
  0	
  and	
  MY
*	
  ≤	
  	
  0	
  then	
  no	
  change	
  in	
  computed	
  values	
  of	
  Mx
*	
  and	
  My
*	
  
Case	
  2:	
  If	
  Mx
*	
  >	
  0	
  then	
  Mx
*	
  =	
  0	
  and	
  MY
*	
  =	
  MY	
  -­‐|	
  Mxy
2/Mx|	
  
Case	
  3:	
  If	
  My
*	
  >	
  0	
  then	
  My
*	
  =	
  0	
  and	
  Mx
*	
  =	
  Mx	
  -­‐|	
  Mxy
2/My|	
  
Example	
  1	
  
FE	
  results	
  at	
  centre	
  of	
  a	
  plate	
  element	
  are:	
  Mx	
  =	
  7	
  kNm,	
  My	
  =	
  23	
  kNm,	
  Mxy	
  =	
  9	
  kNm.	
  Compute	
  
design	
  moments	
  using	
  Wood	
  -­‐	
  Armer	
  equa4ons.	
  
	
  
A.  Borom	
  rebars	
  (Sagging	
  Moments)	
  
Mx*	
  =	
  Mx+|Mxy|	
  =	
  16	
  >	
  0	
  ,	
  Mx*	
  =	
  16	
  kNm	
  
My*	
  =	
  My+|Mxy|	
  =	
  32	
  >	
  0	
  ,	
  My*	
  =	
  32	
  kNm	
  
	
  
B.	
  Top	
  rebars	
  (Hogging	
  Moments)	
  
	
  
Mx*	
  =	
  Mx-­‐|Mxy|	
  =	
  -­‐2	
  <	
  0	
  ,	
  Mx*	
  =	
  2	
  kNm	
  
My*	
  =	
  My-­‐|Mxy|	
  =	
  14	
  >	
  0	
  
	
  
Set	
  My*	
  =	
  0	
  and	
  compute	
  Mx
*	
  =	
  Mx	
  -­‐|	
  Mxy
2/My|	
  =	
  7	
  –	
  |81/23|	
  =	
  3.478	
  kNm	
  
	
  
	
  
	
  
Example	
  2	
  
FE	
  results	
  at	
  centre	
  of	
  a	
  plate	
  element	
  are:	
  Mx	
  =	
  7	
  kNm,	
  My	
  =	
  -­‐23	
  kNm,	
  Mxy	
  =	
  9	
  kNm.	
  Compute	
  
design	
  moments	
  using	
  Wood	
  -­‐	
  Armer	
  equa4ons.	
  
	
  
A.  Borom	
  rebars	
  (Sagging	
  Moments)	
  
Mx*	
  =	
  Mx+|Mxy|	
  =	
  16	
  >	
  0	
  ,	
  Mx*	
  =	
  16	
  kNm	
  
My*	
  =	
  My+|Mxy|	
  =	
  -­‐14	
  <	
  0	
  ,	
  	
  
	
  
Set	
  My*	
  =	
  0	
  and	
  compute	
  Mx
*	
  =	
  Mx	
  +	
  |	
  Mxy
2/My|	
  =	
  7	
  +	
  |81/23|	
  =	
  10.52	
  kNm	
  
	
  
B.	
  Top	
  rebars	
  (Hogging	
  Moments)	
  
	
  
Mx*	
  =	
  Mx-­‐|Mxy|	
  =	
  -­‐2	
  <	
  0	
  ,	
  Mx
*	
  =	
  2	
  kNm	
  
My*	
  =	
  My-­‐|Mxy|	
  =	
  -­‐32	
  <	
  0	
  ,	
  	
  MY
*	
  =	
  32	
  kNm	
  
	
  
	
  
	
  
	
  

Weitere ähnliche Inhalte

Was ist angesagt? (20)

Flat slab design
Flat slab designFlat slab design
Flat slab design
 
Flat slab ppt
Flat slab pptFlat slab ppt
Flat slab ppt
 
Design of pile cap
Design of  pile capDesign of  pile cap
Design of pile cap
 
Reinforced column design
Reinforced column design Reinforced column design
Reinforced column design
 
Shear wall
Shear wallShear wall
Shear wall
 
CE 72.52 - Lecture 5 - Column Design
CE 72.52 - Lecture 5 - Column DesignCE 72.52 - Lecture 5 - Column Design
CE 72.52 - Lecture 5 - Column Design
 
Design of RCC Column footing
Design of RCC Column footingDesign of RCC Column footing
Design of RCC Column footing
 
Design of flat plate slab and its Punching Shear Reinf.
Design of flat plate slab and its Punching Shear Reinf.Design of flat plate slab and its Punching Shear Reinf.
Design of flat plate slab and its Punching Shear Reinf.
 
Design and detailing of flat slabs
Design and detailing of flat slabs Design and detailing of flat slabs
Design and detailing of flat slabs
 
Reinforced slab
Reinforced slabReinforced slab
Reinforced slab
 
Two way slab
Two way slabTwo way slab
Two way slab
 
Design of R.C.C Beam
Design of R.C.C BeamDesign of R.C.C Beam
Design of R.C.C Beam
 
Is 875 wind load
Is 875   wind loadIs 875   wind load
Is 875 wind load
 
ONE WAY SLAB DESIGN
ONE WAY SLAB DESIGNONE WAY SLAB DESIGN
ONE WAY SLAB DESIGN
 
Rcc member design steps
Rcc member design stepsRcc member design steps
Rcc member design steps
 
One-Way Slab Design
One-Way Slab DesignOne-Way Slab Design
One-Way Slab Design
 
Elastic flexural torsional buckling
Elastic flexural torsional bucklingElastic flexural torsional buckling
Elastic flexural torsional buckling
 
Design of two way slab
Design of two way slabDesign of two way slab
Design of two way slab
 
Design of footing as per IS 456-2000
Design of footing as per IS 456-2000Design of footing as per IS 456-2000
Design of footing as per IS 456-2000
 
Flat slab
Flat slabFlat slab
Flat slab
 

Ähnlich wie Civil structural engineering - Flat slab design

Combined footings
Combined footingsCombined footings
Combined footingsseemavgiri
 
Design of tension member.pptx
Design of tension member.pptxDesign of tension member.pptx
Design of tension member.pptxmayur280524
 
MULTI-STOREY CAR PARKING
MULTI-STOREY CAR PARKINGMULTI-STOREY CAR PARKING
MULTI-STOREY CAR PARKINGManoj Navneeth
 
RCC column_Shortly Axially Loaded column.pptx
RCC column_Shortly Axially Loaded column.pptxRCC column_Shortly Axially Loaded column.pptx
RCC column_Shortly Axially Loaded column.pptxHaswanthKollu
 
77201946
7720194677201946
77201946IJRAT
 
77201946
7720194677201946
77201946IJRAT
 
Design of concrete Structure 2
Design of concrete Structure 2Design of concrete Structure 2
Design of concrete Structure 2SHARIQUE AHMAD
 
PRESENTATION.pptxA EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF FINE AGGREGA...
PRESENTATION.pptxA EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF FINE  AGGREGA...PRESENTATION.pptxA EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF FINE  AGGREGA...
PRESENTATION.pptxA EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF FINE AGGREGA...pakkurathikailashpav
 
Onewayslab
OnewayslabOnewayslab
OnewayslabP Ramana
 
Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000Vikas Mehta
 
Design and fabrication of bending machine
Design and fabrication of bending machineDesign and fabrication of bending machine
Design and fabrication of bending machineparamesr2020
 
A Critical Review of Flat Slabs under different parameters
A Critical Review of Flat Slabs under different parametersA Critical Review of Flat Slabs under different parameters
A Critical Review of Flat Slabs under different parametersIRJET Journal
 

Ähnlich wie Civil structural engineering - Flat slab design (20)

Rectangular tank
Rectangular tankRectangular tank
Rectangular tank
 
Combined footings
Combined footingsCombined footings
Combined footings
 
Stepped footing
Stepped footingStepped footing
Stepped footing
 
Design of tension member.pptx
Design of tension member.pptxDesign of tension member.pptx
Design of tension member.pptx
 
MULTI-STOREY CAR PARKING
MULTI-STOREY CAR PARKINGMULTI-STOREY CAR PARKING
MULTI-STOREY CAR PARKING
 
RCC column_Shortly Axially Loaded column.pptx
RCC column_Shortly Axially Loaded column.pptxRCC column_Shortly Axially Loaded column.pptx
RCC column_Shortly Axially Loaded column.pptx
 
77201946
7720194677201946
77201946
 
77201946
7720194677201946
77201946
 
Structural pdf
Structural pdfStructural pdf
Structural pdf
 
Design of concrete Structure 2
Design of concrete Structure 2Design of concrete Structure 2
Design of concrete Structure 2
 
Lecture note on column design
Lecture note on column designLecture note on column design
Lecture note on column design
 
Reinforced concrete column
Reinforced concrete columnReinforced concrete column
Reinforced concrete column
 
Team 19
Team 19Team 19
Team 19
 
PRESENTATION.pptxA EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF FINE AGGREGA...
PRESENTATION.pptxA EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF FINE  AGGREGA...PRESENTATION.pptxA EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF FINE  AGGREGA...
PRESENTATION.pptxA EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF FINE AGGREGA...
 
4 slab
4 slab4 slab
4 slab
 
Onewayslab
OnewayslabOnewayslab
Onewayslab
 
Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000
 
Design and fabrication of bending machine
Design and fabrication of bending machineDesign and fabrication of bending machine
Design and fabrication of bending machine
 
Beams and columns
Beams and columns Beams and columns
Beams and columns
 
A Critical Review of Flat Slabs under different parameters
A Critical Review of Flat Slabs under different parametersA Critical Review of Flat Slabs under different parameters
A Critical Review of Flat Slabs under different parameters
 

Kürzlich hochgeladen

4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 

Kürzlich hochgeladen (20)

FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 

Civil structural engineering - Flat slab design

  • 2.  Resources  used  for  compiling  this  presenta4on    are  acknowledged  
  • 3. Flat Slab with drop panels Flat slab with column head Flat slab with drop panel and column head Flat Slab resting directly on columns 1.  What is a flat slab? 31.1 General The term flat slab means a reinforced concrete slab with or without drops, supported generally without beams, by columns with or without flared column heads A flat slab may be solid slab or may have recesses formed on the soffit so that the soffit comprises a series of ribs in two directions. The recesses may be formed by removable or permanent filler blocks.  
  • 4. 2.  Types of flat slab •  Flat Slab with drop panels •  Flat slab with column head •  Flat slab with drop panel and column head •  Flat Slab resting directly on columns Drop  is  a  local  thickening  of  the  slab  in   the  region  of  column   Structural  Advantages   •  increase  shear  strength  of  slab   •  increase   nega5ve   moment   capacity   of  slab   •  s5ffen   the   slab   and   hence   reduce   deflec5on   Column  head  is  a  local  enlargement  of   the   column   at   the   junc5on   with   the   slab   Structural  Advantages   •  increase shear strength of slab (punching shear) •  reduce the moment in the slab by reducing the clear or effective span
  • 5. A  flat  slab  may  have  recesses  formed  on  the  soffit  so  that  the  soffit  comprises  a  series  of  ribs   in  two  direc5ons  (  waffle  Slabs).    
  • 6. Flat   slabs   with   capitals,   drop   panels,   or   both.   These   slabs   are   very   sa4sfactory   for   heavy  loads  and  long  spans.       Although  the  formwork  is  more  expensive  than  for  flat  plates,  flat  slabs  will  require   less  concrete  and  reinforcing  than  would  be  required  for  flat  plates  with  the  same   loads  and  spans.       They   are   par4cularly   economical   for   warehouses,   parking   and   industrial   buildings,   and  similar  structures,  where  exposed  drop  panels  or  capitals  are  acceptable.  
  • 7. v Flexibility in room layout •  Introduce partition walls anywhere required •  Change the size of room layout •  Omit false ceiling v  Saving in building height •  Lower storey height will reduce building weight •  approx. saves 10% in vertical members •  reduce foundation load v Shorter construction time •  flat plate design will facilitate the use of big table formwork to increase productivity v Ease of installation of M&E services •  all M & E services can be mounted directly on the underside of the slab instead of bending them to avoid the beams •  avoids hacking through beams   3.  Benefits of flat slab
  • 8. The  main  disadvantage  is  their  lack  of  resistance  to  lateral  loads  due  to   wind   and   earthquakes.   Lateral   load   resis4ng   systems   such   as   shear   walls  are  oDen  necessary     When  the  loads  or  spans  or  both  become  quite  large,  the  slab  thickness   and   column   sizes   required   for   flat   plates   or   flat   slabs   are   of   such   magnitude   that   it   is   more   economical   to   use   two-­‐way   slabs   with   beams,  despite  the  higher  formwork  costs.    
  • 9. 4.  Behaviour of Slab supported on Stiff , Flexible and no beams Case  Study:     •  Panel  Size  =  4  m  x  4m   •  Slab  Thickness  =    125  mm   •  Load  =  5  kN/m2   •  S5ff  Supports  (  Bearing  wall)   •  Flexible  Supports  (Beam)  :  300  x  300  ,  300  x  450  ,  300  x  600  ,  300  x  1000  mm   •  Column  supports  at  corners    
  • 10. A.  Two  way  Slab  on  Rigid  Supports  (bearing  Walls)   Mx  =  3.616  kNm/m   My  =  3.616  kNm/m   IS  456  Values  (Table  27):  0.062  x  5  x  16  =  4.96   Slab  Deflec6on  =  1.4  mm    
  • 11. B.  Two  way  Slab  on  Flexible    Supports  (Beams  on  all  sides)     1.  Beam  Size  :  300  x300  mm   Mx  =  4.45  kNm/m   My  =  4.45  kNm/m   IS  456  Values  (Type  9):  0.056  x  5  x  16  =  4.48   Mxy  =  0.37  kNm/m   Beam  Moment  =  12.2  kNm   Beam  Deflec6on  =  1.33  mm   Slab  deflec6on=  2.9  mm  
  • 12. 2.  Beam  Size  :  300  x450  mm   Mx  =  3  kNm/m   My  =  3  kNm/m   IS  456  Values  (Type  9):  0.056  x  5  x  16  =  4.48   Mxy  =  0.73  kNm/m   Beam  Moment  =  15.6  kNm   Beam  Deflec6on  =  0.5  mm   Slab  deflec6on=  1.5  mm  
  • 13. 3.  Beam  Size  :  300  x  600  mm   Mx  =  2.43  kNm/m   My  =  2.43  kNm/m   IS  456  Values  (Type  9):  0.056  x  5  x  16  =  4.48   Mxy  =  0.8  kNm/m   Beam  Moment  =  17  kNm   Beam  Deflec5on  =  0.24  mm   Slab  Deflec5on  =  0.98  mm  
  • 14. 4.  Beam  Size  :  300  x  1000  mm   Mx  =  2  kNm/m   My  =  2  kNm/m   IS  456  Values  (Type  9):  0.056  x  5  x  16  =  4.48   Mxy  =  0.8  kNm/m   Beam  Moment  =    18  kNm  
  • 15. 5.  Beam  Size  :  300  x  125  mm  (Concealed  Beams)   Mx  =  9.8  kNm/m   My  =  9.8  kNm/m   IS  456  Values  (Type  9):  0.056  x  5  x  16  =  4.48   Mxy  =  3  kNm/m   Beam  Moment  =    2.9  kNm   Slab  Deflec6on  =  7.0  mm  
  • 16. B.  Two  way  Slab  on    Point    Supports    at  corners  (Flat  Slab)   Mx  =  9.075  kNm/m  (Middle)                =12.4  kNm/m  (Edge  Strip)   Mxy  =  7.76  kNm/m  My  =  9.075  kNm/m  (Middle)                =12.4  kNm/m  (Edge  Strip)   Slab  Deflec6on  =  8.67  mm  
  • 17. Type  of   Support   Mx   My   Mxy   Beam   Moment   Deflec4on   Slab   Beam   Rigid   3.616   3.616   2.6   -­‐   1.4   -­‐   300  x125   (Concealed   Beams)   9.84   9.85   3.0   2.88   7.0   4.3   300  x300   4.45   4.45   0.37   12.2   2.9   1.33   300  x450   3   3   0.73   15.6   1.5   0.50   300  x600   2.43   2.43   0.8   17.0   0.98   0.24   300x1000   2   2   0.8   18.0   0.60   0.05   Flat  Slab   9.0   9.0   7.76   -­‐   8.676   -­‐   Results  Summary  
  • 18. •  Two way Rectangular Slab supported on stiff beams, the shorter spans (stiffer portion of the slab) carry larger load and subjected to larger moments. The longer spans carry less load and subjected to less moment. •  Results indicate that decrease in supporting beams stiffness leads to an increase in bending moments of slabs and decrease in bending moment of the beams (behavior that is not captured using code recommendations). •  If the slab is supported on bearing walls, slab moments are distributed in similar way. •  If the slab is supported only by the columns, the slab behaves like a two way slab with an essential difference that all the load is carried in both directions to accumulate it at the columns. •  With Concealed beams it is reveled that the behaviour is close to Flat slabs rather than any useful beam action.   Observa4ons  
  • 19. 4.  Structural Behaviour of Flat Slab Deflected  Shape   Column  Strip   Column  Strip   Middle  Strip   Column  Strip Middle   Strip  
  • 20. A   Zone  of  –ve  BM  (Hogging)  in  both  direc7ons   B   Zone  of  +ve  BM(Sagging)  and  –ve  BM   C   Zone  of  -­‐ve  BM  and  +ve  BM   D   Zone  of  +ve  BM  in  both  direc7ons   -­‐m4   -­‐m2   -­‐m4   m3   m1   m3   m5   m7   -­‐m8   -­‐m4   -­‐m2   -­‐m4   m7   A   A   A   A   C   C   B   B   D   Column  Strip   Middle  Strip   Column  Strip   Column   Strip   Middle  Strip   Column   Strip   -­‐m6   -­‐m6  -­‐m8   -­‐m8   -­‐m8   5.  Distribution of Total Panel Moment in different zones
  • 21. A   Zone  of  –ve  BM  (Hogging)  in  both  direc7ons   B   Zone  of  +ve  BM(Sagging)  and  –ve  BM   C   Zone  of  -­‐ve  BM  and  +ve  BM   D   Zone  of  +ve  BM  in  both  direc7ons   -­‐m4   -­‐m2   -­‐m4   m3   m1   m3   m5   m7   -­‐m8   -­‐m4   -­‐m2   -­‐m4   m7   A   A   A   A   C   C   B   B   D   Column  Strip   Middle  Strip   Column  Strip   Column   Strip   Middle  Strip   Column   Strip   -­‐m6   -­‐m6   -­‐m8   -­‐m8   -­‐m8   m1   -­‐m2   -­‐m2  D   C   C   m3   -­‐m4   -­‐m4  B   A   A   m5   -­‐m6   -­‐m6  D   B  B   m7   -­‐m8   -­‐m8   C   A  A  
  • 22. 6.  Definitions L2   L1   Moment  Direc5on   MIDDLE  STRIP   COLUMN  STRIP   0.25L2  ≤  0.25L1   COLUMN  STRIP   0.25L1  ≤  0.25L2   MIDDLE   STRIP   COLUMN  STRIP   0.25L1  ≤  0.25L2   Moment  Direc5on   SPAN   Region   SPAN  Region:   Bounded  on  all  the  four  sides  by  middle  strips      
  • 23.     7.  General Design Considerations CL 31.2 Proportioning 31.2.1 Thickness of Flat Slab •  The thickness of the flat slab shall be generally controlled by considerations of span to effective depth ratios given in 23.2. •  For slabs with drops conforming to 31.2.2, span to effective depth ratios given in 23.2 shall be applied directly; otherwise the span to effective depth ratios obtained in accordance with provisions in 23.2 shall be multiplied by 0.9. For this purpose, the longer span shall be considered. •  The minimum thickness of slab shall be 125 mm. 31.2.2 Drop •  The drops when provided shall be rectangular in plan, and have a length in each direction not less than one- third of the panel length in that direction. •  For exterior panels, the width of drops at right angles to the non continuous edge and measured from the centre- line of the columns shall be equal to one-half the width of drop for interior panels. •  Minimum thickness of Drop > ¼ of Slab thickness and > 100 mm  
  • 24.
  • 25. 31.2.3 Column Heads Where column heads are provided, that portion of a column head which lies within the largest right circular cone or pyramid that has a vertex angle of 900and can be included entirely within the outlines of the column and the column head, shall be considered for design purposes.  
  • 26. 8. Determination of Bending Moment CL 31.3 31.3.1. Methods of Analysis and Design It shall be permissible to design the slab system by one of the following methods: a) The direct design method as specified in 31.4, and b) The equivalent frame method as specified in 31.5. In each case the applicable limitations given in 31.4 and 31.5 shall be met.  
  • 27. 9. Direct Design Method CL 31.4 A. Limitations : 31.4.1 Slab system designed by the direct design method shall fulfil the following conditions: a)  There shall be minimum of three continuous spans in each direction, b)  The panels shall be rectangular, and the ratio of the longer span to the shorter span within a panel shall not be greater than 2.0 c)  It shall be permissible to offset columns to a maximum of 10percent of the span in the direction of the offset notwithstanding the provision in (b) d)  The successive span lengths in each direction shall not differ by more than one-third of the longer span. The end spans may be shorter but not longer than the interior spans, and e)  The design live load shall not exceed three times the design dead load. Note: Applicable to gravity loading condition alone (and not to the lateral loading condition)  
  • 28. 1   2   3   2   3   Lx1   Lx2   Lx3   Ly1   Ly2   Ly3   ≤  0.1Ly2   ≤  0.1Lx1   Lx1  ≤  Lx2   Lx3  ≤  Lx2   Ly1  ≤  Ly2   Ly3  ≤  Ly2   Lx1  ≥  2Lx2/3   Lx3  ≥  2Lx2/3   Ly1  ≥  2Ly2/3   Ly3  ≥  2Ly2/3   wuL/wuD  ≤  3   For  any  Panel   Longer  Span/Shorter  Span≤  2  
  • 29. B. Total Design Moment for a Span: CL31.4.2 CL  of  Panel  1   CL  of  Panel  2   1   2   DESIGN   STRIP   31.4.2.1 In the direct design method, the total design moment for a span shall be determined for a strip bounded laterally by the centre-line of the panel on each side of the centre-line of the supports. 31.4.2.2 The absolute sum of the positive and average negative bending moments in each direction shall be taken as: 1   2   M0x   M0y   lnx
  • 30. wu  kN/m   L1   L2  Ln  Ln   (L1)   (L2)   Note:     1.  It  is  the  same  as  the  total  moment  that  occurs  in  a   simply  supported  slab   2.  The  moment  that  actually  occurs  in  such  a  slab  has  been  shown  by  experience  and  tests   to  be  somewhat  less  than  the  value  determined  by  the  Mo  expression.  For  this  reason,  l1   is  replaced  with  ln
  • 31. •  It  is  next  necessary  to  know  what  propor4ons  of  these  total  moments  are  posi4ve  and   what  propor4ons  are  nega4ve.     10. Distribution of Total Panel Moment M0 •  If   a   slab   was   completely   fixed   at   the   end   of   each   panel,  the  division  would  be  as  it  is  in  a  fixed-­‐end   beam,   two-­‐thirds   nega4ve   and   one-­‐third   posi4ve,   as  shown  in  Figure.       •  This   division   is   reasonably   accurate   for   interior   panels   where   the   slab   is   con4nuous   for   several   spans  in  each  direc4on  with  equal  span  lengths  and   loads.     Interior  Panel  
  • 32. •  The  rela4ve  s4ffnesses  of  the  columns  and  slabs  of  exterior  panels  are  of   far  greater  significance  in  their  effect  on  the  moments  than  is  the  case   for  interior  panels.     •  The   magnitudes   of   the   moments   are   very   sensi4ve   to   the   amount   of   torsional  restraint  supplied  at  the  discon4nuous  edges.     •  This  restraint  is  provided  both  by  the  flexural  s4ffness  of  the  slab  and  by   the  flexural  s4ffness  of  the  exterior  column.       Exterior  Panel  
  • 34.
  • 35.
  • 36. Distribution of Bending Moments across panel width Code Recommendations
  • 37.
  • 38.
  • 39.
  • 40. 11. Rebar Detailing - Code Recommendations
  • 41.
  • 42. Bent   bars   are     also   used.   There   seems   to   be   a   trend   among   designers   to   use   straight   bars   more   than   bent  bars.   ELEVATION  
  • 43. Rebar Detailing - Code Recommendations e  e   e   e   e   b   b   b   b  b   Ln  greater  of  adjacent  clear  spans  CL  31.7.3  (b)  
  • 45.
  • 46. 12. Two way Shear in Flat Slab •  Flat  plates  present  a  possible  problem  in  transferring  the   shear  at  the  perimeter  of  the  columns.   •  There  is  a  danger  that  the  columns  may  punch  through   the  slabs.   •  As  a  result,  it  is  frequently  necessary  to  increase  column   sizes   or   slab   thicknesses   or   to   use   shear   heads.   Shear   heads   consist   of   steel   I   or   channel   shapes   placed   in   the   slab  over  the  columns  
  • 47. Note:   Flat  Slab  with  drop  panel  and  capital,  shear  is  required  to  be  checked  at  two  sec4ons   1.  at  a  distance  d/2  from  the  face  of  column  capital   2.  at  a  distance  d/2  from  the  face  of  drop  panel  
  • 48.
  • 49.
  • 50. Design  Example  #1   Design   by   DDM   flat   plate   supported   on   columns  450  mm  square,  for    a  Live  Load   =   3   kN/m2,   Floor   Finish   =     1   kN/m2   use   M20  and  Fe415.  Assume  clear  cover  =  20   mm.   Effec6ve   Column   Height   =   3.35m.   Bay  spacing  in  X  and  Y  direc6on  =  5m  c/c     •  Interior  Panel  P5   •  Corner  Panel  P7   3  bays  @  5  m  c/c  
  • 51. A.  Interior  Panel  Design   5  m   5  m   2.5m     2.5   m  A A A A B B C CD Zone  A  –  Corner  Strip   Zone  B  –  Middle  Strip  along  X   Zone  C  –  Middle  Strip  along  Y   Zone  D  –  Interior  Region      Step 1: Panel Division into Strips  31.1.1(a)     Moment   direc6on   Along   L1   L2   Width  of  Column  Strip  on   either  side  of  Centre  Line   =  0.25L2   and        ≤  0.25  L1   Middle   Strip   X   5   5   1.25  and  ≤1.25  m   Adopt  1.25  m   2.5m   Y   5   5   1.25  and  ≤1.25  m   Adopt  1.25  m   2.5m  
  • 52. Step 2: Trial Depth CL 31.2.1     •  L/d  =  26   •  Modifica5on  Factor  =  1.33,  Assuming  pt  =  0.4%,  FIG  4  IS  456   •  d  =  5000/(26  x  1.33)  =      145  mm  >  125          CL  31.2.1   •  DS=  145  +  20  +  18  =  183  mm  (  assume  #12  bars,  and  bars  in  two  layers)   •  Provide  Ds=  200  mm  d  =  200-­‐20-­‐18  =  162  mm    
  • 53. Step 3 Design Loads / m width of Slab •  wuD = 1.5(25x 0.2 + 1) = 9kN/m •  wuL = 1.5 x 3 = 4.5kN/m •  wu = 13.5 kN/m Step 4: Check for Applicability of DDM: CL 31.4.1 •  No.  of  Con5nuous  Spans  in  each  direc5on  =  3  ;  OK          31.4.1(a)     •  Long  Span/Short  Span    =  5/5  =  1  <2  ;  OK                                                                                                                              31.4.1(b)     •  Successive  spans  in  each  direc5on  =  Equal;  OK          31.4.1(d)     •  wuL/wuD     =  4.5/9  =  0.5  <  3  ;  OK              31.4.1(e)    
  • 54. Step 5: Check for punching shear around Column Assumed  d  =  162  mm   Sec4on  1:   •  Cri5cal  Sec5on  at  d/2  around  the  column     •  Perimeter  of  Cri5cal  Sec5on  =    4  x  0.612=  2.448  m     •  Design  Shear  at  cri5cal  sec5on  Vu   •  Vu  =  13.5  (  52  –  0.6122)  =  333kN   •  τc  =  0.25√fck  =  1.12  MPa   •  ks  =  0.5  +1  =  1.5    <=1  ;  ks=1  ;  ks  τc  =  1.12   •  Shear  Resistance  of  Concrete  =  1.12  x  2448  x  162  =  444kN  >  333  kN    OK   Cri4cal  Sec4on   0.612m   0.612m   5m   5m   Contributory  Area  
  • 55. Step 6:Design Moments CL 31.4.2.2 Parameters   Along  X   Along  Y   L1  (Span  in  direc4on  of  Mo)   5   5   m   0.65L1     3.25   3.25   m   Ln  (clear  span  extending  from  face  to   face  of  columns,  capitals)   (5-­‐0.45)  =   4.55   4.55   m   Ln  >  0.65L1   4.55   4.55   m   L2  (Span  transverse  to  L1)   5   5   m   W  =  wu  L2Ln   307.2   307.2   kN   M0    =  W  Ln  /  8     174.72   174.72   kNm   wu = 13.5 kN /m
  • 56. Step 7 : Distribution of Bending Moment across panel width ; CL: 31.4.3.2, 31.5.5 Moment  Direc5on  along   X   Y   Nega4ve    Design  Moment    MN  =  -­‐  0.65*M0   113.6   113.6   kNm    31.4.3.2   •  Column  Strip  M1  =    0.75MN     85.2   85.2   kNm   31.5.5.1   Width  of  Column  Strip  resis4ng  M1  (Csw)    2x1.25  =2.5   2x1.25  =2.5   m   •  -­‐m1  =  M1/  Csw    (Zone  A)   34.1   34.1   kNm/m   •  Middle  Strip  M2  =  0.25MN   28.4   28.4   kNm    31.5.5.4(a)   Width  of  Middle  Strip  resis4ng  M2  (Msw)   2.5   2.5   m   •  -­‐m2  =    M2/Msw     (Zone  B  &  C)   11.4   11.4   kNm/m  
  • 57. Posi5ve  Design  Moment     MP  =  0.35*M0   61.2   61.2   kNm    31.4.3.2   •  Column  Strip  M1  =  0.6MP     36.7   36.7   kNm    31.5.5.3   •  +m1  =  M1/  Csw     (Zone  B  &C)   14.7   14.7   kNm/m   •  Mid  Span  M2  =  0.4MP   24.5   24.5   kNm    31.5.5.4(a)   •  +m2  =    M2/Msw  (Zone  D)   9.8   9.8   kNm/m   -­‐ve  sign  :  Hogging  Moment  (tension  at  top)   +ve  sign  :  Sagging  Moment  (tension  at  borom)   -­‐34.1   -­‐11.4   -­‐34.1   14.7   9.8   14.7   -­‐34.1   -­‐11.4   -­‐34.1   9.8  14.7   -­‐11.4   -­‐34.1   -­‐34.1   -­‐34.1   -­‐11.4   -­‐34.1   14.7   A B A D C C A AB Step 8 : Check for adequacy of Depth •  Max  Design  Bending  moment  =  34.1  kNm/m   •  Mu,lim    =  72.41    kNm/m  >  34.1,   •   Depth  is  adequate    G-­‐1.1(c)    
  • 58. Loca6on   Moment   (kNm/m)   Ast     (mm2 /m)   Ast    (prov)   Bar     dia   Spacing   mm   Along  X   Zone  A   (-­‐)  34.1   635   635   10   120  -­‐  T    Zone  B   14.7   260   260   8   190  -­‐  B   Zone  C   (-­‐)11.4   200   240   8    200  -­‐  T   Zone  D   9.8   171   240   8   200  -­‐  B   Along  Y   Zone  A   (-­‐)34.1   635   635   10   120  -­‐  T   Zone  B   (-­‐)11.4   200   240   8    200  -­‐  T   Zone  C   14.7   260   260   8   190  -­‐  B   Zone  D   9.8   171   240   8   200  -­‐  B   •  7.5  Ast2  –  58490Ast  +  Mu  =  0                                  G-­‐1.1(b)     Step 9 :Rebar Details •  Ast,min    =  0.12  x  200  x  1000  /100  =  240  mm2/m            26.5.2.1   •  Minimum  Effec5ve  Depth    of  Slab  =  162  mm    
  • 59. #8@190  #8@200  #8@190   #8@200  #8@190   #8@190   0.15Ln   0.15Ln   0.125Ln   0.125Ln   Borom  Rebar  Details  in   Interior  Panel     A   B   A   A   B   A   C   D   C  
  • 60. TOP  Rebar  Details  in   Interior  Panel     #10@120   #10@120   #8@200   #8@200   #8@200   0.3Ln   0.2Ln   0.3Ln   0.2Ln   Note:   Distances  for  curtailment  of  rebars  are   measured  from  column  face   A   B   A   C   D   C  
  • 61. B.  Corner  Panel  Design   Step 5: Check for punching shear around Column Assumed  d  =  162  mm     Sec4on  1:   •  Cri5cal  Sec5on  at  d/2  around  the  column     •  Perimeter  of  Cri5cal  Sec5on  =    2  x  0.531=  1.062  m     •  Design  Shear  at  cri5cal  sec5on  Vu   •  Vu  =  13.5  (  2.52  –  0.5312)  =  81kN   •  τc  =  0.25√fck  =  1.12  MPa   •  ks  =  0.5  +1  =  1.5    <=1  ;  ks=1  ;  ks  τc  =  1.12   •  Shear  Resistance  of  Concrete  =  1.12  x  1062  x  162  =   192kN  >  81  kN    OK   450   162/2  =  81  mm  
  • 62. Step 7 : Distribution of Bending Moment across panel width ; CL 31.4.3.3 , 31.5.5 ​ 𝛼↓𝑐 =​∑↑▒​ 𝑘↓𝑐  /​ 𝑘↓𝑠     Assume  Columns  and  Slab  panels  are  with  same   modulus  of  elas5city   5  m   5  m   1.25m     1.25m  A A A A B B C CD Step 6:Design Moments CL 31.4.2.2 M0 = 174.72 kNm
  • 63. Parameters   Along  X   Along  Y   Sum   of   column   s4ffness   above   and   below  the  slab     2  (4EcIc)/Lc     (2  x  4  x  Ec  x  450  x  4503/12)  /3350  =    8.16  Ec  x  106             Slab  s4ffness     ks  =  4EsIs/Ls      (4  Es  x  5000  x  2003/12)/5000    =  2.67Es  x  106         2.67Es  x  106     αc  =  ∑kc  /ks   3.06   3.06   β  =    1+  (1/αc)   1.33   1.33  
  • 64. Moment  Direc5on  along   X   Y   Nega4ve    Design  Moment    MN  =  -­‐  0.65*M0/β   85.4   85.4   kNm    31.4.3.3   •  Column  Strip  M1  =    MN     85.4   85.4   kNm   31.55.2(a)   Width  of  Column  Strip  Csw  resis4ng  M1   2x1.25  =  2.5   2.5   m   -­‐m1  =  M1/Csw   34.2   34.2   kNm/m   •  Middle  Strip  M2=0   0   0   kNm    31.5.5.4(a)   -­‐m2  =    0   0   0   kNm/m   A.  Exterior  nega4ve  design  moment:   -­‐m1   -­‐m1   -­‐m1   -­‐m1   Exterior   Exterior   Interior   Interior   1.25   1.25   -­‐m2   -­‐m2   X   Y  
  • 65. Moment  Direc5on  along   X   Y   Nega4ve    Design  Moment    MN  =  -­‐  (0.75  –  0.1/β)Mo   118   118   kNm    31.4.3.3   •  Column  Strip  M1  =  0.75  MN     88.5   88.5   kNm   31.5.5.1   Width  of  Column  Strip  Csw  resis4ng  M1    2x1.25  =2.5   2.5   m   •  -­‐m1  =  M1/  Csw   -­‐35.4   -­‐35.4   kNm/m   •  Middle  Strip  M2  =  0.25  MN     22.12   22.12   kNm    31.5.5.4(a)   Width  of  Middle  Strip  Msw  resis4ng  M2   2.5   2.5   m   •  -­‐m2  =    M2/Msw   -­‐8.85   -­‐8.85   kNm/m   B.  Interior  nega4ve  design  moment:   -­‐  m1   -­‐  m1   -­‐  m2   m1  -­‐m1   -­‐m1   -­‐m2   X   Y   Exterior   Exterior   Interior   Interior  
  • 66. Moment  Direc5on  along   X   Y   Design  Moment    MP  =    (0.63  –  0.28/β)Mo   73.29   73.29   kNm    31.4.3.3   •  Column  Strip  M1  =  0.6  MP     43.98   43.98   kNm   31.5.5.3   Width  of  Column  Strip  Csw  resis4ng  M1    2x1.25  =2.5   2.5   m   •  m1  =  M1/  Csw   17.6   17.6   kNm/m   •  Middle  Strip  M2  =  0.4  MP     29.32   29.32   kNm    31.5.5.4(a)   Width  of  Middle  Strip  Msw  resis4ng  M2   2.5   2.5   m   •  m2  =    M2/Msw   11.73   11.73   kNm/m   C.  Posi4ve  Moment  in  Mid  Span:   m1   m1   m1   m1   m1   m1   m2   X   Y   Exterior   Exterior   Interior   Interior   m2  
  • 67. -­‐ve  sign  :  Hogging  Moment  (tension  at  top)   +ve  sign  :  Sagging  Moment  (tension  at  borom)   17.6   11.73   17.6   -­‐8.85   -­‐35.4   11.73  17.6   17.6   A B A D C C A AB -­‐35.4   -­‐35.4   -­‐8.85   -­‐35.4   -­‐34.2   -­‐34.2   0   -­‐34.2   -­‐34.2  -­‐0   Exterior   Exterior   Interior   Interior   Step 7 : Check for adequacy of Depth •  Max  Design  Bending  moment  =  35.4  kNm/m   •  Mu,lim    =  72.41  kNm/m  >  35.4,  Depth  is  adequate    G-­‐1.1(c)    
  • 68. Strip  Loca6on   Moment   (kNm/m)   Ast     (mm2 /m)   Ast    (prov)   Bar     dia   Spacing   mm   Along  X   Zone  A(Exterior)   (-­‐)34.2   637   637   10   120(T)    Zone  A(Interior)   (-­‐)35.4   662   662   10   115(T)   Zone  B   17.6   314   314   8   160(B)   Zone  C(Interior)   (-­‐)8.85   155   240   8   200(T)   Zone  D   11.73   206   240   8   200(B)   Along  Y   Zone  A  (Exterior)   (-­‐)34.2   637   637   10   120(T)   Zone  A(Interior)   (-­‐)35.4   662   662   10   115(T)   Zone  B  (Interior)   (-­‐)8.85   155   240   8   200(T)   Zone  C   17.6   314   314   8   160(B)   Zone  D   11.73   206   240   8   200(B)   Step 8 :Rebar Details •  Ast,min    =  0.12  x  200  x  1000  /100  =  240  mm2/m            26.5.2.1   7.5  Ast2  –  58490Ast  +  Mu  =  0      
  • 69. 17.6   11.73   17.6   11.73  17.6   17.6   A   B   A   D   C   C   A   A  B   Exterior   Exterior   Interior   Interior  
  • 70. -­‐8.85   -­‐35.4   A B A D C C A AB -­‐35.4   -­‐35.4   -­‐8.85   -­‐35.4   -­‐34.2   -­‐34.2   0   -­‐34.2   -­‐34.2  -­‐0   Exterior   Exterior   Interior   Interior   #8@200   #10@120   #10@115   #10@120   #10@120   #8@200   #8@200   #10@115   #10@115   #8@200   TOP  Rebar  details  in  Corner  Panel  
  • 71. Design  Example  #2   Design   by   DDM   flat   plate   supported   on   columns  500  mm  square,  for    a  Live  Load   =   4   kN/m2,   Floor   Finish   =     1   kN/m2   use   M25  and  Fe415.  Floor  slab  is  exposed  to   moderate  environment.  Column  Height  =   3.5m   (c/c).   Bay   spacing   in   X   and   Y   direc6on   =   5.5m   c/c.   Assume   that   building  is  not  restrained  against  sway       •  Interior  Panel  P5   •  Corner  Panel  P7   3  bays  @  5.5  m  c/c  
  • 72. A.  Interior  Panel  Design   5.5  m   5.5  m   2.75m     2.75   m  A A A A B B C CD Zone  A  –  Corner  Strip   Zone  B  –  Middle  Strip  along  X   Zone  C  –  Middle  Strip  along  Y   Zone  D  –  Interior  Region      Step 1: Panel Division into Strips  31.1.1(a)     Moment   direc6on   Along   L1   L2   Width  of  Column  Strip  on   either  side  of  Centre  Line   =  0.25L2   and        ≤  0.25  L1   Middle   Strip   X   5   5   1.375  and  ≤1.375  m   Adopt  1.375  m   2.75m   Y   5   5   1.375  and  ≤1.375  m   Adopt  1.375  m   2.75m  
  • 73. Step 2: Trial Depth CL 31.2.1     •  L/d  =  26   •  Modifica5on  Factor  =  1.33,  Assuming  pt  =  0.4%,  FIG  4  IS  456   •  d  =  5500/(26  x  1.33)  =      160  mm  >  125          CL  31.2.1   •  DS=  160  +  30  +  18  =  208  mm  (  assume  #12  bars,  and  bars  in  two  layers)   •  Provide  Ds=  225  mm  d  =  225-­‐30-­‐18  =  177  mm    
  • 74. Step 3 Design Loads / m width of Slab •  wuD = 1.5(25x 0.225 + 1) = 9.94kN/m •  wuL = 1.5 x 4 = 6kN/m •  wu = 15.94 ≈ 16 kN/m Step 4: Check for Applicability of DDM: CL 31.4.1 •  No.  of  Con5nuous  Spans  in  each  direc5on  =  3  ;  OK          31.4.1(a)     •  Long  Span/Short  Span    =  5.5/5.5  =  1  <2  ;  OK                                                                                                                    31.4.1(b)     •  Successive  spans  in  each  direc5on  =  Equal;  OK          31.4.1(d)     •  wuL/wuD     =  6/9.94  =  0.6  <  3  ;  OK              31.4.1(e)    
  • 75. Step 5: Check for punching shear around Column Assumed  d  =  177  mm   Sec4on  1:   •  Cri5cal  Sec5on  at  d/2  around  the  column     •  Perimeter  of  Cri5cal  Sec5on  =    4  x  0.677=  2.708  m     •  Vu  =  16  (  5.52  –  0.6772)  =  477kN   •  τc  =  0.25√fck  =  1.25  MPa   •  ks  =  0.5  +1  =  1.5    <=1  ;  ks=1  ;  ks  τc  =  1.25   •  Shear  Resistance  of  Concrete  =  1.25  x  2708  x  177  =  599kN  >  477  kN    OK   Cri4cal  Sec4on   0.677m   0.677m   5.5m   5.5m   Contributory  Area  
  • 76. Step 6:Design Moments CL 31.4.2.2 Parameters   Along  X   Along  Y   L1  (Span  in  direc4on  of  Mo)   5.5   5.5   m   0.65L1     3.575   3.575   m   Ln  (clear  span  extending  from  face  to   face  of  columns,  capitals)   (5.5-­‐0.5)  =   5   5   m   Ln  >  0.65L1   5   5   m   L2  (Span  transverse  to  L1)   5.5   5.5   m   W  =  wu  L2Ln   440   440   kN   M0    =  W  Ln  /  8     275   275   kNm   wu = 16 kN /m
  • 77. Step 7 : Distribution of Bending Moment across panel width ; CL: 31.4.3.2, 31.5.5 Moment  Direc5on  along   X   Y   Nega4ve    Design  Moment    MN  =  -­‐  0.65*M0   179   179   kNm    31.4.3.2   •  Column  Strip  M1  =    0.75MN     134.3   134.3   kNm   31.5.5.1   Width  of  Column  Strip  resis4ng  M1  (Csw)   2.75   2.75   m   •  -­‐m1  =  M1/  Csw    (Zone  A)   48.8   48.8   kNm/m   •  Middle  Strip  M2  =  0.25MN   44.8   44.8   kNm    31.5.5.4(a)   Width  of  Middle  Strip  resis4ng  M2  (Msw)   2.75   2.75   m   •  -­‐m2  =    M2/Msw     (Zone  B  &  C)   16.3   16.3   kNm/m  
  • 78. Posi5ve  Design  Moment     MP  =  0.35*M0   96.3   96.3   kNm    31.4.3.2   •  Column  Strip  M1  =  0.6MP     57.8   57.8   kNm    31.5.5.3   •  +m1  =  M1/  Csw     (Zone  B  &C)   21   21   kNm/m   •  Mid  Span  M2  =  0.4MP   38.5   38.5   kNm    31.5.5.4(a)   •  +m2  =    M2/Msw  (Zone  D)   14   14   kNm/m   -­‐ve  sign  :  Hogging  Moment  (tension  at  top)   +ve  sign  :  Sagging  Moment  (tension  at  borom)   -­‐48.8   -­‐16.3   -­‐48.8   21   14   21   -­‐48.8   -­‐16.3   -­‐48.8   14  21   -­‐16.3   -­‐48.8   -­‐48.8   -­‐48.8   -­‐16.3   -­‐48.8   21   A B A D C C A AB Step 8 : Check for adequacy of Depth •  Max  Design  Bending  moment  =  48.8  kNm/m   •  Mu,lim    =  108    kNm/m  >  48.8   •   Depth  is  adequate    G-­‐1.1(c)    
  • 79. Loca6on   Moment   (kNm/m)   Ast     (mm2 /m)   Ast    (prov)   Bar     dia   Spacing   mm   Along  X   Zone  A   (-­‐)  48.8   828   828   10   90  -­‐  T    Zone  B   21   340   340   8   145  -­‐  B   Zone  C   (-­‐)16.3   262   270   8    180  -­‐  T   Zone  D   14   224   270   8   180  -­‐  B   Along  Y   Zone  A   (-­‐)  48.8   828   828   10   90  -­‐  T   Zone  B   -­‐16.3   262   270   8    180  -­‐  T   Zone  C   21   340   340   8   145  -­‐  B   Zone  D   14   224   270   8   180  -­‐  B   •  6  Ast2  –  63906Ast  +  Mu  =  0                                  G-­‐1.1(b)     Step 9 :Rebar Details •  Ast,min    =  0.12  x  225  x  1000  /100  =  270  mm2/m            26.5.2.1   •  Minimum  Effec5ve  Depth    of  Slab  =  177  mm    
  • 80. #8@145  #8@180  #8@145   #8@180  #8@145   #8@145   0.15Ln   0.15Ln   0.125Ln   0.125Ln   Borom  Rebar  Details  in   Interior  Panel     A   B   A   A   B   A   C   D   C  
  • 81. TOP  Rebar  Details  in   Interior  Panel     #10@90   #10@90   #8@180   #8@200   #8@180   0.3Ln   0.2Ln   0.3Ln   0.2Ln   Note:   Distances  for  curtailment  of  rebars  are   measured  from  column  face   A   B   A   C   D   C  
  • 82. B.  Corner  Panel  Design   Step 5: Check for punching shear around Column Assumed  d  =  177  mm     Sec4on  1:   •  Cri5cal  Sec5on  at  d/2  around  the  column     •  Perimeter  of  Cri5cal  Sec5on  =    2  x  0.5885=  1.177  m     •  Vu  =  16  (  2.752  –  0.58852)  =  115.5kN   •  τc  =  0.25√fck  =  1.25  MPa   •  ks  =  0.5  +1  =  1.5    <=1  ;  ks=1  ;  ks  τc  =  1.25   •  Shear  Resistance  of  Concrete  =  1.25  x  1177  x  177  =   260kN  >  115.5  kN    OK   500   177/2  =  88.5  mm   2.75m   2.75m  
  • 83. Step 7 : Distribution of Bending Moment across panel width ; CL 31.4.3.3 , 31.5.5 ​ 𝛼↓𝑐 =​∑↑▒​ 𝑘↓𝑐  /​ 𝑘↓𝑠     Assume  Columns  and  Slab  panels  are  with  same   modulus  of  elas5city   5  m   5  m   1.25m     1.25m  A A A A B B C CD Step 6:Design Moments CL 31.4.2.2 M0 = 275 kNm
  • 84. Parameters   Along  X   Along  Y   Sum   of   column   s4ffness   above   and   below  the  slab     2  (4EcIc)/Lc   Leff  =  1.2  Lc  (CL  E1)   Lc  =  3.5-­‐0.225  =  3.275   (2  x  4  x  Ec  x  500  x  5003/12)  /1.2*3275  =    10.6  Ec  x  106             Slab  s4ffness     ks  =  4EsIs/Ls      (4  Es  x  5500  x  2253/12)/5500    =  2.67Es  x  106         3.8Es  x  106     αc  =  ∑kc  /ks   2.8   2.8   αc  min  (Table  17)   (0.7/0.5)*0.1  =0.14  <  αc.  Adopt  αc  =  2.8   β  =    1+  (1/αc)   1.36   1.36  
  • 85. Moment  Direc5on  along   X   Y   Nega4ve    Design  Moment    MN  =  -­‐  0.65*M0/β   131.4   131.4   kNm    31.4.3.3   •  Column  Strip  M1  =    MN     131.4   131.4   kNm   31.55.2(a)   Width  of  Column  Strip  Csw  resis4ng  M1   2.75   2.75   m   -­‐m1  =  M1/Csw   47.8   47.8   kNm/m   •  Middle  Strip  M2=0   0   0   kNm    31.5.5.4(a)   -­‐m2  =    0   0   0   kNm/m   A.  Exterior  nega4ve  design  moment:   -­‐m1   -­‐m1   -­‐m1   -­‐m1   Exterior   Exterior   Interior   Interior   1.25   1.25   -­‐m2   -­‐m2   X   Y   M0 = 275 kNm
  • 86. Moment  Direc5on  along   X   Y   Nega4ve    Design  Moment    MN  =  -­‐  (0.75  –  0.1/β)Mo   186   186   kNm    31.4.3.3   •  Column  Strip  M1  =  0.75  MN     139.5   139.5   kNm   31.5.5.1   Width  of  Column  Strip  Csw  resis4ng  M1    2.75   2.75   m   •  -­‐m1  =  M1/  Csw   50.73   50.73   kNm/m   •  Middle  Strip  M2  =  0.25  MN     46.5   46.5   kNm    31.5.5.4(a)   Width  of  Middle  Strip  Msw  resis4ng  M2   2.75   2.75   m   •  -­‐m2  =    M2/Msw   17   17   kNm/m   B.  Interior  nega4ve  design  moment:   -­‐  m1   -­‐  m1   -­‐  m2   m1  -­‐m1   -­‐m1   -­‐m2   X   Y   Exterior   Exterior   Interior   Interior  
  • 87. Moment  Direc5on  along   X   Y   Design  Moment    MP  =    (0.63  –  0.28/β)Mo   116.6   116.6   kNm    31.4.3.3   •  Column  Strip  M1  =  0.6  MP     70   70   kNm   31.5.5.3   Width  of  Column  Strip  Csw  resis4ng  M1   2.75   2.75   m   •  m1  =  M1/  Csw   25.5   25.5   kNm/m   •  Middle  Strip  M2  =  0.4  MP     46.7   46.7   kNm    31.5.5.4(a)   Width  of  Middle  Strip  Msw  resis4ng  M2   2.75   2.75   m   •  m2  =    M2/Msw   17   17   kNm/m   C.  Posi4ve  Moment  in  Mid  Span:   m1   m1   m1   m1   m1   m1   m2   X   Y   Exterior   Exterior   Interior   Interior   m2  
  • 88. -­‐ve  sign  :  Hogging  Moment  (tension  at  top)   +ve  sign  :  Sagging  Moment  (tension  at  borom)   25.5   17   25.5   -­‐17   -­‐50.73   17  25.5   25.5   A B A D C C A AB -­‐50.73   -­‐50.73   -­‐17   -­‐50.73   -­‐47.8   -­‐47.8   0   -­‐47.8   -­‐47.8  -­‐0   Exterior   Exterior   Interior   Interior   Step 7 : Check for adequacy of Depth •  Max  Design  Bending  moment  =  50.73  kNm/m   •  Mu,lim    =  108  kNm/m  >  50.73,  Depth  is  adequate    G-­‐1.1(c)    
  • 89. Strip  Loca6on   Moment   (kNm/m)   Ast     (mm2 /m)   Ast    (prov)   Bar     dia   Spacing   mm   Along  X   Zone  A(Exterior)   (-­‐)47.8   810   810   10   90(T)    Zone  A(Interior)   (-­‐)50.73   864   864   10   90(T)   Zone  B   25.5   415   415   10   180(B)   Zone  C(Interior)   (-­‐)17   273   273   8   180(T)   Zone  D   17   273   273   8   180(B)   Along  Y   Zone  A  (Exterior)   (-­‐)47.8   810   810   10   90(T)   Zone  A(Interior)   (-­‐)50.73   864   864   10   90(T)   Zone  B  (Interior)   (-­‐)17   273   273   8   180(T)   Zone  C   25.5   415   415   10   180(B)   Zone  D   17   273   273   8   180(B)   Step 8 :Rebar Details •  Ast,min    =  0.12  x  225  x  1000  /100  =  270  mm2/m            26.5.2.1   6  Ast2  –  63906Ast  +  Mu  =  0  
  • 90. 7.2m   7.2m   7.2m   6.4m   6.4m   6.4m   Design  Example  #3   Design   by   DDM   flat   plate   supported   on   columns  of  dia  =  450  mm,  Column  head  =   1.5  m  dia,  Drop  panel  size  =  3.2  x  3.2  m,   for    a  Live  Load  =  4  kN/m2,  Floor  Finish  =     1   kN/m2   use   M20   and   Fe415.   Assume   clear   cover   =   20   mm.   Column   Height   =   3.35m     •  Interior  Panel  P5   •  Exterior  Panel  P2/P4   •  Corner  Panel  P1  
  • 91. Step 1: Panel Division into Strips 31.1.1(a)     Moment   direc6on   Along   L1   L2   Width  of  Column   Strip  on  either  side  of   Centre  Line   =  0.25L2   and                   ≤  0.25  L1   Middle   Strip   X   7.2   6.4   1.6  <  1.8  m;  1.6  m   4m   Y   6.4   7.2   1.8  >  1.6  m;  1.6  m   3.2m   Lx  =  7.2     Ly  =  6.4     1.6   1.6   1.6  1.6   CSx   CSx  MSx   CSy   MSy   CSy   A.  Interior  Panel  Design   Zone  A  –  Corner  Strip   Zone  B  –  Middle  Strip  along  X   Zone  C  –  Middle  Strip  along  Y   Zone  D  –  Interior  Region  
  • 92. Step 2: Trial Depth CL 31.2.1     •  L/d  =  26   •  Modifica5on  Factor  =  1.4,  Assuming  pt  ≈0.4%,  FIG  4  IS  456   •  d  =  7200/(26  x  1.4)  =      198  mm  >  125          CL  31.2.1   •  DS=  198+20+18=  236  mm  (  assume  #12  bars)   •  Provide  Ds=  240  mm  ,  d  =  198mm    
  • 93. Step 3: Design Loads / m width of Slab •  wuD = 1.5(25 x 0.24 + 1) = 10.5kN •  wuL = 1.5 x 4 = 6.0kN •  wu = 16.5 kN Step 4: Check for Applicability of DDM: CL 31.4.1 •  No.  of  Con5nuous  Spans  in  each  direc5on  =  3  ;  OK          31.4.1(a)     •  Long  Span/Short  Span    =  7.2/6.4  =  1.125  <2  ;  OK                                                                                                  31.4.1(b)     •  Successive  spans  in  each  direc5on  =  Equal;  OK          31.4.1(d)     •  wuL/wuD     =  6/10.5  =  0.571  <  3  ;  OK              31.4.1(e)    
  • 94. Step 5: Drop Panel Size : CL  31.2.2     •  Length  along  X  ≥  Lx/3  =  2.4  m     •  Length  along  Y  ≥  Ly/3  =  2.13  m   •   Generally  Drop  Panel  Size  is  set  equal  to  Width  of  Column  Strip   •  Proposed  size  3.2  x  3.2  meets  all  the  requirements.   •  Minimum  thickness    =  ¼  DS  =  60  mm  or  100  mm;  Adopt  100  mm   Step 6:Column Head •  1/4  to  1/5  of  average  span  =  7.2/5  =    1.44  m     •  Provided  =  1.5  m  ;  Ok   •  Equivalent  Square  Capital  =0.89D  =  1.335  m  
  • 95. Step 7 : Check for Shear around Column Capital •  Minimum  Effec5ve  Depth    of  Slab  =  198  mm     •  Effec5ve  Depth  at    Drop  loca5on  =  298  mm   Sec4on  1:   •  Cri5cal  Sec5on  at  d/2  around  the  column  capital   •  Perimeter  of  Cri5cal  Sec5on  =  π  (  1.5  +  0.298)  =  5.65  m     •  Weight  of  Drop  Projec5on  below  slab  =  0.1x  25  x  1.5  =  3.75  kN/m2   •  Design  Shear  at  cri5cal  sec5on  around  capital  Vu   •  Vu  =  16.5  (  7.2  x  6.4  -­‐  π  x  1.7982/4)  +  3.75(3.2  x  3.2  -­‐  π  x  1.7982/4)     •           =  747  kN   •  τc  =  0.25√fck  =  1.12  MPa   •  ks  =  0.5  +1  =  1.5    <=1  ;  ks=1  ;  ks  τc  =  1.12   •  Shear  Resistance  of  Concrete  =  1.12  x  5650  x  298  =  1885kN  >  747  kN    OK   1.5   Cri4cal  Sec4on   DROP 3.2  m   3.2  m   1.798   Capital  
  • 96. Sec4on  2  :  Check  for  Shear  around  drop   1.5   Cri4cal  Sec4on   DROP 3.2  m   3.2  m   Capital   3.2  +  0.198  =  3.4   •  Cri5cal  Sec5on  at  d/2  around  the  drop   •  d  =  198mm   •  Perimeter  of  Cri5cal  Sec5on  =    4  x  3.4  =  13.6m   •  Design  Shear  at  cri5cal  sec5on     •  Vu  =  16.5  (  7.2  x  6.4  –  3.42)  =  569  kN   •  Shear  Resistance  of  Concrete  =  1.12  x  13600  x  198  =   3015kN  >  569  kN  
  • 97. Step 8:Design Moments CL 31.4.2.2 Parameters   Along  X   Along  Y   L1  (Span  in  direc4on  of  Mo)   7.2   6.4   m   0.65L1     4.68   4.16   m   Ln  (clear  span  extending  from  face  to   face  of  columns,  capitals)   (7.2-­‐1.335)   =   5.865   (6.4-­‐1.335)   =   5.065   m   Ln  >  0.65L1   5.865   5.065   m   L2  (Span  transverse  to  L1)   6.4   7.2   m   W  =  wu  L2Ln   619.34   601.72   kN   M0    =  W  Ln  /  8     454   381   kNm   wu = 16.5 kN /m
  • 98. Step 9 : Distribution of Bending Moment across panel width ; CL: 31.4.3.2, 31.5.5 Moment  Direc5on  along   X   Y   Nega4ve    Design  Moment    MN  =  -­‐  0.65*M0   295.1   247.65   kNm    31.4.3.2   •  Column  Strip  M1  =    0.75MN     221.33   185.74   kNm   31.5.5.1   Width  of  Column  Strip  Csw    2x1.6  =3.2   2x1.6  =3.2   m   •  -­‐m1  =  M1/  Csw   69.17   58.04   kNm/m   •  Middle  Strip  M2  =  0.25MN   73.78   61.91   kNm    31.5.5.4(a)   Width  of  Middle  Strip  Msw   3.2   4   •  -­‐m2  =    M2/Msw   23.06   15.48   kNm/m  
  • 99. Posi5ve  Design  Moment     MP  =  0.35*M0   158.9   133.35   kNm    31.4.3.2   •  Column  Strip  M1  =  0.6MP     95.34   80.01   kNm    31.5.5.3   •  +m1  =  M1/  Csw   29.79   25   kNm/m   •  Middle  Strip  M2  =  0.4MP   63.56   53.34   kNm    31.5.5.4(a)   •  +m2  =    M2/Msw   19.86   13.34   kNm/m   -­‐ve  sign  :  Hogging  Moment  (tension  at  top)   +ve  sign  :  Sagging  Moment  (tension  at  borom)  -­‐69.17   -­‐23.06   -­‐69.17   29.79   19.86   29.79   -­‐58.04   -­‐15.48   -­‐58.04   13.34  25   -­‐15.48   -­‐58.04   -­‐58.04   -­‐69.17   -­‐23.06   -­‐69.17   25   A B A D C C A AB Step 10 : Check for adequacy of Depth •  Max  Design  Bending  moment  =  69.17  kNm/m   •  Mu,lim    =  126.36    kNm/m  >  69.17,  G-­‐1.1(c)     •  Depth  is  adequate  
  • 100. Moment   Direc4on   Moment   Direc4on   CS   MS   CS   FE  Results  from   ETAB  
  • 101. Strip  Loca6on   Moment   (kNm/m)   Ast     (mm2 /m)   Ast    (prov)   Bar     dia   Spacing   mm   Along  X   Zone  A   (-­‐)  69.17   1093   1093   10   70  -­‐  T    Zone  B   29.79   437   437   8   110  -­‐  B   Zone  C   (-­‐)23.06   334   334   8    150  -­‐T   Zone  D   19.86   286   288   8   170  -­‐  B   Along  Y   Zone  A   (-­‐)58.04   896   896   10   85  -­‐  T   Zone  B   (-­‐)15.48   222   288   8   170-­‐T   Zone  C   25   364   364   8   135  -­‐B   Zone  D   13.34   190   288   8   170  -­‐  B   •  7.5  Ast2  –  71488Ast  +  Mu  =  0                                  G-­‐1.1(b)     Step 11 :Rebar Details •  Ast,min    =  0.12  x  240  x  1000  /100  =  288  mm2/m            26.5.2.1   •  Minimum  Effec5ve  Depth    of  Slab  =  198  mm    
  • 102. #8@170  #8@135   #8@135   #8@170   #8@110   #8@110   7.2  m   6.4  m  0.15Ln   0.15Ln   Borom  Rebar  Details  in   Interior  Panel     LAP  ZONE   A   A   A   A   B   B   C   D   C   0.125Ln   0.125Ln  
  • 103. #8@170  #10@85   #8@150  #10@  70   0.22Ln  0.22Ln   0.22Ln   0.22Ln   0.33Ln  0.33Ln   0.2Ln  0.2Ln   0.33Ln   0.2Ln   Top  Rebar  Details  in   Interior  Panel       Note:   Distances  for  curtailment  of  rebars  are   measured  from  column  face   A   B   A   0.33Ln   0.2Ln  
  • 104. Sec6on  Through   Middle  Strip  -­‐  CDC   #8@170     7.2  m   #8@340   #8@150   #8@135     Sec6on  Through   Column  Strip  -­‐  ABA   #10@70   #10@140   #10@85   #8@170     #8@340   #8@170    
  • 105.
  • 106. Step 7 : Check for Shear around Column Capital •  Minimum  Effec5ve  Depth    of  Slab  =  198  mm     •  Effec5ve  Depth  at    Drop  loca5on  =  298  mm   Sec4on  1:   •  Cri5cal  Sec5on  at  d/2  around  the  column  capital   •  Perimeter  of  Cri5cal  Sec5on  =  π  (  1.5  +  0.298)/4  =  1.412  m     •  Weight  of  Drop  Projec5on  below  slab  =  0.1x  25  x  1.5  =  3.75  kN/m2   •  Design  Shear  at  cri5cal  sec5on  around  capital  Vu   •  Vu  =  16.5  (  3.6x  3.2  –  (π  x  1.7982/4)/4)  +  3.75(1.6  x  1.6  –  (π  x  1.7982/4)/4))     •           =  187  kN   •  τc  =  0.25√fck  =  1.12  MPa   •  ks  =  0.5  +1  =  1.5    <=1  ;  ks=1  ;  ks  τc  =  1.12   •  Shear  Resistance  of  Concrete  =  1.12  x  1412  x  298  =  471kN  >  187  kN    OK   2.  Corner  Panel  Design  
  • 107. Sec4on  2  :  Check  for  Shear  around  drop   •  Cri5cal  Sec5on  at  d/2  around  the  drop   •  d  =  198mm   •  Perimeter  of  Cri5cal  Sec5on  =  2  (1.7)=3.4m   •  Design  Shear  at  cri5cal  sec5on     •  Vu  =  16.5  (  3.6  x  3.2  –  1.72)  =  143  kN   •  Shear  Resistance  of  Concrete  =  1.12  x  3400  x  198  =  754kN  >  143  kN   CRITICAL   SECTION   drop   free  edge   free  edge   =1.6  +  0.198/2   =  1.7  m     Step 8:Design Moments CL 31.4.2.2 Along  X   Along  Y   M0    =  W  Ln  /  8     454   381   kNm  
  • 108. Step 9 : Distribution of Bending Moment across panel width ; CL 31.4.3.3 , 31.5.5 ​ 𝛼↓𝑐 =​∑↑▒​ 𝑘↓𝑐  /​ 𝑘↓𝑠     Equivalent  side  of  circular  column  =  0.89D  =  0.89x  450  =  400  mm       Assume  Ec  =  Es    
  • 109. Parameters   Along  X   Along  Y   Sum   of   column   s4ffness   above   and   below  the  slab     2  (4EcIc)/Lc   (2  x  4  x  Ec  x  400  x  4003/12)  /3350  =    5.09  Ec  x  106             Slab  s4ffness     ks  =  4EsIs/Ls      (4  Es  x  6400  x  2403/12)/7200    =  4.1Es  x  106         (4  Es  x  7200  x  2403/12)/6400     =  5.184Es  x  106     αc  =  ∑kc  /ks   1.24   0.98   αc  min  (Table  17)   l2/l1  =  6.4/7.2  =  0.89,     WuL/WuD  =  0.571   (0.7/0.5)*0.071  =  0.1  <αc   Adopt  αc   7.2/6.4  =  1.125,  WuL/WuD  =  0.571     ≈(0.8/0.5)*0.071  =  0.113  <αc   Adopt  αc   β  =    1+  (1/αc)   1.8   2.02  
  • 110. Moment  Direc5on  along   X   Y   Nega4ve    Design  Moment    MN  =  -­‐  0.65*M0/β   164   122.6   kNm    31.4.3.3   •  Column  Strip  M1  =    MN     164   122.6   kNm   31.55.2(a)   Width  of  Column  Strip  Csw  resis4ng  M1    2x1.6  =3.2   2x1.6  =3.2   m   -­‐m1  =  M1/  3.2   -­‐51.3   -­‐38.3   kNm/m   •  Middle  Strip  M2=0   0   0   kNm    31.5.5.4(a)   Width  of  Middle  Strip  Msw  resis4ng  M2   3.2   4   -­‐m2  =    0   0   0   kNm/m   A.  Exterior  nega4ve  design  moment:   -­‐m1   -­‐m1   -­‐m1   -­‐m1   Exterior   Exterior   Interior   Interior   1.6   1.6   -­‐m2   -­‐m2   X   Y  
  • 111. Moment  Direc5on  along   X   Y   Nega4ve    Design  Moment    MN  =  -­‐  (0.75  –  0.1/β)Mo   315.3   266.9   kNm    31.4.3.3   •  Column  Strip  M1  =  0.75  MN     236.5   200.2   kNm   31.5.5.1   Width  of  Column  Strip  Csw  resis4ng  M1    2x1.6  =3.2   2x1.6  =3.2   m   •  -­‐m1  =  M1/  Csw   -­‐73.9   -­‐62.6   kNm/m   •  Middle  Strip  M2  =  0.25  MN     78.83   66.7   kNm    31.5.5.4(a)   Width  of  Middle  Strip  Msw  resis4ng  M2   3.2   4   m   •  -­‐m2  =    M2/Msw   -­‐24.7   -­‐16.7   kNm/m   B.  Interior  nega4ve  design  moment:   -­‐  m1   -­‐  m1   -­‐  m2   m1  -­‐m1   -­‐m1   -­‐m2   X   Y   Exterior   Exterior   Interior   Interior  
  • 112. Moment  Direc5on  along   X   Y   Design  Moment    MP  =    (0.63  –  0.28/β)Mo   215.4   187.2   kNm    31.4.3.3   •  Column  Strip  M1  =  0.6  MP     129.3   112.3   kNm   31.5.5.3   Width  of  Column  Strip  Csw  resis4ng  M1    2x1.6  =3.2   2x1.6  =3.2   m   •  m1  =  M1/  Csw   40.4   35.1   kNm/m   •  Middle  Strip  M2  =  0.4  MP     86.2   74.9   kNm    31.5.5.4(a)   Width  of  Middle  Strip  Msw  resis4ng  M2   3.2   4   m   •  m2  =    M2/Msw   26.94   18.7   kNm/m   C.  Posi4ve  Moment  in  Mid  Span:   m1   m1   m1   m1   m1   m1   m2   X   Y   Exterior   Exterior   Interior   Interior   m2  
  • 113. -­‐ve  sign  :  Hogging  Moment  (tension  at  top)   +ve  sign  :  Sagging  Moment  (tension  at  borom)   40.4   26.94   40.4   -­‐16.7   -­‐62.6   18.7  35.1   35.1   A B A D C C A AB -­‐73.9   -­‐73.9   -­‐24.7   -­‐62.6   -­‐51.3   -­‐51.3   0   -­‐38.3   -­‐38.3  -­‐0   Exterior   Exterior   Interior   Interior   Step 10 : Check for adequacy of Depth •  Max  Design  Bending  moment  =  73.9  kNm/m   •  Mu,lim    =  126.36    kNm/m  >  73.9,  Depth  is  adequate    G-­‐1.1(c)    
  • 114. Strip  Loca6on   Moment   (kNm/m)   Ast     (mm2 /m)   Ast    (prov)   Bar     dia   Spacing   mm   Along  X   Zone  A(Exterior)   (-­‐)51.3   782   782   10   100  -­‐  T    Zone  A(Interior)   (-­‐)73.9   1180   1180   10   65  -­‐  T   Zone  B   40.4   604   604   8    80  -­‐B   Zone  C(Interior)   (-­‐)24.7   359   359   8   140  -­‐  T   Zone  D   26.94   393   393   8   125-­‐B   Along  Y   Zone  A  (Exterior)   (-­‐)38.3   570   570   10   135   Zone  A(Interior)   (-­‐)62.6   976   976   10   80   Zone  B  (Interior)   (-­‐)16.7   240   288   8   170   Zone  C   35.1   520   520   8   95   Zone  D   18.7   270   288   8   170   •  7.5  Ast2  –  71488Ast  +  Mu  =  0              G-­‐1.1(b)   Step 11 :Rebar Details •  Ast,min    =  0.12  x  240  x  1000  /100  =  288  mm2/m            26.5.2.1   •  Minimum  Effec5ve  Depth    of  Slab  =  198  mm    
  • 115. Strip  Loca6on   Moment   (kNm/m)   Bar     dia   Spacing   mm   Along  X   Zone  B   40.4   8    80  -­‐B   Zone  D   26.94   8   125-­‐B   Along  Y   Zone  C   35.1   8   95   Zone  D   18.7   8   170   #8@80  #8@125   #8@95   #8@95  #8@170   #8@80  
  • 116. 40.4   26.94   40.4   -­‐16.7   -­‐62.6   18.7  35.1   35.1   A   B   A   D  C   C   A   A  B   -­‐73.9   -­‐73.9   -­‐24.7   -­‐62.6   -­‐51.3   -­‐51.3   0   -­‐38.3   -­‐38.3  -­‐0   Exterior   Exterior   Interior   Interior   #10@100  #10@100   #10@65  #10@65   #8@140   #10@135   #10@80   #8@170(Min)*   #10@135   #8@170   #8@170(Min)*   *  Op4onal  Top  Rebars   #10@80   Strip  Loca6on   Moment   (kNm/m)   Bar     dia   Spacing   mm   Along  X   Zone  A(Exterior)   (-­‐)51.3   10   100  -­‐  T    Zone  A(Interior)   (-­‐)73.9   10   65  -­‐  T   Zone  C(Interior)   (-­‐)24.7   8   140  -­‐  T   Along  Y   Zone  A  (Exterior)   (-­‐)38.3   10   135   Zone  A(Interior)   (-­‐)62.6   10   80   Zone  B  (Interior)   (-­‐)16.7   8   170  
  • 117.
  • 118. Transfer  of  Moments  and  Shears  between  Slabs  and  Columns       •  The  maximum  load  that  a  flat    slab  can  support  is  dependent  upon  the  strength  of   the  joint  between  the  column  and  the  slab.   •  Load  is  transferred  by  shear  from  the  slab  to  the  column  along  an  area  around  the   column   •  In  addi7on  moments  are  also  transferred.     •  The  moment  situa7on  is  usually  most  cri7cal  at  the  exterior  columns.     •  Shear  forces  resul7ng  from  moment  transfer  must  be  considered  in  the  design  of   the  lateral  column  reinforcement  (i.e.,  7es  and  spirals).  
  • 119.
  • 120. EXAMPLE   Compute  moment  transferred  to  Interior    and  corner  Column  in  example  2   Interior  Column     •  As  spans  are  same  in  both  direc5ons   •  M  =  0.08  (0.5  wL  L2  Ln 2  /(1+1/αc)  =  0.08  x  0.5  x  6  x  5.5  x  52  /  1.36    =  24.3  kNm   •  this  moment  is  distributed  to  top  and  borom  column  at  junc5on  in  propor5on  to  their   s5ffness.   •  M  =  24.3/2  =  12.2  kNm     Corner  Column   M  =  131.4  kNm  
  • 121. Equivalent  Frame  Method  (EFM)     CL  31.5   •  More  Comprehensive  and  Logical  method   •  Used  when  limita7ons  of  DDM  are  not   complied  with   •  Applicable  when  subjected  to  horizontal   loads   31.5.1  (a)   Idealizing  the  3D  slab  –column  system  to  2D   frames  along  column  Centre  lines  in  both   longitudinal  and  transverse  direc6ons.   Longitudinal  Frame   Transverse  Frame  Edge  Frame  
  • 122. For   ver6cal   loads,   each   floor,   together   with   the   columns   above   and   below,   is   analyzed  separately.  For  such  an  analysis,   the  far  ends  of  the  columns  are  considered   fixed.       If   there   are   large   number   of   panels,   the   moment   at   a   par6cular   joint   in   a   slab   beam   can   be   sa6sfactorily   obtained   by   assuming   that   the   member   is   fixed   two   panels  away.     This   simplifica6on   is   permissible   because   ver6cal   loads   in   one   panel   only   appreciably   affect   the   forces  in  that  panel  and  in  the  one  adjacent  to  it  on   each  side.       31.5.1(b)  
  • 123. En6re  Frame  Analysis   Gravity  +  Lateral  Loads   For   lateral   loads,   it   is   necessary   to   consider   an   equivalent   frame   that   extends   for   the   en4re   height   of   the   building,   because  the  forces  in  a  par4cular  member  are  affected  by  the   lateral   forces   on   all   the   stories   above   the   floor   being   considered.    
  • 124. 31.5.1(C  and  d)     I2  =  moment  of  iner4a  at  the  face  of  the  column  /  column  capital     c2  =  dimension  of  column  capital  in  the  transverse  direc4on     l2  =  width  of  equivalent  frame.       varia6on  of  the  flexural   moment  of  iner6a     •  Varia4ons  of  moment  of  iner4a  along  the  axis  0f  the  slab  on  account  of  provision  of   drops  shall  be  taken  into  account   •  The  s4ffening  effect  of  flared  column  heads  may  be  ignored  
  • 125. 31.5.2  Loading  Paiern   wu  LL  >  ¾  wu,DL    
  • 126. Cri5cal  Sec5on   Interior  Column  Centre  Line   Column  /Capital  face   C   <  =  C/2   Results  in  Significant  reduc4on  of  design  moments   Design  Posi5ve  Moment  (Span  region)   M3  =  M0  –  (M1+M2)/2  
  • 127. Distribu5on  of  Moment   Similar  to  DDM  
  • 128. Example  3  :    Compute  moments  in  exterior/interior  Panel  along  Longitudinal  Span   Longitudinal  Span  =  7.2m,  Transverse  Span  =  6.4  m,  Interior  Column  =  450mm  dia,  Column  Capital  =   1500mm  dia,  Exterior  Column  =  400x400mm,  Column  Capital  =  870mm(square),  Floor  to  Floor  =  3.35  m,   Slab  Thickness  =  240  mm,  number  of  Panels  =  4  in  each  direc6on   7.2  m   6.4m   6.4m   7.2  m   7.2  m  7.2  m   6.4m  
  • 129. Step  1:  S5ffness  Computa5ons   Exterior  Column    (Kce)  =    4E  x  (4004  /12)  /3350  =  2.55E106  =  1   Interior  Column    (KcI)  =    4E  x  π(4504  /64)  /3350  =  2.4E106  =  0.957   Slab(Ks)  =4E  x  (6400  x  2403/12)  /7200  =  4.1E106  =  1.608     Step  2:  Simplified  frame  for  analysis  31.5.1  (b)   7200   7200   3350   3350   1   2   3   A   B   C   D   Joint   Member    Rela5ve   S5ffness   Sum   Distribu5on   Factors   1   1-­‐A   1   3.608   0.277   1-­‐2   1.608   0.446   1-­‐C   1   0.277   2   2-­‐B   0.957   5.13   0.187   2-­‐1   1.608   0.314   2-­‐3   1.608   0.314   2-­‐D   0.957   0.187   Fixed  End  Moments  =  (16.5  x  6.4)  x  7.22/12    =  456.2  kNm    
  • 130. Joint   1   2   3   Members   FIXED   1A+1C   1-­‐2   2-­‐1   FIXED   2B+2D   2-­‐3   FIXED   3-­‐2   DF   0.554   0.446   0.314   0.374   0.314   -­‐   FEM   456.2   -­‐456.2   456.2   -­‐456.2   Bal   -­‐252.74   -­‐203.46   -­‐   -­‐   -­‐   -­‐   CO   -­‐   -­‐   -­‐101.73   -­‐   -­‐   -­‐   Bal   -­‐   -­‐   31.94   38.04   31.94   -­‐   CO   -­‐   15.97   -­‐   -­‐   -­‐   15.97   Bal   -­‐8.85   -­‐7.12   -­‐   -­‐   -­‐   -­‐   CO   -­‐   -­‐   -­‐3.56   -­‐   -­‐   -­‐   Bal   1.12   1.33   1.12   Final  end   Moments   -­‐261.6   261.6   -­‐528.43   39.37   489.26   -­‐440.23   1   2   3   261.6   528.43   489.26   440.23   Counter  Clockwise   end  moments  are   posi4ve  
  • 131. Step  3:  Design  Moments  in  Exterior  Panel   A.  Design  Nega6ve  Moments  at  Cri6cal  Sec6on     At  Exterior  Support  :  CL  31.5.3.2   870   400   470   235   Cri6cal  Sec6on  from  Column  Centre  line  =  435  mm   261.6   528.43   16.5  x  6.4  =  105.6  kN/m   105.6  x  7.2/2  -­‐  (528.43-­‐261.6)/7.2    =  343  kN   0.435     Design  Moment  =  343  x  0.435  -­‐261.6  -­‐105.6x0.4352/2  =  -­‐122.4  kNm  (Hogging)  
  • 132. At  Interior  Support  :  CL  31.5.3.1   Width  of  equivalent  square   =  0.89D  =  1335  mm   667.5   mm   Cri4cal  Sec4on  loca4on  is  at  capital  face   ≤  0.175x7200  =  1260mm     261.6   528.43   16.5  x  6.4  =  105.6  kN/m        343  kN   0.6675     Design  Moment  =  417.32  x  0.6675  -­‐528.3  -­‐105.6x0.66752/2  =  -­‐273.26  kNm  (Hogging)   417.32  
  • 133. B.  Design  Posi4ve  Moment   M(+)  =  (16.5  x  6.4x7.2)7.2/8  –  (  528.43  +  261.6)/2  =    289.3  kNm   Moments   DDM   EFM   Posi4ve  Moment  (Span)   215.4   289.3   Nega4ve  Moment(Exterior  Support)   164   122.4   Nega4ve  Moment  (Interior  Support)   315.3   273.3  
  • 134. Step  4:  Design  Moments  in  Interior  Panel     A.  Design  Nega6ve  Moments  at  Cri6cal  Sec6on     At  Interior  Support  :  CL  31.5.3.1   16.5  x  6.4  =  105.6  kN/m        387  kN   0.6675     Design  Moment  at  A=  387  x  0.6675  -­‐  489.26  -­‐105.6x0.66752/2  =  -­‐254.5  kNm  (Hogging)   373.32   489.26   440.23   Design  Moment  at  B  =  373.32  x  0.6675  -­‐  440.23  -­‐105.6x0.66752/2  =  -­‐214.6  kNm  (Hogging)   0.6675     A B
  • 135. B.  Design  Posi4ve  Moment   M(+)  =  (16.5  x  6.4x7.2)7.2/8  –  (  489.26  +  440.23)/2  =    219.5  kNm   Moments   DDM   EFM   Posi4ve  Moment  (Span)   158.9   219.5   Nega4ve  Moment  (Interior  Support)   295.1   254.5/214.6  
  • 136. Need  for  Computer  Analysis       The  equivalent  frame  method  is  not  sa6sfactory  for  hand  calcula6ons.       It   is   possible,   however,   to   use   computers   and   plane   frame   analysis   programs  if  the  structure  is  modeled  such  that    various  nodal  points  in   the  structure  can  account  for  the  changing  moments  of  iner6a  along   the  member  axis.   SLAB   Drop  Panel   Column  Head   Column   Column  
  • 137. FE  Analysis  of  Slab   At   any   point   in   the   plate   bending,   there   will   generally   be   two   bending   moments   Mx   ,   My   in   two     mutually   perpendicular   direc5ons   coupled   with   a   complimentary   twis5ng  moment  Mxy     Design   for   flexure   involves   providing   reinforcing   steels   in   two  orthogonal  direc5ons  to  resist  the  moment  field.  Mx,   My  and  Mxy.       Slab  is  idealized  as  an  assembly  of  discrete  plate  bending  elements  joined  at  nodes   Wood  –Armer  equa4ons  are  used  for  this  purpose.  
  • 138. Wood  –Armer  equa5ons  (1968)       •  This   method   was   developed   by   considering   the   normal   moment   yield   criterion   (Johansen’s   yield   criterion)   aiming   to   prevent   yielding   in   all   direc4ons.     •  At  any  point  in  the  slab,  the  moment  normal  to  a  direc4on,  resul4ng  due  to   design   moments   Mx   ,   My   ,   and   Mxy   must   not   exceed   the   ul4mate   normal   resis4ng  moment  in  that  direc4on.   •  Mx *  cos2θ  +  My *  sin2θ  -­‐  flexural  strength  of  plate  in  the  direc4on  of  θ     with  X  axis.   •  Mx  cos2θ  +  Mysin2θ  +  2  Mxy  cosθ  sinθ  -­‐  normal  bending  moment  in   the  direc4on  of  θ    
  • 139. A.  For  bomom  steel  (  Sagging  Moment  +ve,  Hogging  Moment  –ve)   Compute  :  Mx *  =  Mx  +|Mxy|  and  My *  =  My  +|Mxy|     Case  1:  If  Mx *  ≥  0  and  MY *  ≥  0  then  no  change  in  computed  values  of  Mx *  and  My *   Case  2:  If  Mx *  <  0  then  Mx *  =  0  and  MY *  =  MY  +  |  Mxy 2/Mx|   Case  3:  If  My *  <  0  then  My *  =  0  and  Mx *  =  Mx  +  |  Mxy 2/My|   B.  For  Top  steel  (  Sagging  Moment  +ve,  Hogging  Moment  –ve)   Compute  :  Mx *  =  Mx  -­‐|Mxy|  and  My *  =  My  -­‐|Mxy|     Case  1:  If  Mx *  ≤  0  and  MY *  ≤    0  then  no  change  in  computed  values  of  Mx *  and  My *   Case  2:  If  Mx *  >  0  then  Mx *  =  0  and  MY *  =  MY  -­‐|  Mxy 2/Mx|   Case  3:  If  My *  >  0  then  My *  =  0  and  Mx *  =  Mx  -­‐|  Mxy 2/My|  
  • 140. Example  1   FE  results  at  centre  of  a  plate  element  are:  Mx  =  7  kNm,  My  =  23  kNm,  Mxy  =  9  kNm.  Compute   design  moments  using  Wood  -­‐  Armer  equa4ons.     A.  Borom  rebars  (Sagging  Moments)   Mx*  =  Mx+|Mxy|  =  16  >  0  ,  Mx*  =  16  kNm   My*  =  My+|Mxy|  =  32  >  0  ,  My*  =  32  kNm     B.  Top  rebars  (Hogging  Moments)     Mx*  =  Mx-­‐|Mxy|  =  -­‐2  <  0  ,  Mx*  =  2  kNm   My*  =  My-­‐|Mxy|  =  14  >  0     Set  My*  =  0  and  compute  Mx *  =  Mx  -­‐|  Mxy 2/My|  =  7  –  |81/23|  =  3.478  kNm        
  • 141. Example  2   FE  results  at  centre  of  a  plate  element  are:  Mx  =  7  kNm,  My  =  -­‐23  kNm,  Mxy  =  9  kNm.  Compute   design  moments  using  Wood  -­‐  Armer  equa4ons.     A.  Borom  rebars  (Sagging  Moments)   Mx*  =  Mx+|Mxy|  =  16  >  0  ,  Mx*  =  16  kNm   My*  =  My+|Mxy|  =  -­‐14  <  0  ,       Set  My*  =  0  and  compute  Mx *  =  Mx  +  |  Mxy 2/My|  =  7  +  |81/23|  =  10.52  kNm     B.  Top  rebars  (Hogging  Moments)     Mx*  =  Mx-­‐|Mxy|  =  -­‐2  <  0  ,  Mx *  =  2  kNm   My*  =  My-­‐|Mxy|  =  -­‐32  <  0  ,    MY *  =  32  kNm