SlideShare ist ein Scribd-Unternehmen logo
1 von 24
Downloaden Sie, um offline zu lesen
Sedimentary Geology 190 (2006) 47 – 70
                                                                                                            www.elsevier.com/locate/sedgeo




Alluvial, eolian and lacustrine sedimentology of a Paleoproterozoic
          half-graben, Baker Lake Basin, Nunavut, Canada
                    Thomas Hadlari a,⁎, Robert H. Rainbird b , J. Allan Donaldson a
                           a
                               Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada K1S 5B6
                                 b
                                   Geological Survey of Canada, 601 Booth St., Ottawa, Ont., Canada K1A 0E8




Abstract

   The northeast-trending Baker Lake sub-basin was a volcanically active, half-graben during deposition of ca. 1.85–1.76 Ga
Baker Lake Group. Drainage was oriented along transverse and axial directions with flow to playa lake and deeper perennial
lacustrine depocentres. Basin marginal, streamflow-dominated alluvial fans were concentrated along the southern margin, and
provided sediment from Archean crystalline basement rocks. These fed transverse gravel- and sand-bed braided streams. Alluvial
dynamics were characterized by channel aggradation and abandonment. Abandoned channel belts were sites of floodplain and
eolian deposition. Basin axial braided streams fed northeast and southwest to a depocentre near Christopher Island, where eolian,
playa and lacustrine environments were intimately linked. Felsic minette flows were initially erupted from localized centres;
contemporaneous sedimentary deposits typically contain minor volcaniclastic components that increase in abundance basinward.
Voluminous and widespread younger minette flows prograded outward from volcanic centres contributing significant additional
basin-infill.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Alluvial fan; Braided stream; Floodplain; Eolian; Lacustrine; Half-graben




1. Introduction                                                            to inferred depocentre of the Baker Lake sub-basin, as an
                                                                           aid to reconstruction of its paleogeography. In addition,
   This research is part of an integrated study of the Baker               the remarkable preservation and absence of bioturbation
Lake Group, emphasizing sequence stratigraphy and                          from these Paleoproterozoic rocks provides sedimento-
chronostratigraphy, for the purpose of constructing a                      logical insight into alluvial environments in certain
tectonostratigraphic model for Baker Lake Basin. Utili-                    instances generally not available from the Phanerozoic.
zation of non-marine sequence stratigraphic methods to                     Thick alluvial fan deposits are exposed on large, glacially
elucidate the relationship between sedimentation and                       polished outcrops. Floodplain deposits are associated
tectonism requires an understanding of the depositional                    with braided stream deposits, a relatively undeveloped
environments throughout the basin. This paper describes                    topic of study (e.g. Bristow et al., 1999), but observed
the sedimentology of the ca. 1.83 Ga Baker Lake Group                      elsewhere in Precambrian deposits (Sønderholm and
from well-exposed key stratigraphic sections from margin                   Tirsgaard, 1998). It has been speculated that eolianites
                                                                           should be more prevalent in Precambrian deposits than in
  ⁎ Corresponding author. Fax: +1 613 520 2569.                            the Phanerozoic due to lack of terrestrial vegetation (e.g.
    E-mail addresses: thadlari@connect.carleton.ca (T. Hadlari),           Eriksson and Simpson, 1998). While this generally hasn't
rrainbir@nrcan.gc.ca (R.H. Rainbird).                                      been the case, eolian deposits occur throughout the Baker
0037-0738/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.sedgeo.2006.05.005
48                                      T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70


Lake Basin, reworking fluvial deposits and forming thin                  space and time with respect to the evolution of the Western
sandsheets to large ergs (Rainbird et al., 2003; Simpson                 Churchill Province. Deposition of the ca. 1.85–1.76 Ga
et al., 2004). This research, representing the first regional            Baker Lake Group appears to have closely followed
lithofacies analysis of the Baker Lake sub-basin,                        deformation and metamorphism in underlying crystalline
incorporates previously completed fieldwork by the                       basement rocks, which in some cases were at lower crustal
Geological Survey of Canada.                                             levels at ca. 1.9 Ga (Sanborn-Barrie, 1994). Contempora-
                                                                         neous collisional tectonics were taking place in the ca. 1.9–
1.1. Regional geology and previous work                                  1.8 Ga Trans-Hudson Orogen, 500 km to the south and
                                                                         southeast (e.g. Lucas et al., 1999).
   Greater Baker Lake Basin extends from Dubawnt Lake                        The Dubawnt Supergroup is subdivided into three
northeast to Baker Lake (Nunavut, Canada) and comprises                  unconformity-bounded stratigraphic units that correspond
a series of northeast-trending intracontinental basins,                  to, from oldest to youngest: the Baker Lake, Wharton and
including the Baker Lake sub-basin (Rainbird et al.,                     Barrensland Groups (Donaldson, 1967; Gall et al., 1992;
2003; Figs. 1 and 2). Basin fill comprises the faulted but               Rainbird and Hadlari, 2000); or the Baker, Whart and
unmetamorphosed, siliciclastic and volcanic rocks of the                 Barrens second-order sequences (Rainbird et al., 2003;
Dubawnt Supergroup (Wright, 1955; Donaldson, 1967;                       Fig. 3). These groups or corresponding second-order
LeCheminant et al., 1979b; Gall et al., 1992; Rainbird and               sequences have been interpreted to represent the tectonic
Hadlari, 2000; Rainbird et al., 2003Fig. 3). The ca. 1.85–               stages of rift, modified rift and thermal sag, respectively
1.70 Ga Baker Lake Basin occupied a unique location in                   (Rainbird et al., 2003).




              Fig. 1. Location map indicating the Baker Lake Basin in the context of the Western Churchill and Rae Provinces.
T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70                                 49




                             Fig. 2. Geology map of the Baker Lake sub-basin and fluvial paleocurrent data.


    The Baker Lake Group comprises the South Channel,                  ciclastic sedimentary rocks. Volcanology of the Chris-
Kazan, Christopher Island (Donaldson, 1965), Kunwak                    topher Island Fm. from Baker Lake sub-basin has been
(LeCheminant et al., 1979b) and Angikuni Formations                    described in detail (LeCheminant et al., 1979a,b; Blake,
(Blake, 1980), and varies in cumulative thickness from                 1980). A generalized volcanic stratigraphy for the
over 2 km to 500 m. These lithostratigraphic subdivi-                  greater Baker Lake Basin, from oldest to youngest,
sions have provided the framework for regional mapping                 consists of: felsic minette flows, minette flows and felsite
within Baker Lake Basin. Chronostratigraphic control on                flows (Peterson et al., 1989; Hadlari and Rainbird, 2001;
the formations is quite poor, but recent studies suggest               Rainbird et al., 2003). The felsic minette flows or equi-
that these formations are time-equivalent, reflecting                  valent volcaniclastic deposits are less areally extensive
lateral facies boundaries (Rainbird et al., 1999, 2003).               than younger minette flows, and have been observed to
    The South Channel Formation comprises boulder to                   overlie the basal unconformity of the Baker Lake Group.
cobble conglomerate interpreted as alluvial fan deposits.              Mantle-derived minette flows record voluminous extru-
It typically overlies crystalline basement rocks at the basin          sion throughout the entire basin and represent the largest
margin and is composed of locally derived clasts of gra-               known ultrapotassic volcanic province (LeCheminant
nite, amphibolite and gneissic lithologies. For this reason,           et al., 1987; Peterson et al., 1989, 1994; Cousens et al.,
it appears to be the oldest formation, although volcanic               2001). Stratigraphic relations indicate that the flows
rocks of the Christopher Island Fm. also unconformably                 originated at volcanic centres, which progressively
overlie basement (Rainbird and Hadlari, 2000), and occur               expanded outward to eventually blanket most of the
as clasts within the South Channel Fm. (Hadlari and                    basin (Hadlari and Rainbird, 2001). The volcanic centres
Rainbird, 2001).                                                       would have been positive topographic features that
    The Kazan Formation consists of arkosic sandstone,                 supplied volcaniclastic sediment, diverted streamflow
siltstone and mudstone, representing a variety of                      possibly altering drainage patterns and replaced sedi-
sedimentary environments including eolian, fluvial and                 mentary processes as a basin-infilling mechanism.
playa lake (Donaldson, 1965; LeCheminant et al.,                       Felsite flows are the youngest and most areally restricted
1979b; Rainbird et al., 2003).                                         volcanic rock. Analyses of phlogopite phenocrysts from
    The Christopher Island Formation comprises alkaline                a flow and a syenite intrusion that intrudes the lower
volcanic rocks interbedded with volcaniclastic and sili-               Baker Lake Group yield 40Ar/39Ar ages of 1845 ± 12 Ma
50                                      T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70




Fig. 3. Stratigraphy of the Dubawnt Supergroup (Donaldson, 1967; Gall et al., 1992; Rainbird and Hadlari, 2000; Rainbird et al., 2003).
Geochronology sources: Thelon Fm., 1720 ± 6 Ma (Miller et al., 1989); Pitz Fm. (Rainbird et al., 2003); and Baker Lake Group, 1785 ± 3 Ma
(Rainbird et al., 2002), 1833 ± 3 Ma (Rainbird et al., 2006).


and 1810 ± 11 Ma, respectively (Rainbird et al., 2002; see                 In the Thirty Mile Lake area of the Baker Lake sub-
discussion Rainbird et al., 2006). A more precise U–Pb                  basin (Fig. 4) steeply inclined, east–northeast-striking
zircon age of 1833 ± 3 Ma has been obtained from a felsic               units of conglomerate, sandstone and volcanic strata of
minette flow from the western end of Baker Lake Basin,                  the Baker Lake Group unconformably overlie crystalline
providing the best constraint on basin formation                        basement. Previous mapping in this area identified South
(Rainbird et al., 2006).                                                Channel Fm. conglomerate, Kazan Fm. sandstone and
    The Kunwak Formation (LeCheminant et al., 1979b)                    mudstone, and Christopher Island Fm. volcanic rocks
consists of conglomerate composed primarily of Christo-                 (Donaldson, 1965, 1967; LeCheminant et al., 1979b).
pher Island Fm. volcanic clasts as opposed to basement                  The Kunwak Formation is exposed to the northwest,
rock types in the South Channel Fm. It is differentiated                along the Kunwak River, where it contains felsite clasts
from the Christopher Island Fm. by its stratigraphic posi-              and is unconformably overlain by the Wharton Group
tion above volcanic rocks and below the unconformity at                 (LeCheminant et al., 1979b; Hadlari and Rainbird,
the top of the Baker Lake Group. This formation primarily               2001).
occurs in the interior of the Baker Lake sub-basin, located                At Christopher Island (Fig. 5), the South Channel
proximal or downstream from volcanic centres.                           Formation unconformably overlies the Archean Mac-
    The Angikuni Formation (Blake, 1980) is restricted to               Quoid-Gibson supracrustal belt (Tella et al., 1997;
the Angikuni sub-basin (Fig. 1). Aspler et al. (2004)                   Hanmer et al., 1999) and the 1.9 Ga Kramanituar meta-
consider it to be equivalent to the South Channel and                   morphic complex (Sanborn-Barrie, 1994; Sanborn-Barrie
Kazan Formations. Incompatible element chemistry of                     et al., 2001). The Kazan Formation comprises eolian,
mudstones suggests derivation from Christopher Island                   playa and braided stream deposits (Donaldson, 1965,
Formation volcanic rocks, consistent with syn-volcanic                  1967; Rainbird et al., 1999). The Christopher Island For-
sedimentation and probable lateral interstratification of               mation locally comprises volcanic flows, pyroclastic and
the Angikuni and Christopher Island Formations (Aspler                  volcaniclastic deposits. On Christopher Island and sur-
et al., 2004).                                                          rounding islands (not shown on Fig. 5), volcanism was
T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70                                 51




           Fig. 4. Geology map of the Thirty Mile Lake study area. Paleocurrent data are derived from cross-bed measurements.



primarily explosive, as indicated by bomb and accessory-               outlined in Table 1. In general, FA 1 corresponds to the
clast sag structures, normal and reverse grading, and                  South Channel Formation, FA 2 and 3 correspond to the
cross-stratification within extensive volcaniclastic depos-            Kazan and Kunwak Formations, and FA 3 to 7
its (Rainbird et al., 1999). These structures indicate                 correspond to the Kazan Formation.
deposition, in part, by turbulent pyroclastic surges (cf.
Fisher and Schmincke, 1984; Cas and Wright, 1987).                     2.1. Facies association 1: alluvial fan

2. Lithofacies associations                                            2.1.1. Lithofacies description
                                                                           Clast-supported disorganized conglomerate (Gcd)
   From the principal study areas at Thirty Mile Lake                  contains cobble- to boulder-grade angular to subrounded
and eastern Baker Lake, and other select locations within              clasts within 1–5 m thick tabular beds with erosional
Baker Lake sub-basin (Fig. 2), the sedimentary rocks of                basal contacts. Diffuse horizontal stratification grades
the Baker Lake Group are here subdivided into facies                   laterally into a more massive framework, which is intact
associations (FA) more detailed than those presented in                to condensed with slight to no imbrication (Fig. 6d). The
previous formational descriptions. Individual facies are               matrix is typically moderately to very poorly sorted, fine
52                                         T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70




 Fig. 5. Location map of the Christopher Island study area with paleocurrent data (St = fluvial, Sw = wave ripple crests, Ste = eolian cross-sets).


to coarse sandstone. Atypically, the matrix exhibits both                        Trough cross-stratified conglomerate facies (Gt) is
horizontal stratification and small-scale (less than 5 cm                    predominantly pebble-grade with a condensed frame-
thick) cross-stratification adjacent to cobble- to boulder-                  work and consists of lenticular units up to 2 m thick and
grade clasts. Randomly distributed within sub-tabular                        10 m wide that fine upward and laterally. The lower
conglomerate beds, mound-shaped accumulations of                             surfaces of these beds are erosional.
granules and coarse sand overlie certain framework                               Trough cross-stratified sandstone facies (St) consists of
clasts (Fig. 6c). Rare examples of reverse grading in the                    fine- to pebbly cross-stratified sandstone in sets typically
matrix can be seen in some of these beds.                                    ranging in thickness from 5 cm to 20 cm. Facies St occurs
    Clast-supported organized conglomerate facies (Gco)                      at the top of lenticular conglomerate units or as lenticular
contains pebble- to cobble-grade, sub-angular to sub-                        units overlying conglomerate sheets. It may be overlain
rounded clasts, within an intact to condensed, imbricated                    by parallel-stratified mudstone facies (Fl), consisting of
framework. The matrix is moderately well-sorted medium                       laminated mudstone and minor siltstone or fine sandstone,
to coarse sandstone. Tabular beds, 0.5–2 m thick, gene-                      with rare mud curls. These layers are overlain by erosional
rally fine upward, and may form composite conglomerate                       surfaces that are laterally continuous for more than 100 m.
sheets. A typical occurrence would consist of multiple
beds consisting of 30 cm of cobble to 20 cm of pebble                        2.1.2. Lithofacies interpretation
conglomerate comprising a composite thickness of 2–                             The clast-supported framework, absence of inverse
3 m. Other occurrences include horizontally stratified                       grading and weak stratification of the disorganized cong-
(Fig. 6b) and less common cross-stratified tabular beds.                     lomerate facies (Gcd) suggests a streamflow origin as
Horizontal stratification marks the boundaries of rare,                      opposed to deposition by a debris flow (e.g. Sohn et al.,
thin, lenticular beds of trough cross-stratified sandstone.                  1999; Blair, 2000a). A similar facies has been described by
Table 1
Lithofacies
Lithofacies                                        Description                                                                         Interpretation
Ged: framework-supported,                          Cobble- to boulder-grade clasts; coarse to fine sandstone matrix; poorly to very    Gravel sheets emplaced by high
  disorganized conglomerate                        poorly sorted; crude and irregular stratification; tabular geometry;                magnitude flood flows.




                                                                                                                                                                                        T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70
                                                   erosional base
Geo: framework-supported,                          Pebble- to cobble-grade clasts; granule to medium sandstone matrix; moderately      Gravel sheets emplaced by bedload
  organized conglomerate                           sorted; organized framework; erosional base; wedge-shaped                           processes during flood events.
                                                   and tabular units; predominantly horizontally stratified
Gem: framework-supported,                          Pebble- to cobble-grade clasts; coarse to medium sandstone matrix;                  Gravel bars in high-energy braided
   massive conglomerate                            moderate to well sorted; imbricated; intact framework; tabular geometry             streams.
Gt: trough cross-stratified                        Pebble- to cobble-grade clasts; granule to medium sand grade matrix; fine upward;   Filling of channels, scours and channel
   conglomerate                                    cross-stratified; lenticular units with erotional base                              pools by gravel during flood flows.
Sh: horizontally stratified                        Fine- to medium-grained sandstone; well sorted; planar-horizontal                   Planar bed flow (upper and lower flow regime).
   sandstone                                       lamination; ± primary current lineation on bedding planes
St: trough cross-stratified                        Medium to coarse-grained sandstone; trough cross-stratification                     Migration of three-dimensional dunes.
   sandstone
Ste: trough cross-stratified                       Fine- to medium-grained sandstone; inversely graded foresets; pinstripe             Migration of eolian three-dimensional dunes.
   sandstone with pinstripe                        lamination; up to 2 m thick
   lamination
Sr: sandstone with                                 Laminated sandstone with predominantly asymmetric ripples; mudstone                 Bedload deposition/migration of
   asymmetric ripples                              drape; linguoid bedforms common                                                     current ripples.
Sw: sandstone with                                 Laminated sandstone; symmetrical ripples; ± mud drapes; bifurcating crests;         Wave-formed ripples, lacustrine
   symmetrical ripples                             sheet-like geometry                                                                 shoreface or delta mouth bar.
SFw: wavy bedded sandstone and                     Inter-stratified sandstone and siltstone/mudstone; asymmetric and/or                Overbank, abandoned channel or
   siltstone/mudstone                              symmetric ripples                                                                   waning flood deposits.
Fl: parallel-stratified                            Mudstone, siltstone, with parallel-laminated and/or cross-stratified                Prolonged periods of quiet-water
   mudstone                                        sandstone                                                                           suspension deposition.
Modified from Miall (1977) and Jo et al. (1997).




                                                                                                                                                                                        53
54                                           T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70




Fig. 6. Sedimentological features of the alluvial fan facies association (FA), Thirty Mile Lake area. (a) Three upward-fining bedsets in the alluvial fan
FA; top of first beneath rock hammer (centre); two more to left of hammer. (b) Organized framework cobble conglomerate with alternating cobble-
pebble tabular layers, similar to conglomeratic “couplets” described by Blair (2000b). Lens cap diameter is 5 cm. (c) Disorganized framework, cobble
conglomerate, with a granular sand accumulation above a framework pebble. Coin is 2.5 cm in diameter. (d) Disorganized framework, cobble
conglomerate from the alluvial fan FA, notebook for scale is 20 cm long.


Jo et al. (1997), in which an erosional lower boundary,                             The organized conglomerate facies (Gco) is generally
weakly developed clast imbrication, crude stratification and                    interpreted as gravel sheets or longitudinal gravel bars (e.g.
lack of inverse grading were considered to be streamflow                        Reid and Frostick, 1987; Todd, 1989). Weak internal
characteristics. The tabular morphology of similar facies                       stratification within these deposits probably represents
has been attributed to deposition by bedload sheets or low-                     waxing and waning of individual flood flows. Well-stra-
relief longitudinal bars (e.g. Reid and Frostick, 1987; Todd,                   tified units are similar to a facies of alternating coarse–fine
1989). Because these conclusions are consistent with our                        conglomerate “couplets” described by Blair (2000b) from
observations, this facies (Gcd) is considered to have been                      the Hell's Gate alluvial fan in Death Valley. These “coup-
rapidly deposited (intact framework, poor sorting and non-                      lets” were interpreted to have been deposited under upper-
imbrication) by unconfined high-magnitude stream flood                          flow-regime conditions during the washout stage of the
flows. Sandstone cross-laminae adjacent to clasts indicate                      standing-wave cycle based on similarities with documented
that deposition of the sand occurred within an intact gravel                    features of supercritical sheetflood events (Blair and
framework by sediment-laden currents. Where coarse to                           McPherson, 1994). Blair (2000b) surmised that the “auto-
granular sand mounds occur atop clasts, the sediment is                         cyclic growth and destruction of standing waves during a
interpreted to have been transported downward through a                         single sheetflood produces 50–250 cm thick sequences of
gravel framework to rest upon upper clast surfaces. Rare                        multiple couplets”. These features are identical to some of
inverse grading of the matrix is considered to be formed by                     our observations, and thus we consider that for the well-
a process of sieving, or mechanical sorting through the                         stratified conglomerates, deposition occurred by bedload
framework (Hooke, 1967).                                                        processes during high-magnitude unconfined stream flow
T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70                                              55


conditions, possibly due to the washout of standing waves.           higher order of genetic significance. The upward decrease
The development of bedforms differentiates this facies               in clast size may be a function of upstream aggradation of
from the clast-supported disorganized conglomerate facies            the alluvial fan, widening of the active lobe or a decrease in
(Gcd), which lacks well-developed stratification.
    Lenticular trough cross-stratified conglomerate (Gt) is
interpreted to have in-filled trough-shaped channels
following periods of incision between flood events. This
facies is commonly observed within alluvial fan deposits
(Jo et al., 1997; Rhee et al., 1998; Blair, 1999, 2000a,b)
and is considered to represent secondary, non-catastrophic
processes that occurred between infrequent sheetfloods.
    Cross-stratified sandstone (St) and laminated mudstone
(Fl) indicate that low-energy streamflow conditions pre-
vailed over a laterally continuous gravel substrate, infilling
pits and gullies with sand and mud. Mud curls record
subaerial exposure and desiccation between streamflow
events.
    Since the coarsest (up to boulder grade) conglomeratic
facies exhibit streamflow indicators, we must consider the
reason for streamflow to prevail over debris flow de-
positional processes. Blair (1999) has described adjacent
alluvial fans in Death Valley, one streamflow-dominated,
the other debris flow-dominated. The debris flow-do-
minated alluvial fan was fed by a source region of sedi-
mentary rocks; the streamflow-dominated alluvial fan had
a source region of crystalline rock. Therefore, the dif-
ference was not the gradient of the valley wall nor dis-
charge, but simply the type of sediment supplied. Clast
lithologies from the alluvial fan deposits at Thirty Mile
Lake and South Channel match the underlying crystalline
basement rocks, consistent with Blair's (1999) theory for
streamflow predominance to be a function of derivation
from weathered crystalline rock in the source region.

2.1.3. Facies successions
   Two typical bedset end members consist of: (1) 1–3 m
of disorganized cobble to boulder conglomerate (Gcd)
overlain by metre-scale channel-fill conglomerate facies
(Gt) and/or trough cross-stratified sandstone; or (2) a few
metres of organized cobble to pebble conglomerate (Gco),
incised by channel fill facies (Gt), trough cross-stratified
sandstone (St), and/or overlain by parallel laminated
mudstone and siltstone (Fl). Coarse, tabular sheetflood
deposits (Gcd, Gco) represent the main accretion units.
   Bedsets are commonly arranged in pairs that have a
composite upward-fining character over 5–10 m (Figs. 6a
and 7). Although stratal surfaces within the paired bedsets
are discontinuous, the erosional surfaces above ubiquitous
sandstone caps that bound the couplets are laterally con-
tinuous (N100 m) where viewed transverse to inferred                 Fig. 7. Stratigraphic section from Thirty Mile Lake study area displaying
paleoflow. Whereas bedsets represent sheetflood deposi-              upward-fining interval in the alluvial fan facies association. Lithofacies
tion and subsequent reworking, coupled bedsets have a                abbreviations from Miall (1977) and Jo et al. (1997), see Table 1.
56   T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70
T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70                                                       57


gradient as the toe migrates forward. The inactive lobe is                          to granular sandstone matrix. Clasts form a condensed,
marked by low-energy streamflow and suspension deposi-                              imbricated framework that is moderately to well-sorted.
tion indicated by stratified sandstone and laminated                                Tabular beds range in thickness from 10 cm to several
mudstone.                                                                           metres. Sheets of massive conglomerate are continuous
    Blair (2000b) has described similar stratigraphic units                         for tens of metres but are discontinuous over hundreds of
from Death Valley alluvial fans and noted that generally 2                          metres perpendicular to the inferred paleoflow direction.
to 8, 50–250 cm sheetflood deposits capped by gully-fill                               Rare lenticular beds of trough cross-stratified con-
or eolian facies were bound by “progressive tectonic un-                            glomerate (Gt), 30 cm to 50 cm thick incise into the
conformities”. These are on the scale of our 5–10 m paired                          massive conglomerate, but are less prominent than in the
bedsets; however, Blair (2000b) was able to observe a                               alluvial fan facies association. Angular mudstone clasts
bedding discordance over the intrafan unconformity, con-                            are common.
cluding that faulting had caused a down-drop of the fan.                               Medium- to thick-bedded, trough cross-stratified sand-
Therefore, this type of stratigraphic unit may be consi-                            stone beds occur as solitary sets or compound sets up to a
dered to represent a fault-generated increment of accom-                            metre thick, above thick beds of massive conglomerate.
modation, where the succession records the characteristic                           Rare laminated mudstone (Fl) occurs at the tops of 10 m
alluvial response: aggradation of the fan surface.                                  thick, upward-fining packages.
    Alternatively, Mack and Leeder (1999) have de-
scribed 3–10 m thick “alluvial fan cyclothems”. These                               2.2.2. Lithofacies interpretation
were considered to form primarily due to the combined                                   The gravel-bed braided stream FA is distinguished
effects of vegetative cover and precipitation (minimum                              from the alluvial fan facies assemblage by a more
sediment yield would correspond to peak precipitation                               homogeneous, better sorted, imbricated and more con-
due to the binding of sediment by vegetation, and vice                              densed framework conglomerate. Clast imbrication in
versa). This model obviously would not apply to alluvial                            facies Gcm implies bedload transport. The condensed
fan deposits from the Baker Lake Basin, because of an                               framework and better sorting indicate a more sustained
absence of vegetative cover in the Paleoproterozoic.                                streamflow and less rapid aggradation than inferred for
    Commonality suggests that this nested upward-fining                             conglomeratic facies from the alluvial fan facies assem-
stratal pattern is intrinsic to the alluvial fan depositional                       blage. Massive texture makes it difficult to differentiate
environment in fault-bounded basins from the Precam-                                gravel-sheet from longitudinal gravel bar deposits, a
brian through the Phanerozoic. Since alluvial fans aggrade                          common characteristic of gravel-bed braided stream
via lobe accretion and abandonment, this punctuated                                 deposits (Miall, 1977). The lateral discontinuity of
process superimposed on a gradual fault-induced subsi-                              lithofacies perpendicular to the inferred paleocurrent
dence, though unrealistic, would result in the observed                             direction indicates that deposition occurred in channels
succession. Thus, these units do not necessarily indicate                           smaller than a few hundreds of metres in width.
specific fault motions but that subsidence was sufficient to                            Cross-stratified, channel-fill conglomerate (Gt) prob-
provide the grade required for alluvial fan formation.                              ably represents reworking of abandoned-channel gravel
                                                                                    sheets prior to deposition of sandstone. Mudstone rip-
2.2. Facies association 2: gravel-bed braided stream                                up clasts within conglomerate sheets attest to intermittent
                                                                                    suspension deposition, although the deposits were subse-
2.2.1. Lithofacies description                                                      quently eroded and transported, between flood events.
    Clast-supported massive conglomerate facies (Gcm)                                   Trough-cross stratified sandstone was deposited in
is pebble- to cobble-grade with rare boulders in a coarse                           abandoned channels. The laminated mudstone (Fl) and

Fig. 8. Sedimentological features from lithofacies associations (FA) 3–7. Lens cap is 5 cm. (a) Linguoid ripples above primary current lineation from the sand-
bed braided stream FA; knife is 10 cm long. (b) Erosional surface marked by granule lag truncating medium-grained, cross-stratified sandstone and overlain by
inversely graded sandstone laminae, of the sand-bed braided stream FA. The overlying laminae, interpreted as eolian, indicate that this is a deflation lag formed
by winnowing of fluvial deposits. (c) Inversely graded lower foresets of a 1.5 m thick eolian cross-set, interpreted as sub-critically climbing wind ripple
lamination. Faint cross-laminae are visible within these foresets. (d) Floodplain FA, in which an inclined planar-laminated sandstone (Sh) interval lies between
units of horizontally laminated mudstone–siltstone–sandstone (Fl). Some inclined sets are interlaminated with mudstone and form mudstone dishes indicative
of subaerial exposure (inset). To the right side of the photograph, on an oblique exposure, arrows highlight inclined surfaces. This is interpreted as a crevasse
splay that prograded onto a mud-rich floodplain, was abandoned and subsequently overlain Fl facies. Rock hammer is 75 cm long. (e) Playa FA, showing
alternating cross-stratified sandstone grading upward into laminated mudstone with abundant desiccation cracks. (f) Wave-ripple lamination from a rippled
sandstone sheet from the lacustrine FA, interpreted as a mouth bar deposit. (g) Erosional surface and lag truncating cross-stratified sandstone overlain by
mudstone. This is interpreted as a wave-ravinement surface overlying an interdistributary channel in a deltaic environment. (h) Normally graded, upward-
thinning and upward-fining laminae, containing mudstone clasts: interpreted as delta-front turbidite deposits. Rapidograph pen is 1 cm wide.
58                                    T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70


trough cross-stratified sandstone that sharply overly                that displays prominent primary current lineation (Fig.
conglomerate probably represent low energy deposition                8a). Mudstone drapes are ubiquitous above lenticular
following avulsion and channel abandonment (Miall,                   ripple bedforms.
1977), similar to gravel-bed abandoned channel deposits
from the Waimakariri River in New Zealand (Reinfelds                 2.3.2. Lithofacies Interpretation
and Nanson, 1993). Alternatively, where non-erosional                    Thin conglomerate beds at the base of upward-fining
contacts exist between successive beds of conglomerate,              bedsets indicate that coarse sediment load was deposited
sandstone and mudstone, the upward-fining pattern may                at the base of braided channel-fill, perhaps as braid bars.
reflect deposition from waning flood (Miall, 1977).                  Trough cross-stratified sandstone is a result of three-
                                                                     dimensional dune migration, particularly evident where
2.2.3. Facies successions                                            dune bedforms are exposed. Horizontally stratified sand-
    Upward-fining packages of the gravel-bed braided                 stone with primary current lineation is interpreted to
stream facies assemblage are considered to be deposits of            have been deposited under upper-flow-regime condi-
superimposed bars (Miall, 1977). Bedsets are arranged in             tions (Allen, 1964; Southard and Boguchwal, 1973). The
5 to 10 m aggradational to mildly upward-fining suc-                 tabular geometry, lack of lateral accretion surfaces,
cessions of massive conglomerate (Gcm), capped by                    predominance of trough cross-stratification, occurrence
sandstone (St) or cross-stratified pebble conglomerate               of upper-flow-regime plane beds are consistent with
(Gt). Such packages are considered to represent vertical             deposition by shallow sand-bed braided streams (cf.
aggradation followed by channel belt switching (Miall,               Miall, 1977).
1977), represented by sandstone deposition in abandoned                  Rippled sandstone (Sr) capped by mudstone at the top
channels.                                                            of upward-fining bedsets is inferred to represent waning
                                                                     of flood flow followed by suspension deposition. Where
2.3. Facies association 3: sand-bed braided stream                   rippled sandstone and upper-flow-regime plane beds are
                                                                     the dominant lithology in fine-grained sandstone succes-
2.3.1. Lithofacies description                                       sions, this represents sheetflood deposits for which the
    Massive, clast-supported conglomerate (Gcm) is a                 grain size was too small to form dunes (cf. Southard and
minor component of the sand-bed braided stream FA,                   Boguchwal, 1990), where linguoid ripples transform
occurring as thin beds at the base of upward-fining bed-             directly into upper-flow-regime plane beds with increas-
sets. Sets of fine-grained to pebbly, trough cross-stratified        ing stream velocity (Baas, 1994). Mudstone records
sandstone (St) vary in thickness from 10 cm to 1 m,                  waning flood or abandoned-channel deposition.
bedforms of three-dimensional dunes occur on certain                     Cross-stratified sandstone with inversely graded fore-
outcrops. These bedsets commonly have a pebble lag and               sets record wind ripple migration during eolian reworking
abundant mudstone clasts at the base. Horizontally strati-           of abandoned channel deposits (cf. Hunter, 1977).
fied sandstone facies (Sh) consists of planar, horizontally
laminated, well-sorted, fine- to medium-grained sand-                2.3.3. Facies successions
stone that commonly displays primary current lineation.                  Upward-fining bedsets, 0.5–5 m thick, typically
Bedding geometry is predominantly tabular, and large-                consist of an erosive base with pebble lag, overlain by
scale lateral accretion surfaces appear to be absent.                predominantly trough cross-stratified sandstone that
    Fine- to medium-grained ripple cross-stratified sand-            passes gradationally upward into horizontally stratified
stone (Sr) infrequently occurs at the top of upward-                 sandstone, current-rippled sandstone and laminated
fining bedsets dominated by medium to thick sets of                  mudstone (Fig. 9). However, there is a spectrum of
trough cross-stratified sandstone (St).                              heterolithic to sandstone-dominated deposits. The most
    Laminated mudstone (Fl) occurs at the top of upward-             proximal deposits contain conglomerate at the base of
fining successions. Trough cross-stratified sandstone (Ste)          metre-scale cycles that fine upward to sandstone, depo-
with inversely graded foresets and pinstripe lamination also         sited by a waning flood flow that carried a load of sand
occurs at the top of upward-fining successions. These sets           and gravel. Medial deposits consist of predominantly
are typically 10 to 50 cm thick, but locally are 1 m thick. In       cross-stratified sandstone. Less proximal deposits consist
thin sets (5–10 cm), the foreset angle can be very low, about        of typically less than metre-scale upward-fining cycles of
5°; thick beds commonly overlie symmetrical ripples (Sw).            sandstone with abundant mud drapes, capped by lami-
    As a sub-association occurring over tens of metres in            nated mudstone deposited by waning streamflows that
thickness, rippled sandstone (Sr) may be exclusively                 carried a mixed load of sand and mud. This variation is
interbedded with horizontally stratified sandstone (Sh)              interpreted to reflect a spectrum of facies from shallow
T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70                                              59




Fig. 9. Stratigraphic section from Thirty Mile Lake study area displaying facies successions from braided stream and floodplain facies associations.
Lithofacies abbreviations from Miall (1977); see Table 1.
60                                    T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70


braided stream to mixed-load, ephemeral sheetflood (e.g.             dinate trough cross-strata (St) and laminated mudstone
Sønderholm and Tirsgaard, 1998). In deposits rich in                 (Fl). Either symmetrical or asymmetrical ripples may
mudstone, desiccation cracks are common, indicating that             dominate metre-scale intervals of predominantly inter-
between flood events the river bed was subaerially ex-               laminated sandstone and mudstone. The occurrence of
posed. Inversely graded sandstone laminae, characteristic            desiccation structures is variable; an absence of desicca-
of wind transport, typically occur at the top of upward-             tion cracks is coincident with a preponderance of symmet-
fining cycles where mudstone is absent, indicating eolian            rical ripples.
reworking of dry river beds (Fig. 8b).
   While bedsets represent flood events and deposition-              2.4.2. Lithofacies interpretation
abandonment of small braided channels, multiple bed-                     The FA of current ripples, mudstone, and desiccation
sets comprise 5–15 m thick composite, upward-fining                  cracks suggests periodic overbank flooding followed by
successions capped by prominent, laterally continuous                suspension deposition and subaerial exposure within a
(up to 50 m at least) mudstone or eolian sandstone (Fig.             floodplain setting. Current ripples and planar laminae
9). These multiple channels are inferred to comprise a               lacking primary current lineation are indicative of lower-
larger channel tract. The upward-fining trend indicates              flow-regime deposition, and wave ripples of periods
that within the channel tract aggradation was accompa-               where water remained pooled on the floodplain after
nied by a decrease in stream competency. Aggradation                 floods. Thin, less than 2 m thick intervals of upward-
would result in a reduction of slope, channel switching              fining cross-stratified sandstone represent small crevasse
and abandonment, to produce upward-fining patterns in                channels that traversed the generally mudstone-domi-
fluvial deposits capped by fine-grained or eolian deposits           nated substrate (cf. Rhee et al., 1993). Deposits of eolian
(cf. Miall, 1977; Hjellbakk, 1997). These thicker up-                sandstone (Ste) indicate subaerial sand dune migration
ward-fining successions therefore likely represent ag-               over the floodplain where flooding was insufficient to
gradation and abandonment of a braided channel                       inhibit dune formation.
complex (Fig. 9).                                                        The low-angle inclined sets of parallel-laminated
                                                                     sandstone contain mudstone laminae, discounting an
2.4. Facies association 4: floodplain                                eolian origin. Desiccation features indicate intermittent
                                                                     subaerial exposure. The low angle of inclination is
2.4.1. Lithofacies description                                       inconsistent with formation by dune migration, but too
    The floodplain FA is typically composed of the                   steep to have been deposited as upper-flow-regime plane
lithofacies Fl, Sr, Sh, St and Ste. Rippled sandstone (Sr)           beds. The lack of a vertical progression of structures, for
with nearly ubiquitous mudstone drapes is typically inter-           example from dune to ripple-scale cross-sets, suggests
stratified with 5 to 20 cm thick laminated mudstone (Fl).            that this was not a fluvial channel. The horizontal laminae
Sedimentary structures and bedforms include, ripple                  are therefore considered to have been deposited during
lamination and cross-lamination, symmetrical and asym-               lower-flow-regime conditions on an inclined sand surface
metrical ripples, and V-shaped polygonal cracks in mud-              that migrated over floodplain mud. This is similar to
stone. Thin intervals (generally less than 2 m) of upward-           crevasse splays described from the sand-bed braided
fining, trough cross-stratified sandstone (St) occur within          Niobrara River (Bristow et al., 1999), in which ∼1 m
mudstone-dominated sections. Cross-sets are less than                thick inclined sets of horizontal lamination and ripple
50 cm thick and typically contain up to 5 cm angular                 lamination overlie floodplain fines. We therefore interpret
mudstone clasts. Cross-stratified sandstone with inversely           inclined sets of laminated sandstone as crevasse splay
graded foresets (Ste; Fig. 8c) occurs at the top of upward-          deposits that emanated from the thin trough cross-
fining intervals, typically as single cross-sets up to 1 m in        stratified sandstone-dominated (St) crevasse channels.
thickness. Bedding geometries are typically tabular-                     Intervals dominated by the wavy bedded facies suggest
horizontal; however, low-angle inclined cosets, cumula-              prolonged periods where pools of water might have re-
tively less than 1 m thick, overlying and overlain by ho-            mained on the floodplain, perhaps due to a near-surface
rizontally laminated mudstone occur locally (Fig. 8d).               water table. Such deposits have been described from
These inclined strata consist of thin beds of parallel-              recent braided fluvial floodplain deposits by Bristow et al.
laminated, fine- to medium-grained sandstone overlain by             (1999) and ephemeral streams by Martin (2000).
mudstone drapes, some of which display desiccation                   Floodplain deposits with wave ripples and an apparent
features such as mudcracks and mud curls.                            absence of desiccation features have also been described
    As a subdivision within this FA, is the occurrence of            from a Mesoproterozoic braided fluvial system in East
wavy bedded sandstone and mudstone (SFw) with subor-                 Greenland by Sønderholm and Tirsgaard (1998).
T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70                                61


    Understanding of the relationship between gradient,               pebbly sandstone indicates that interdune areas were sub-
sediment grain size and stream type is based mainly on                ject to streamflows since the pebbles are too large to have
systems that include sediment-binding vegetative cover. In            been transported by wind, and so these fluvial deposits
the absence of vegetation, braided streams might exist at             were reworked resulting in pebble layers interpreted as
lower gradients, lower discharge regimes or finer sediment            lags. The large-scale cross-sets are therefore considered to
grain sizes. Therefore, heterolithic braided streams and              be formed by the migration of eolian dunes, with wind-
associated floodplains may be the pre-vegetative equiva-              ripple lamination preserved on lower slipfaces, and inter-
lent to meandering streams and floodplains with respect to            dune areas characterized by standing water with infre-
these factors. However, the predominance of braided                   quent streamflow influx from surrounding alluvial plains.
streams, even in the finest deposits and hence lowest gra-            This is characteristic of a wet condition eolian system
dients, could alternatively be due to ephemeral flash-floo-           (Kocurek and Havholm, 1993).
ding that resulted in episodic high-discharge streamflow. In              Simpson et al. (2004) consider eolian deposits from the
contrast to recent floodplain deposits, such as along the             Baker Lake Basin to consist of two general occurrences,
Waimakariri River which generally contains very few pre-              as thin sandsheets dominated by wind ripple lamination
served depositional structures (Reinfelds and Nanson,                 associated with ephemeral lacustrine and fluvial deposits,
1993), floodplain deposits from the Paleoproterozoic                  and thicker (up to 100 m) erg deposits dominated by large-
Baker Lake Basin contain a diverse array of structures                scale cross-sets (up to 6 m thick). The eolian lithofacies
due to the absence of bioturbation or root growth. Together           assemblage described herein is primarily based upon
with other Precambrian deposits, such as the Mesoproter-              observations from northern Christopher Island, where it is
ozoic braided fluvial system described by Sønderholm and              represented by up to 10 m thick accumulations of large
Tirsgaard (1998), they provide a perspective on floodplain            scale (up to 2 m) cross-sets of sandstone associated with
deposits generally not available from the Phanerozoic.                ephemeral lacustrine and fluvial deposits. The presence of
                                                                      interdune deposits between individual cross-sets indicates
2.5. Facies association 5: eolian                                     these were not compound dunes and therefore equivalent
                                                                      to the thin sandsheet subdivision of Simpson et al. (2004).
2.5.1. Lithofacies description
    The eolian FA is typified by up to 10 m thick accumu-             2.5.3. Facies successions
lations of trough cross-stratified sets, 20 cm to 2 m thick, of          There are two types of bedset within the eolian facies
fine- to medium-grained, well-sorted sandstone (Ste). Basal           assemblage (Fig. 10). The first is relatively simple and
foresets are typically reverse-graded fine- to medium-                consists of large-scale trough cross-stratified sandstone
grained sandstone (Fig. 8c), and most exhibit pinstripe               (Ste) with wave-rippled sandstone bottom sets (Sw) or
lamination (cf. Fryberger and Schenk, 1988). Upper fore-              cross-stratified sandstone (St), considered to probably
sets are wedge-shaped, tapering downward, and normally                represent dune and interdune strata respectively (Kocurek,
graded, locally coarse- to medium-grained sandstone. The              1981).
tops of cross-sets are typically truncated by horizontal                 The second type of bedset is more complex. A com-
surfaces. These may be associated with granule or pebble              plete vertical facies succession consists of: thin (∼10–
layers, or cross-stratified pebbly sandstone (St). Between            20 cm) cross-stratified pebbly sandstone (St); pebble or
these erosional surfaces and the succeeding large-scale               granule lag; approximately 10–20 cm thick interstratified
cross-set are 10–20 cm thick intervals of wave-rippled                sandstone and mudstone with prominent wave ripples
sandstone (Sw) and/or interlaminated mudstone (SFw).                  (SFw, Sw); overlain by metre-scale eolian cross-sets. The
                                                                      pebbly sandstone is rarely preserved, and so bounding
2.5.2. Lithofacies interpretation                                     surfaces for multiply stacked bedsets are commonly the
   Pinstripe lamination and reverse-graded foresets are               horizontal erosional surfaces. The interpreted succession
interpreted as sub-critically climbing translatent stratifi-          of depositional events is: fluvial influx of pebbly sand;
cation resulting from the migration of wind-ripples over              erosion to produce the lag; intermittent wave currents and
subaerial dune slipfaces (cf. Hunter, 1977). Wedge-                   suspension deposition; followed by metre-scale eolian
shaped, normally graded foresets are interpreted as grain-            dune migration. These bedsets occur as multiply stacked
flow deposits. Intervals of wave rippled sandstone (Sw)               sets, and so fluvial sandstone overlies eolian cross-sets,
and/or interlaminated mudstone (SFw) at the base of                   representing streamflow flooding of the eolian dune field
eolian cross-sets are considered to be wet-condition inter-           prior to erosion.
dune deposits indicating a near surface water table (Ko-                 Two potential processes for producing the horizontal
curek and Havholm, 1993). The minor occurrence of                     erosional surfaces are wind deflation and wave-induced
62                                       T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70


erosion. In the first case, deflation of the eolian dune field             face of deflation may have been controlled by the ground
would be accompanied by streamflows, accounting for                        water table as a Stokes surface (Stokes, 1968; Fryberger
fluvial sandstone overlying the eolian cross-sets. The sur-                et al., 1988; Kocurek and Havholm, 1993). Subsequent




     Fig. 10. Stratigraphic section from northwest Christopher Island study area, showing lacustrine, eolian and playa facies assemblages.
T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70                                63


erosion following fluvial deposition may have been in-                up to 5 cm deep filled with sandstone from the overlying
hibited by formation of an armoured pebble lag, as ob-                bed are prominent.
served in periglacial eolian deposits of Iceland (Mountney
and Russell, 2004). This would be followed by shallow                 2.6.2. Lithofacies interpretation and succession
subaqueous conditions with intermittent wave currents and                 Thick mudstone layers indicate sustained periods of
suspension deposition recorded by the interstratified wave            suspension deposition; deep v-shaped desiccation cracks
rippled sandstone and mudstone laminae. In the absence of             indicate subaerial exposure; thin cross-stratified sandstone
streamflows an eolian dune field was re-established.                  beds overlain by mudstone indicate that bedload deposition
    With respect to wave-induced erosion, initial base level          preceded a resumption of suspension deposition. The de-
(groundwater table) would be steady or low during eolian              positional environment was characterized by playa lake
dune field formation. A rise in base level would be accom-            expansion due to episodic flooding, leading to sustained
panied initially by an influx of fluvial streamflows, then by         suspension deposition to form a mud flat environment (5–
shallow standing water as adjacent playa lakes expanded.              20 cm of laminated mudstone), followed by subaerial
Wave currents would rework the substrate resulting a ho-              exposure representing playa lake contraction and desicca-
rizontal erosion surface, pebble lag and overlying wave-              tion of the mudflat.
rippled sandstone. This process is analogous to a trans-                  The basic depositional unit of this association is an
gressive surface of erosion. Contraction of an adjacent               upward-fining 10–40 cm cycle of sandstone to mudstone,
playa lake was accompanied re-establishment of the eolian             which represents playa lake expansion followed by con-
dune field.                                                           traction and desiccation, likely recording climatic fluctua-
    It is difficult to determine whether the pebble lags record       tions. Successions of these cycles are generally less than
wind deflation or transgressive erosion; by association the           5 m thick, but can reach thickness' greater than 50 m
overlying SFw/Sw facies are consistent with the latter,               (Rainbird et al., 1999). Since this facies association is
however a combination of processes is probable. Sweet                 typically intercalated with eolian and lacustrine facies, we
(1999) rationalized a rising water table and wind deflation           interpret it to have been deposited in a playa lake-mud flat
by supposing that as lake expansion occurred sediment                 environment.
supply from lake margins was cut off. Winds blowing off                   With respect to the association with eolian deposits, a
the playa margin were undersaturated with respect to sand             prevalence of playa over eolian environment could be due
and effective at deflating dunes. In the Baker Lake Basin,            to a relatively higher water table that periodically dam-
subsequent to removal of eolian sediment supply and de-               pened the substrate sufficiently to inhibit eolian dune
flation, shallow lacustrine inundation may have been ac-              growth, or there may have been a higher proportion of fine
companied by wave erosion and additional planation.                   sediment. Considering the proximity of a vegetation-free
    Both models involve rising base level: If base level              sandy braidplain, the playa environment was more likely a
controlled the erosion surface, then base level fluctuations          product of a relatively higher water table.
control the accommodation increment in eolian systems,                    At southern Christopher Island the playa facies is
consistent with existing theories for preservation of eolian          dominated by mudstone with desiccation cracks and it
accumulations (Stokes, 1968; Kocurek and Havholm,                     reaches a maximum thickness of 50 m (Rainbird et al.,
1993; Carr-Crabaugh and Kocurek, 1998; Simpson et al.,                1999). This implies a significant source of mud-grade
2004).                                                                sediment. Macey (1973) identified detrital phlogopite in
    This facies association therefore represents environ-             the Kazan Formation from southern Christopher Island
ments without significant fluvial sediment flux where                 and proposed that Christopher Island Formation volcanic
eolian dunes fields were able to develop, which were                  and volcaniclastic deposits had supplied volcaniclastic
subject to episodes of flooding during expansion and                  sediment. These chocolate brown, volcaniclastic rocks
contraction of an adjacent playa lake in response to base             contain significant amounts of ash-sized particles (Blake,
level fluctuations.                                                   1980; Rainbird et al., 1999), which indicates the avail-
                                                                      ability of a large volume of fine sediment to an ephemeral
2.6. Facies association 6: playa/mudflat                              lacustrine environment.

2.6.1. Lithofacies description                                        2.7. Facies association 7: lacustrine delta
   This FA is dominated by 5–20 cm thick layers of
mudstone (Fm) interstratified with 5–20 cm thick trough               2.7.1. Lithofacies description
cross-stratified sandstone (St) and ripple cross-stratified              The St facies occurs as 0.2–0.8 m trough cross-sets
sandstone (Sr; Fig. 8e). Within mudstone, V-shaped cracks             that form 1–2 m thick cosets. Mudstone clasts are
64                                   T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70


common at the base of cosets. Mudstone drapes are                   by suspension deposition, but subject to wave currents
common at the top of cross-stratified sets and on foresets.         and occasional bedload deposition of sand. The lack of
These units have lenticular bases and incise into under-            desiccation features, as in the playa deposits (FA 6), and
lying deposits, which may include facies Fl or St.                  brief periods of wave currents and bedload sedimenta-
    Laminated mudstone and siltstone facies (Fl) is inter-          tion, would be consistent with deposition in a protected
stratified with starved symmetrical ripples and beds of             bay. The pebble layer at the base is interpreted as a lag,
sandstone generally less than 5 cm thick. Pebble lags               and together with wave ripples is suggestive of a pre-
occur at the base of mudstone-dominated intervals that              ceding phase of wave erosion. Subsequent incisement by
overlie pebbly sandstone (Fig. 8g). Desiccation features            channels that record inter-streamflow slack water
are absent. These intervals reach thicknesses up to                 conditions is consistent with deposition in an interdis-
50 cm and are commonly incised by the 1–2 m thick St                tributary bay (cf. Elliott, 1974; Fielding, 1984).
units.                                                                  Within the rippled sandstone sheets, the dominance of
    Conversely, mudstone drapes are less common in the              symmetrical ripples indicates the prevalence of oscillat-
symmetrical-rippled sandstone facies (Sw). Ripple types             ing currents and therefore wave processes. In-phase
include symmetrical ripples that occur as reworked                  climbing ripples indicate high rates of sedimentation.
cross-set tops, and climbing ripples, locally supercriti-           Ubiquitous wave-ripple reworked cross-set bed-tops
cally climbing (Fig. 8f). Together with thin (5–10 cm)              indicating that unidirectional currents were consistently
cross-stratified sandstone (St) sets with symmetrical-              followed by wave currents, are suggestive of sand bars
rippled tops, the rippled sandstone comprises tabular               subject to shoaling waves. These features and the sheeted
sheets 1–2 m in thickness.                                          geometry are consistent with deposition at a lake margin
    An uncommon facies within this association is                   delta front mouth bar (cf. Plint and Browne, 1994;
normally graded, horizontally laminated sandstone (Sh;              Marshall, 2000).
Fig. 8h). It is typified by upward-fining and upward-                   The graded horizontal lamination is identical to Bouma
thinning laminae comprising beds 10–15 cm thick. Basal              division Td, which is characterized by fine parallel lami-
laminae are coarse-sand grade; upper laminae are fine to            nation and textural sorting (Bouma, 1962). Oaie (1998)
very fine sand. Angular mudstone clasts of mm-scale are             described an Upper Proterozoic occurrence of mudstone
common in the thicker laminae. Very thinly laminated                microclasts from the T3 subdivision (distinctly laminated
siltstone and mudstone occur at the top of upper graded             sandstone, equivalent to Td; Stow and Shanmugan, 1980),
sandstone laminae; locally these thin laminae are com-              and also noted features such as continuous or discontin-
posed almost entirely of horizontal mudstone microclasts.           uous parallel lamination due to the orientation of micro-
Individual laminae can be traced laterally over a few               clasts parallel to bedding planes. Ripple cross-laminated
metres, to the extent of outcrop (and lichen) limitations,          sandstone associated with graded laminae corresponds to
and beds are continuous for more than 100 m. Trough                 Bouma division Tc. These packages of Bouma Tc–d divi-
cross-bedded sandstone with up to 10 cm thick inverse to            sions locally have wave-ripple reworked tops, and closely
normally graded foresets is associated with this facies, as         overlie cross-sets that have wave-ripple reworked tops,
well as ripple cross-laminated sandstone (Sr).                      indicating that they were deposited above storm wave
                                                                    base. These upward-thinning and upward-fining units
2.7.2. Lithofacies interpretation                                   with ripple cross-stratified sandstone are interpreted to be
   Upward-fining bedsets of trough cross-stratified sand-           turbidites, reflecting delta front sediment gravity flow
stone (St) forming sets that incise into underlying deposits        processes. In the absence of tidal features, these turbidites
are considered to be channel deposits. Mudstone drapes,             are the best indication of a lacustrine environment. To-
including those on foresets, indicate suspension deposi-            gether, the association of turbidites, distributary channels,
tion within channels between streamflow events. Angular             interdistributary bays and rippled sandsheets comprise a
mudstone clasts are interpreted as mudstone rip-ups.                perennial lacustrine deltaic environment.
Braided stream deposits (FA 3) are characterized as an
ephemeral, high-discharge fluvial system. The channels              2.7.3. Facies successions
within this facies association record streamflows alter-               There are two types of generally upward-coarsening
nating with standing water suspension deposition, per-              successions (Fig. 10). In the first, the base is sharp and
haps reflecting seasonal discharge within distributary              erosion is typically indicated by a transgressive lag
channel in a lacustrine environment.                                overlain by laminated mudstone (Fl). This is succeeded by
   The association of facies Fl with wave ripples and thin          an upward-coarsening interval of cross-stratified sand-
beds of sandstone indicates an environment dominated                stone with abundant mudstone clasts, which is truncated
T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70                                              65


and incised by an upward-fining interval of cross-                   fans fed gravel-bed braided streams at their base, which,
stratified sandstone. Employing the distributary/interdis-           with decreasing gradient and competence, graded into
tributary bay model presented by Elliott (1974), we in-              sand-bed braided streams. The braided streams occur
terpret this as a prograding mouth bar overlain by an                throughout the basin from the inferred paleomargin (e.g.
upward-fining distributary channel. Such distributary                Thirty Mile Lake) to the depocentre (Christopher Island)
channel deposits generally display wave-reworked tops,               (Fig. 11). Paleocurrent data define two drainage patterns for
as indicated by wave ripples or a lag. This is likely                these braided streams: (1) near the basin margins the trend
because an abandoned distributary channel will be a                  is transverse to the margin (Fig. 4), and (2) at the centre of
positive feature, and subject to wave erosion at the delta           the elongate Baker Lake sub-basin, where paleocurrent data
edge until interdistributary bay sedimentation “catches              define an axial drainage system (Figs. 2 and 5). Together
up” and buries the sand bar.                                         with asymmetry of stratigraphic thickness of the Baker
    The second type of upward-coarsening succession is               Lake Group from the northwest to the southeast, ∼500 m
similar to the first, with a sharp base overlain by mudstone         and N 2000 m, respectively (Hadlari and Rainbird, 2000;
and upward-coarsening sandstone. Turbidites may occur                Rainbird and Hadlari, 2000), the drainage patterns are
at the base of these upward-coarsening intervals. Sheets of          consistent with deposition in a half-graben (e.g.. Leeder,
wave-rippled sandstone (Sw) and the sub-facies of thin               1995), the bounding fault of which was adjacent to the
cross-stratified sandstone beds with wave-rippled tops               southeast margin (Fig. 2).
occur at the top, instead of a distributary channel deposit.             The floodplain FA is associated with the sand-bed
Similar associations of upward-coarsening succession                 braided stream FA, but also occurs in stratigraphic contact
and thin cross-stratified sets with wave-rippled tops have           with eolian, playa and lacustrine FAs. Prominent within
been described by Plint and Browne (1994) from a                     the floodplain depositional environment are indications of
Phanerozoic strike-slip basin, and interpreted to represent          standing water, such as abundant wave ripples and local
the lake margin bay mouth bar of a lacustrine delta. We              paucity of desiccation features. Similarly, wet-condition
similarly interpret this succession as a bay mouth                   interdune deposits characterize the eolian facies, where
succession capped by progradation of a mouth bar at the              thin sandsheet-type eolian deposits are interstratified
lake margin. The rippled sandsheet is overlain by eolian             within most facies of the Baker Lake Group throughout
deposits, so continued progradation of the delta system
was interrupted by relative lake level fall and eolian
reworking of the delta top (Fig. 10).

3. Depositional model

    Examination of stratigraphic contacts and areal
distribution of the various facies associations enables
reconstruction of the paleobasin through a model of
linked facies tracts. The alluvial fan FA occurs at the
present day basin margin, primarily at kilometre-scale
thickness along the southeastern basin margin. Evidence
of local derivation includes boulder-sized angular clasts,
similar to the underlying crystalline basement, even
though contemporaneous volcanic centres were locally
active within the basin. Paleocurrent data indicate alluvial
transport was transverse to the basin margin (Fig. 4),
which suggests that the present-day basin margin approxi-
mates the paleobasin margin.
    The gravel-bed braided stream FA occurs in gradational
stratigraphic contact with the alluvial fan FA. This, in turn
grades into the sand-bed braided stream FA. The
gradational transition indicates that these are linked facies
and represent lateral transitions. The change in grain size
and inferred depositional gradient therefore is representa-          Fig. 11. Schematic block diagram of half-graben and facies tracts from the
tive of a proximal to distal fluvial system; proximal alluvial       Baker Sequence during the interval of localized felsic minette volcanism.
66                                   T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70


the basin. Thicker eolian deposits, dominated by large-             near Christopher Island (Fig. 2). This pattern indicates that
scale cross-sets are primarily associated with lacustrine,          the Baker Lake sub-basin was a hydrologically closed
floodplain, and to a lesser degree braided stream FAs, are          system: primary drainage was endemic rather than directed
most common near the inferred basin axis along Kazan                to an adjacent basin. At the depocentre, deltas fed into a
River (Simpson et al., 2004) and the main depocentre at             lake that was surrounded by floodplains, mudflats, and
Christopher Island (Rainbird et al., 1999; Simpson et al.,          eolian dunes with prevailing wind directed northwest and
2004; Fig. 5). The playa–mudflat FA occurs primarily in             southwest (relative to present geography).
stratigraphic contact with the eolian FA on Christopher
Island indicating a close spatial relationship near the main        4. Discussion: eolian deposits and paleoclimate
depocentre of the Baker Lake sub-basin (Rainbird et al.,
2003). The lacustrine delta FA has a small areal extent,                Sedimentology of the Baker Lake Group reveals a
exposed only at Christopher Island. The stratigraphic               variety of climatic indicators. Eolian deposits, which are a
transition from fluvial to lacustrine (though rarely com-           measure of aridity, are primarily associated with lacustrine,
plete) passes through, eolian, playa and floodplain facies          floodplain, and to a lesser degree braided-stream facies
assemblages, indicating that mud flats and eolian dunes             (Fig. 10), and are most common near the inferred basin axis
occupied lake margins adjacent to deltas, depending on              along Kazan River (Simpson et al., 2004) and the main
lake expansion or infilling, respectively. Paleocurrent data        depocentre at Christopher Island (Rainbird et al., 1999; Fig.
from northwestern Christopher Island (Fig. 4) indicate              11). In very thick deposits (30 to 100 m) of eolian sand-
southwesterly streamflow. Therefore, northwestern Chris-            stone, some cross-set bounding surfaces indicate dry inter-
topher Island marked the eastern edge of the basinal                dune conditions (Rainbird et al., 1999; Simpson et al.,
depocentre. Deltas prograded south and west, into the lake          2004). However, thinner sandsheet-type accumulations in
basin, and were fed by braided streams that originated to           association with lacustrine and floodplain facies, in parti-
the northeast. The present-day basin margin ends at the             cular at the inferred depocentre (Christopher Island), con-
north shore of Baker Lake and it is likely that the                 tain a greater proportion of interdune deposits composed of
paleobasin originally extended farther northeast, because           interlaminated, wave-rippled sandstone and mudstone,
these paleocurrent data indicate that sand-bed braided              indicating flooding of interdune areas (cf. Kocurek and
streams extend to the present margin instead of                     Havholm, 1993). Almost every facies association includes
conglomerate that would be expected, if the present                 an eolian component: eolian reworking of abandoned
northeast margin coincided with the paleobasin margin.              channels, eolian sandstone sheets associated with playa–
    Paleocurrent data from delta-top eolian cross-sets (Fig.        mudflat environments, and eolian sandstone interstratified
10) indicate southwesterly wind flow, assuming that dune            with floodplain deposits. However, wave ripples and
crests were oriented transverse to the primary wind direc-          mudstone laminae within floodplain deposits record pe-
tion. This appears to be a valid assumption, because the            riods where standing water was relatively common. Deltaic
paleocurrent directions are perpendicular to the trend of           deposits indicate that a perennial lake existed at the main
wave ripple crests within the delta complex. Other north-           depocentre. These features confirm that the water table was
western Christopher Island eolian paleocurrent data that            close to the surface, inconsistent with an arid climate.
indicate northwesterly aerial transport (Fig. 5) are simi-          Climatic fluctuations occur at vastly shorter time scales
larly perpendicular to wave ripple crest trends from inter-         than the ∼45 Ma span of time represented by the Baker
dune intervals, suggesting that waves were generated by a           Lake Group. For example, the hyper-arid Rub Al Khali
similar prevailing wind direction as the eolian dunes.              eolian system of the Arabian Peninsula is presently the
These paleocurrents are associated with braided stream              world's largest erg; however, lacustrine and paleoground-
deposits with southeast-directed paleocurrents, distinct            water deposits such as travertine suggest that the climate
from the aerial paleocurrent direction.                             was humid at 35–25 ka and 10–6 ka, coincident with
    Thus, considering the distribution of alluvial facies,          precessional orbital parameters (Bray and Stokes, 2004).
paleocurrent data and stratigraphic thickness (Hadlari and          Furthermore, eolian systems are not restricted to hot-
Rainbird, 2000; Rainbird and Hadlari, 2000), a model of             climate environments; for example, the cold-climate Askja
linked facies tracts for the Baker Lake sub-basin is set            region periglacial sandsheet of Iceland (Mountney and
within an elongate half-graben basin (Fig. 11). From the            Russell, 2004). These relatively recent, biologically hostile
margins, a transverse drainage system of alluvial fans to           environments are analogous to those of the Baker Lake
braided streams, with floodplains and eolian dunes, fed an          Basin in that they developed on a non-vegetated landscape
axial fluvial system. Axial drainage was primarily directed         with sufficient sediment supply for eolian accumulation. In
northeast and less extensively southwest to a depocentre            the absence of sediment-binding vegetative cover in the
T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70                                 67


Paleoproterozoic, it is possible that eolian deposits are not            The floodplain facies association primarily consists of
necessarily an indication of an arid climate, but rather a           interstratified sandstone and mudstone representing alter-
mobile substrate adjacent to a viable sediment source (e.g.          nating bedload and suspension deposition in an overbank
active fluvial channel belts). Therefore, the Baker Sequence         setting. Locally abundant wave ripples record standing
deposits broadly suggest a variably semi-arid to semi-               water subsequent to flood events, suggesting a shallow
humid paleoclimate. With respect to lacustrine deposits,             and fluctuating water table. Thin sandstone intervals re-
related evaporite minerals and chemogenic lake beds                  present crevasse channels and inclined sandstone sets
within the Angikuni sub-basin, Aspler et al. (2004) has              represent crevasse splays. Eolian dunes indicate subaerial
similarly suggested a wet paleoclimate with local arid               reworking of abandoned fluvial channels.
intervals for the Baker Sequence.                                        The eolian facies association includes thin sand-
                                                                     sheets located adjacent to floodplains, playas and deltas.
5. Conclusion                                                        Cross-sets up to 2 m thick record eolian dunes bounded
                                                                     by wet-condition interdune intervals indicative of a near
    The alluvial fan FA consists of upward-fining stratal            surface water table, which controlled accumulation of
units 5–10 m thick. These indicate that the alluvial fan             eolian deposits. This description is in addition to pre-
developed by a succession of lobe accretion and aban-                viously documented erg deposits at the Kunwak River
donment events. The main lobe accretion units are                    (Simpson et al., 2004), and lesser erg deposits at south-
represented by upward-fining, tabular units of the facies            eastern Christopher Island associated with playa de-
Gcd and Gco, respectively, which record rapid deposi-                posits (Rainbird et al., 1999; Simpson et al., 2004). The
tion of gravel sheets during high-magnitude streamflows              occurrence of eolian deposits within most depositional
followed by incisement during secondary low-magni-                   environments is considered to reflect reworking of
tude streamflows. Inactive lobes were characterized by               abuandant sand supply on the non-vegetated Precam-
sand and mud deposition analogous to overbank pro-                   brian landscape.
cesses on alluvial plains. The predominance of stream-                   The playa facies association is dominated by lami-
flow processes was probably due to weathering and                    nated mudstone with desiccation cracks and subordinate
erosion of crystalline rock in the source region, as in-             trough cross-stratified sandstone, representing alternat-
dicated by granitoid and gneissic clast lithologies.                 ing suspension deposition and desiccation of a lacustrine
    Alluvial fans were primarily located along the south-            mudflat, punctuated by bedload flood events. This facies
eastern margin of the basin, and combined with regional              is associated with the eolian and lacustrine facies assem-
paleocurrent and stratigraphic thickness variations                  blages, and represents a lake margin setting where ex-
indicate that the primary basin-bounding fault of the                pansion and contraction due to base level fluctuations
Baker Lake sub-basin was adjacent to its present south-              inhibited eolian sandsheet formation.
eastern margin.                                                          The lacustrine delta facies association consists of
    The gravel-bed braided stream FA also preserves                  prodelta turbidites, rippled sandsheets that accumulated
upward-fining bedsets, 5–10 m thick, which record                    as bay mouth bars, distributary channel sandstone and
aggradation and lateral channel-belt switching. These                interdistributary bay laminated, rippled sandstone–
are differentiated from the alluvial fan facies by better            mudstone. The deltaic deposits of northwestern Chris-
sorting and condensed framework, with imbricated clasts              topher Island record progradation toward a depocentre
indicating more sustained streamflow and less rapid de-              to the southeast.
position. Conglomerate facies are discontinuous at scales                In a three-fold subdivision of the volcanic stratigraphy,
over 100 m, indicative of approximate channel widths.                the lower subdivision comprises felsic minette flows and
The gravel-bed FA is gradational between the alluvial fan            volcaniclastics erupted at volcanic centres adjacent to
and sand-bed braided stream FAs, and distributed from                basin-margin alluvial fans. This was followed by volu-
the basin margin through the basin axis.                             minous minette extrusion, in which flows and volcani-
    The sand-bed braided stream facies association                   clastic sediments spread from the volcanic centres to
comprises 5–15 m thick upward-fining, stacked bedsets                blanket most of the basin. Flows are common at Thirty
interpreted as channel complex successions. Aggrada-                 Mile Lake, but are rare at Christopher Island where vol-
tion of mixed-load ephemeral sheetflood and shallow,                 caniclastics comprise most of the volcanic deposits.
sand-bed braided streams was followed by upstream                    Areally restricted felsite domes comprise the upper part of
channel-belt switching. The abandoned channels were                  the volcanic succession. Where the basin was not entirely
sites of suspension deposition of overbank fines and                 filled or overfilled due to minette volcanism, gravel-bed
eolian reworking.                                                    braided streams transported felsite clasts basinward.
68                                            T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70


    The sedimentology of the Baker Lake Group indicates a                     Bray, H.E., Stokes, S., 2004. Temporal patterns of arid-humid
transverse drainage system of alluvial fans to braided                            transitions in the south-eastern Arabian Peninsula based on optical
                                                                                  dating. Geomorphology 59, 271–280.
streams, with floodplains and eolian dunes adjacent to                        Bristow, C.S., Skelly, R.L., Ethridge, F.G., 1999. Crevasse splays from
inactive channels. This transverse system fed an axial                            the rapidly aggrading, sand-bed, braided Niobrara River,
drainage system that primarily was directed northeast and                         Nebraska: effect of base-level rise. Sedimentology 46, 1029–1047.
less extensively southwest to a depocentre near Christo-                      Carr-Crabaugh, M., Kocurek, G., 1998. Continental sequence stratigra-
                                                                                  phy of a wet eolian system: a key to relative sea level change. Relative
pher Island, defining the pattern of a hydrologically closed
                                                                                  role of eustasy, climate, and tectonism in continental rocks. SEPM
basin. At this depocentre, deltas fed into a lake that was                        Special Publication 59, 213–228.
surrounded by floodplains, mudflats and eolian dunes                          Cas, R.A.F., Wright, J.V., 1987. Volcanic Successions: Modern and
deposited when the prevailing wind was directed north-                            Ancient. Allen & Unwin, Boston. 528 pp.
west and southwest. Sedimentological features such as                         Cousens, B.L., Aspler, L.B., Chiarenzelli, J.R., Donaldson, J.A.,
ephemeral, flash flood-type alluvial deposits, playas, and                        Sandeman, H., Peterson, T.D., LeCheminant, A.N., 2001.
                                                                                  Enriched Archean lithospheric mantle beneath Western Churchill
eolian sandsheets and ergs, indicate a level of aridity                           Province tapped during Paleoproterozoic orogenesis. Geology 29,
moderated by wet-condition eolian inter-dune deposits and                         827–830.
floodplain deposits that indicative of a near surface water                   Donaldson, J.A., 1965. The Dubawnt Group, District of Keewatin and
table, and thus a semi-arid to semi-humid paleoclimate.                           Mackenzie. Geological Survey of Canada, Paper 64-20. 11 pp.
                                                                              Donaldson, J.A., 1967. Study of the Dubawnt Group, Report of
                                                                                  Activities, Pt. A. Geological Survey of Canada, Paper 67-1A. 25 pp.
Acknowledgements                                                              Elliott, T., 1974. Interdistributary bay sequences and their genesis.
                                                                                  Sedimentology 21, 611–622.
   Extensive logistical support from the Geological                           Eriksson, K.A., Simpson, E.L., 1998. Controls on spatial and temporal
Survey of Canada (Natural Resources Canada) is grate-                             distribution of Precambrian eolianites. Sedimentary Geology 120,
fully acknowledged, accordingly this is GSC contribu-                             275–294.
                                                                              Fielding, C.R., 1984. Upper delta plain lacustrine and fluviolacustrine
tion #2005407. Financial support was obtained from an                             facies from the Westphalian of the Durham coalfield, NE England.
NSERC Discovery Grant to Rob Rainbird. Comments                                   Sedimentology 31, 547–567.
from Hazen Russell, Geoff Chiarenzelli, and Guy Plint                         Fisher, R.V., Schmincke, H.-U., 1984. Pyroclastic Rocks. Springer-
were appreciated and improved the manuscript.                                     Verlag, New York. 528 pp.
                                                                              Fryberger, S.G., Schenk, C.J., 1988. Pin stripe lamination—a distinctive
                                                                                  feature of modern and ancient eolian sediments. Sedimentary
References                                                                        Geology 55, 1–15.
                                                                              Fryberger, S.G., Schenk, C.J., Krystinik, L.F., 1988. Stokes surfaces
Allen, J.R.L., 1964. Primary current lineation in the Lower Old Red               and the effects of near-surface groundwater-table on aeolian
    Sandstone (Devonian), Anglo-Welsh Basin. Sedimentology 3, 89–108.             deposition. Sedimentology 35, 21–41.
Aspler, L.B., Chiarenzelli, J.R., Cousens, B.L., 2004. Fluvial, lacustrine,   Gall, Q., Peterson, T.D., Donaldson, J.A., 1992. A proposed revision
    and volcanic sedimentation in the Angikuni sub-basin, and initiation          of early Proterozoic stratigraphy of the Thelon and Baker Lake
    of ∼1.84–1.79 Ga Baker Lake Basin, Western Churchill Province,                Basins, Northwest Territories. Current Research Part C, Geological
    Nunavut, Canada. Precambrian Research 129, 225–250.                           Survey of Canada, pp. 129–137.
Baas, J.H., 1994. A flume study on the development and equilibrium            Hadlari, T., Rainbird, R.H., 2000. Sequence stratigraphy and
    morphology of current ripples in very fine sand. Sedimentology                sedimentology of the Paleoproterozoic Baker Lake Group in the
    41, 185–209.                                                                  Baker Lake Basin, Thirty Mile Lake, Nunavut Territory.
Blair, T.C., 1999. Cause of dominance by sheetflood vs. debris-flow               Geological Survey of Canada, Current Research 2000-C9, p. 10.
    processes on two adjoining alluvial fans, Death Valley, California.       Hadlari, T., Rainbird, R.H., 2001. Volcano-sedimentary correlation
    Sedimentology 46, 1015–1028.                                                  and fault relationships in the Baker Lake sub-basin, Thirty Mile
Blair, T.C., 2000a. Sedimentary processes and facies of the waterlaid             Lake area, Nunavut. Geological Survey of Canada, Current
    Anvil Spring Canyon alluvial fan, Death Valley, California.                   Research 2001-C10, p. 9.
    Sedimentology 46, 913–940.                                                Hanmer, S., Tella, S., Sandeman, H.A., Ryan, J.J., Hadlari, T., Mills,
Blair, T.C., 2000b. Sedimentology and progressive tectonic unconfor-              A., 1999. Proterozoic reworking in Western Churchill Province,
    mities of the sheetflood-dominated Hell's Gate alluvial fan, Death            Gibson Lake–Cross Bay area (Kivalliq Region, Nunavut): Part 1.
    Valley, California. Sedimentary Geology 132, 233–262.                         General geology. Geological Survey of Canada, Current Research
Blair, T.C., McPherson, J.G., 1994. Alluvial fans and their natural               1999-C, pp. 55–65.
    distinction from rivers based on morphology, hydraulic processes,         Hjellbakk, A., 1997. Facies and fluvial architecture of a high-energy
    sedimentary processes, and facies. Journal of Sedimentary                     braided river: the Upper Proterozoic Seglodden Member, Varanger
    Research 64, 451–490.                                                         Peninsula, northern Norway. Sedimentary Geology 114, 131–161.
Blake, D.H., 1980. Volcanic rocks of the Paleohelikian Dubawnt Group          Hooke, R.L., 1967. Processes on arid-region alluvial fans. Journal of
    in the Baker Lake–Angikuni Lake area, District of Keewatin, N.W.              Geology 75, 438–460.
    T. Geological Survey of Canada, Bulletin 309 (39 pp.).                    Hunter, R.E., 1977. Terminology of cross-stratified sedimentary layers
Bouma, A.H., 1962. Sedimentology of Some Flysch Deposits.                         and climbing-ripple structures. Journal of Sedimentary Petrology 47,
    Elsevier, Amsterdam.                                                          697–706.
Hadlari etal. 2006 baker lake rift basin sedimentology
Hadlari etal. 2006 baker lake rift basin sedimentology

Weitere ähnliche Inhalte

Was ist angesagt?

Mendip Hills: Geology and Landforms.
Mendip Hills: Geology and Landforms.Mendip Hills: Geology and Landforms.
Mendip Hills: Geology and Landforms.Prof Simon Haslett
 
thesis summary bowen basin symposium poster meggie doran
thesis summary bowen basin symposium poster meggie doranthesis summary bowen basin symposium poster meggie doran
thesis summary bowen basin symposium poster meggie doranMeggie Doran
 
Tectonics and Sedimentation of Foreland Basin
Tectonics and Sedimentation of Foreland BasinTectonics and Sedimentation of Foreland Basin
Tectonics and Sedimentation of Foreland BasinZiaulHaque95
 
Karst topography
Karst topographyKarst topography
Karst topographyShivam Jain
 
Clastic depositional system
Clastic depositional systemClastic depositional system
Clastic depositional systemmd5358dm
 
Brettle Et Al 2001
Brettle Et Al 2001Brettle Et Al 2001
Brettle Et Al 2001clastic_matt
 
Research proposal
Research proposalResearch proposal
Research proposalBen Thomas
 
Source rock maturation studies using vitrinite reflectance and geothermal dat...
Source rock maturation studies using vitrinite reflectance and geothermal dat...Source rock maturation studies using vitrinite reflectance and geothermal dat...
Source rock maturation studies using vitrinite reflectance and geothermal dat...Premier Publishers
 
Basins sedimentarys
Basins sedimentarysBasins sedimentarys
Basins sedimentarysmohee mohee
 
Syn-rift carbonate platform [Dorobek,2008 ]
 Syn-rift carbonate platform [Dorobek,2008 ] Syn-rift carbonate platform [Dorobek,2008 ]
Syn-rift carbonate platform [Dorobek,2008 ]Omar Radwan
 
TECTONICS OF SEDIMENTARY BASINS
TECTONICS OF SEDIMENTARY BASINSTECTONICS OF SEDIMENTARY BASINS
TECTONICS OF SEDIMENTARY BASINSZiaulHaque95
 
Karst topography
Karst topographyKarst topography
Karst topographyGCUF
 
01 sub basalt-imaging
01 sub basalt-imaging01 sub basalt-imaging
01 sub basalt-imagingJoanna P
 
Carst de Cardona
Carst de CardonaCarst de Cardona
Carst de Cardonaguestb30f29
 
el yunque poster-1
el yunque poster-1el yunque poster-1
el yunque poster-1Bowen Chang
 

Was ist angesagt? (20)

Mendip Hills: Geology and Landforms.
Mendip Hills: Geology and Landforms.Mendip Hills: Geology and Landforms.
Mendip Hills: Geology and Landforms.
 
thesis summary bowen basin symposium poster meggie doran
thesis summary bowen basin symposium poster meggie doranthesis summary bowen basin symposium poster meggie doran
thesis summary bowen basin symposium poster meggie doran
 
Tectonics and Sedimentation of Foreland Basin
Tectonics and Sedimentation of Foreland BasinTectonics and Sedimentation of Foreland Basin
Tectonics and Sedimentation of Foreland Basin
 
Donaldson-2015
Donaldson-2015Donaldson-2015
Donaldson-2015
 
Karst topography
Karst topographyKarst topography
Karst topography
 
Clastic depositional system
Clastic depositional systemClastic depositional system
Clastic depositional system
 
Shefa Yamem Poster 2014
Shefa Yamem Poster  2014Shefa Yamem Poster  2014
Shefa Yamem Poster 2014
 
Brettle Et Al 2001
Brettle Et Al 2001Brettle Et Al 2001
Brettle Et Al 2001
 
Research proposal
Research proposalResearch proposal
Research proposal
 
Dissertation
DissertationDissertation
Dissertation
 
Source rock maturation studies using vitrinite reflectance and geothermal dat...
Source rock maturation studies using vitrinite reflectance and geothermal dat...Source rock maturation studies using vitrinite reflectance and geothermal dat...
Source rock maturation studies using vitrinite reflectance and geothermal dat...
 
Basins sedimentarys
Basins sedimentarysBasins sedimentarys
Basins sedimentarys
 
Syn-rift carbonate platform [Dorobek,2008 ]
 Syn-rift carbonate platform [Dorobek,2008 ] Syn-rift carbonate platform [Dorobek,2008 ]
Syn-rift carbonate platform [Dorobek,2008 ]
 
TECTONICS OF SEDIMENTARY BASINS
TECTONICS OF SEDIMENTARY BASINSTECTONICS OF SEDIMENTARY BASINS
TECTONICS OF SEDIMENTARY BASINS
 
Karst topography
Karst topographyKarst topography
Karst topography
 
01 sub basalt-imaging
01 sub basalt-imaging01 sub basalt-imaging
01 sub basalt-imaging
 
Carst de Cardona
Carst de CardonaCarst de Cardona
Carst de Cardona
 
Zuni spring inventory publication
Zuni spring inventory publicationZuni spring inventory publication
Zuni spring inventory publication
 
el yunque poster-1
el yunque poster-1el yunque poster-1
el yunque poster-1
 
MODULE-3 EG.pdf
MODULE-3 EG.pdfMODULE-3 EG.pdf
MODULE-3 EG.pdf
 

Andere mochten auch

Hadlari and rainbird 2011 baker lake basin tectonic synthesis
Hadlari and rainbird 2011 baker lake basin tectonic synthesisHadlari and rainbird 2011 baker lake basin tectonic synthesis
Hadlari and rainbird 2011 baker lake basin tectonic synthesisrad8
 
Innovative work
Innovative workInnovative work
Innovative workSano Anil
 
Albertukoh tic
Albertukoh ticAlbertukoh tic
Albertukoh ticalbertukoh
 
Rapport de Situation #3 Tempête Tropicale Sandy
Rapport de Situation #3 Tempête Tropicale SandyRapport de Situation #3 Tempête Tropicale Sandy
Rapport de Situation #3 Tempête Tropicale Sandylaurentlamothe
 
il portale Dati.gov.it e l’Infografica su open data in Italia
il portale Dati.gov.it e l’Infografica su open data in Italia il portale Dati.gov.it e l’Infografica su open data in Italia
il portale Dati.gov.it e l’Infografica su open data in Italia DatiGovIT
 
Gasps orientation master ppt final-revised 12-7-11(1)
Gasps orientation master ppt final-revised 12-7-11(1)Gasps orientation master ppt final-revised 12-7-11(1)
Gasps orientation master ppt final-revised 12-7-11(1)progroup
 
Venta de equipos mayo
Venta de equipos mayoVenta de equipos mayo
Venta de equipos mayogomezjd
 
Assitive technology french_art_music
Assitive technology french_art_musicAssitive technology french_art_music
Assitive technology french_art_musicerdavisMAT
 
160 scenarios [dictation]
160 scenarios [dictation]160 scenarios [dictation]
160 scenarios [dictation]Jenny Chang
 
Edmodo chavis
Edmodo chavisEdmodo chavis
Edmodo chavistlhenley
 
6 quan ly-tien_trinh_2
6 quan ly-tien_trinh_26 quan ly-tien_trinh_2
6 quan ly-tien_trinh_2vantinhkhuc
 
My pitch on repressed memories
My pitch on repressed memoriesMy pitch on repressed memories
My pitch on repressed memoriesSammo_644
 
Foundation Portfolio Evaluation
Foundation Portfolio EvaluationFoundation Portfolio Evaluation
Foundation Portfolio EvaluationAmyLongworth
 
Summer conference sole
Summer conference   soleSummer conference   sole
Summer conference soleccantlie
 
Developing Leaders
Developing LeadersDeveloping Leaders
Developing LeadersCindy McAsey
 
Presentation constructing a pentagon
Presentation   constructing a pentagonPresentation   constructing a pentagon
Presentation constructing a pentagondoogstone
 
豊橋の【のぼり&旗の専門店】のオリジナル事例集/豊橋の看板屋さん
豊橋の【のぼり&旗の専門店】のオリジナル事例集/豊橋の看板屋さん豊橋の【のぼり&旗の専門店】のオリジナル事例集/豊橋の看板屋さん
豊橋の【のぼり&旗の専門店】のオリジナル事例集/豊橋の看板屋さんillumi kanban
 

Andere mochten auch (18)

Hadlari and rainbird 2011 baker lake basin tectonic synthesis
Hadlari and rainbird 2011 baker lake basin tectonic synthesisHadlari and rainbird 2011 baker lake basin tectonic synthesis
Hadlari and rainbird 2011 baker lake basin tectonic synthesis
 
Innovative work
Innovative workInnovative work
Innovative work
 
Albertukoh tic
Albertukoh ticAlbertukoh tic
Albertukoh tic
 
Rapport de Situation #3 Tempête Tropicale Sandy
Rapport de Situation #3 Tempête Tropicale SandyRapport de Situation #3 Tempête Tropicale Sandy
Rapport de Situation #3 Tempête Tropicale Sandy
 
il portale Dati.gov.it e l’Infografica su open data in Italia
il portale Dati.gov.it e l’Infografica su open data in Italia il portale Dati.gov.it e l’Infografica su open data in Italia
il portale Dati.gov.it e l’Infografica su open data in Italia
 
Gasps orientation master ppt final-revised 12-7-11(1)
Gasps orientation master ppt final-revised 12-7-11(1)Gasps orientation master ppt final-revised 12-7-11(1)
Gasps orientation master ppt final-revised 12-7-11(1)
 
Venta de equipos mayo
Venta de equipos mayoVenta de equipos mayo
Venta de equipos mayo
 
Assitive technology french_art_music
Assitive technology french_art_musicAssitive technology french_art_music
Assitive technology french_art_music
 
160 scenarios [dictation]
160 scenarios [dictation]160 scenarios [dictation]
160 scenarios [dictation]
 
Presentation Title
Presentation TitlePresentation Title
Presentation Title
 
Edmodo chavis
Edmodo chavisEdmodo chavis
Edmodo chavis
 
6 quan ly-tien_trinh_2
6 quan ly-tien_trinh_26 quan ly-tien_trinh_2
6 quan ly-tien_trinh_2
 
My pitch on repressed memories
My pitch on repressed memoriesMy pitch on repressed memories
My pitch on repressed memories
 
Foundation Portfolio Evaluation
Foundation Portfolio EvaluationFoundation Portfolio Evaluation
Foundation Portfolio Evaluation
 
Summer conference sole
Summer conference   soleSummer conference   sole
Summer conference sole
 
Developing Leaders
Developing LeadersDeveloping Leaders
Developing Leaders
 
Presentation constructing a pentagon
Presentation   constructing a pentagonPresentation   constructing a pentagon
Presentation constructing a pentagon
 
豊橋の【のぼり&旗の専門店】のオリジナル事例集/豊橋の看板屋さん
豊橋の【のぼり&旗の専門店】のオリジナル事例集/豊橋の看板屋さん豊橋の【のぼり&旗の専門店】のオリジナル事例集/豊橋の看板屋さん
豊橋の【のぼり&旗の専門店】のオリジナル事例集/豊橋の看板屋さん
 

Ähnlich wie Hadlari etal. 2006 baker lake rift basin sedimentology

1 3Facies (2015) 6112 DOI 10.1007s10347-015-0440-x.docx
1 3Facies  (2015) 6112 DOI 10.1007s10347-015-0440-x.docx1 3Facies  (2015) 6112 DOI 10.1007s10347-015-0440-x.docx
1 3Facies (2015) 6112 DOI 10.1007s10347-015-0440-x.docxhoney725342
 
The Chilcotin Basalts: implications for mineral exploration
The Chilcotin Basalts: implications for mineral explorationThe Chilcotin Basalts: implications for mineral exploration
The Chilcotin Basalts: implications for mineral explorationGraham Andrews
 
GRANULOMETRIC ANALYSIS AND HEAVY MINERAL STUDIES OF BIMA SANDSTONE
GRANULOMETRIC ANALYSIS AND HEAVY MINERAL STUDIES OF BIMA SANDSTONEGRANULOMETRIC ANALYSIS AND HEAVY MINERAL STUDIES OF BIMA SANDSTONE
GRANULOMETRIC ANALYSIS AND HEAVY MINERAL STUDIES OF BIMA SANDSTONEAgbaje Mayowa
 
The earliest (Precambrian) history of the earth's crust
The earliest (Precambrian) history of the earth's crustThe earliest (Precambrian) history of the earth's crust
The earliest (Precambrian) history of the earth's crustDhanBahadurkhatri
 
7.Greenfield_MnW2015_abstract_edit6 (1)
7.Greenfield_MnW2015_abstract_edit6 (1)7.Greenfield_MnW2015_abstract_edit6 (1)
7.Greenfield_MnW2015_abstract_edit6 (1)Cameron Perks
 
Marrs depositional history
Marrs depositional historyMarrs depositional history
Marrs depositional historyIan Marrs
 
Final Buttston Tech Report 8-31-2014
Final Buttston Tech Report 8-31-2014Final Buttston Tech Report 8-31-2014
Final Buttston Tech Report 8-31-2014Robert Singleton
 
Final Buttston Tech Report 8-31-2014
Final Buttston Tech Report 8-31-2014Final Buttston Tech Report 8-31-2014
Final Buttston Tech Report 8-31-2014Robert Singleton
 
Final Buttston Tech Report 8-31-2014
Final Buttston Tech Report 8-31-2014Final Buttston Tech Report 8-31-2014
Final Buttston Tech Report 8-31-2014Robert Singleton
 
Glacial Outburst Flooding
Glacial Outburst FloodingGlacial Outburst Flooding
Glacial Outburst FloodingNicholas Misner
 
Improving Ocean Literacy by Teaching the Geology of the Great Lakes
Improving Ocean Literacy by Teaching the Geology of the Great LakesImproving Ocean Literacy by Teaching the Geology of the Great Lakes
Improving Ocean Literacy by Teaching the Geology of the Great LakesDerek Moy
 
Three Sisters and Whychus Creek— A Geologic Past and Present
Three Sisters and Whychus Creek— A Geologic Past and PresentThree Sisters and Whychus Creek— A Geologic Past and Present
Three Sisters and Whychus Creek— A Geologic Past and PresentDesLandTrust
 

Ähnlich wie Hadlari etal. 2006 baker lake rift basin sedimentology (20)

1 3Facies (2015) 6112 DOI 10.1007s10347-015-0440-x.docx
1 3Facies  (2015) 6112 DOI 10.1007s10347-015-0440-x.docx1 3Facies  (2015) 6112 DOI 10.1007s10347-015-0440-x.docx
1 3Facies (2015) 6112 DOI 10.1007s10347-015-0440-x.docx
 
The Chilcotin Basalts: implications for mineral exploration
The Chilcotin Basalts: implications for mineral explorationThe Chilcotin Basalts: implications for mineral exploration
The Chilcotin Basalts: implications for mineral exploration
 
4296
42964296
4296
 
BCUR POSTER
BCUR POSTERBCUR POSTER
BCUR POSTER
 
Katherine_Mc
Katherine_McKatherine_Mc
Katherine_Mc
 
GRANULOMETRIC ANALYSIS AND HEAVY MINERAL STUDIES OF BIMA SANDSTONE
GRANULOMETRIC ANALYSIS AND HEAVY MINERAL STUDIES OF BIMA SANDSTONEGRANULOMETRIC ANALYSIS AND HEAVY MINERAL STUDIES OF BIMA SANDSTONE
GRANULOMETRIC ANALYSIS AND HEAVY MINERAL STUDIES OF BIMA SANDSTONE
 
Mono lake
Mono lakeMono lake
Mono lake
 
Mono lake
Mono lakeMono lake
Mono lake
 
ENV 101 Ch04 lecture ppt_a
ENV 101 Ch04 lecture ppt_aENV 101 Ch04 lecture ppt_a
ENV 101 Ch04 lecture ppt_a
 
The earliest (Precambrian) history of the earth's crust
The earliest (Precambrian) history of the earth's crustThe earliest (Precambrian) history of the earth's crust
The earliest (Precambrian) history of the earth's crust
 
7.Greenfield_MnW2015_abstract_edit6 (1)
7.Greenfield_MnW2015_abstract_edit6 (1)7.Greenfield_MnW2015_abstract_edit6 (1)
7.Greenfield_MnW2015_abstract_edit6 (1)
 
Marrs depositional history
Marrs depositional historyMarrs depositional history
Marrs depositional history
 
Final Buttston Tech Report 8-31-2014
Final Buttston Tech Report 8-31-2014Final Buttston Tech Report 8-31-2014
Final Buttston Tech Report 8-31-2014
 
Final Buttston Tech Report 8-31-2014
Final Buttston Tech Report 8-31-2014Final Buttston Tech Report 8-31-2014
Final Buttston Tech Report 8-31-2014
 
Final Buttston Tech Report 8-31-2014
Final Buttston Tech Report 8-31-2014Final Buttston Tech Report 8-31-2014
Final Buttston Tech Report 8-31-2014
 
Glacial Outburst Flooding
Glacial Outburst FloodingGlacial Outburst Flooding
Glacial Outburst Flooding
 
Improving Ocean Literacy by Teaching the Geology of the Great Lakes
Improving Ocean Literacy by Teaching the Geology of the Great LakesImproving Ocean Literacy by Teaching the Geology of the Great Lakes
Improving Ocean Literacy by Teaching the Geology of the Great Lakes
 
Field lab part 2
Field lab part 2Field lab part 2
Field lab part 2
 
Rocks part 2
Rocks part 2Rocks part 2
Rocks part 2
 
Three Sisters and Whychus Creek— A Geologic Past and Present
Three Sisters and Whychus Creek— A Geologic Past and PresentThree Sisters and Whychus Creek— A Geologic Past and Present
Three Sisters and Whychus Creek— A Geologic Past and Present
 

Kürzlich hochgeladen

Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demoHarshalMandlekar2
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????blackmambaettijean
 

Kürzlich hochgeladen (20)

Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demo
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????
 

Hadlari etal. 2006 baker lake rift basin sedimentology

  • 1. Sedimentary Geology 190 (2006) 47 – 70 www.elsevier.com/locate/sedgeo Alluvial, eolian and lacustrine sedimentology of a Paleoproterozoic half-graben, Baker Lake Basin, Nunavut, Canada Thomas Hadlari a,⁎, Robert H. Rainbird b , J. Allan Donaldson a a Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada K1S 5B6 b Geological Survey of Canada, 601 Booth St., Ottawa, Ont., Canada K1A 0E8 Abstract The northeast-trending Baker Lake sub-basin was a volcanically active, half-graben during deposition of ca. 1.85–1.76 Ga Baker Lake Group. Drainage was oriented along transverse and axial directions with flow to playa lake and deeper perennial lacustrine depocentres. Basin marginal, streamflow-dominated alluvial fans were concentrated along the southern margin, and provided sediment from Archean crystalline basement rocks. These fed transverse gravel- and sand-bed braided streams. Alluvial dynamics were characterized by channel aggradation and abandonment. Abandoned channel belts were sites of floodplain and eolian deposition. Basin axial braided streams fed northeast and southwest to a depocentre near Christopher Island, where eolian, playa and lacustrine environments were intimately linked. Felsic minette flows were initially erupted from localized centres; contemporaneous sedimentary deposits typically contain minor volcaniclastic components that increase in abundance basinward. Voluminous and widespread younger minette flows prograded outward from volcanic centres contributing significant additional basin-infill. © 2006 Elsevier B.V. All rights reserved. Keywords: Alluvial fan; Braided stream; Floodplain; Eolian; Lacustrine; Half-graben 1. Introduction to inferred depocentre of the Baker Lake sub-basin, as an aid to reconstruction of its paleogeography. In addition, This research is part of an integrated study of the Baker the remarkable preservation and absence of bioturbation Lake Group, emphasizing sequence stratigraphy and from these Paleoproterozoic rocks provides sedimento- chronostratigraphy, for the purpose of constructing a logical insight into alluvial environments in certain tectonostratigraphic model for Baker Lake Basin. Utili- instances generally not available from the Phanerozoic. zation of non-marine sequence stratigraphic methods to Thick alluvial fan deposits are exposed on large, glacially elucidate the relationship between sedimentation and polished outcrops. Floodplain deposits are associated tectonism requires an understanding of the depositional with braided stream deposits, a relatively undeveloped environments throughout the basin. This paper describes topic of study (e.g. Bristow et al., 1999), but observed the sedimentology of the ca. 1.83 Ga Baker Lake Group elsewhere in Precambrian deposits (Sønderholm and from well-exposed key stratigraphic sections from margin Tirsgaard, 1998). It has been speculated that eolianites should be more prevalent in Precambrian deposits than in ⁎ Corresponding author. Fax: +1 613 520 2569. the Phanerozoic due to lack of terrestrial vegetation (e.g. E-mail addresses: thadlari@connect.carleton.ca (T. Hadlari), Eriksson and Simpson, 1998). While this generally hasn't rrainbir@nrcan.gc.ca (R.H. Rainbird). been the case, eolian deposits occur throughout the Baker 0037-0738/$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.sedgeo.2006.05.005
  • 2. 48 T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 Lake Basin, reworking fluvial deposits and forming thin space and time with respect to the evolution of the Western sandsheets to large ergs (Rainbird et al., 2003; Simpson Churchill Province. Deposition of the ca. 1.85–1.76 Ga et al., 2004). This research, representing the first regional Baker Lake Group appears to have closely followed lithofacies analysis of the Baker Lake sub-basin, deformation and metamorphism in underlying crystalline incorporates previously completed fieldwork by the basement rocks, which in some cases were at lower crustal Geological Survey of Canada. levels at ca. 1.9 Ga (Sanborn-Barrie, 1994). Contempora- neous collisional tectonics were taking place in the ca. 1.9– 1.1. Regional geology and previous work 1.8 Ga Trans-Hudson Orogen, 500 km to the south and southeast (e.g. Lucas et al., 1999). Greater Baker Lake Basin extends from Dubawnt Lake The Dubawnt Supergroup is subdivided into three northeast to Baker Lake (Nunavut, Canada) and comprises unconformity-bounded stratigraphic units that correspond a series of northeast-trending intracontinental basins, to, from oldest to youngest: the Baker Lake, Wharton and including the Baker Lake sub-basin (Rainbird et al., Barrensland Groups (Donaldson, 1967; Gall et al., 1992; 2003; Figs. 1 and 2). Basin fill comprises the faulted but Rainbird and Hadlari, 2000); or the Baker, Whart and unmetamorphosed, siliciclastic and volcanic rocks of the Barrens second-order sequences (Rainbird et al., 2003; Dubawnt Supergroup (Wright, 1955; Donaldson, 1967; Fig. 3). These groups or corresponding second-order LeCheminant et al., 1979b; Gall et al., 1992; Rainbird and sequences have been interpreted to represent the tectonic Hadlari, 2000; Rainbird et al., 2003Fig. 3). The ca. 1.85– stages of rift, modified rift and thermal sag, respectively 1.70 Ga Baker Lake Basin occupied a unique location in (Rainbird et al., 2003). Fig. 1. Location map indicating the Baker Lake Basin in the context of the Western Churchill and Rae Provinces.
  • 3. T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 49 Fig. 2. Geology map of the Baker Lake sub-basin and fluvial paleocurrent data. The Baker Lake Group comprises the South Channel, ciclastic sedimentary rocks. Volcanology of the Chris- Kazan, Christopher Island (Donaldson, 1965), Kunwak topher Island Fm. from Baker Lake sub-basin has been (LeCheminant et al., 1979b) and Angikuni Formations described in detail (LeCheminant et al., 1979a,b; Blake, (Blake, 1980), and varies in cumulative thickness from 1980). A generalized volcanic stratigraphy for the over 2 km to 500 m. These lithostratigraphic subdivi- greater Baker Lake Basin, from oldest to youngest, sions have provided the framework for regional mapping consists of: felsic minette flows, minette flows and felsite within Baker Lake Basin. Chronostratigraphic control on flows (Peterson et al., 1989; Hadlari and Rainbird, 2001; the formations is quite poor, but recent studies suggest Rainbird et al., 2003). The felsic minette flows or equi- that these formations are time-equivalent, reflecting valent volcaniclastic deposits are less areally extensive lateral facies boundaries (Rainbird et al., 1999, 2003). than younger minette flows, and have been observed to The South Channel Formation comprises boulder to overlie the basal unconformity of the Baker Lake Group. cobble conglomerate interpreted as alluvial fan deposits. Mantle-derived minette flows record voluminous extru- It typically overlies crystalline basement rocks at the basin sion throughout the entire basin and represent the largest margin and is composed of locally derived clasts of gra- known ultrapotassic volcanic province (LeCheminant nite, amphibolite and gneissic lithologies. For this reason, et al., 1987; Peterson et al., 1989, 1994; Cousens et al., it appears to be the oldest formation, although volcanic 2001). Stratigraphic relations indicate that the flows rocks of the Christopher Island Fm. also unconformably originated at volcanic centres, which progressively overlie basement (Rainbird and Hadlari, 2000), and occur expanded outward to eventually blanket most of the as clasts within the South Channel Fm. (Hadlari and basin (Hadlari and Rainbird, 2001). The volcanic centres Rainbird, 2001). would have been positive topographic features that The Kazan Formation consists of arkosic sandstone, supplied volcaniclastic sediment, diverted streamflow siltstone and mudstone, representing a variety of possibly altering drainage patterns and replaced sedi- sedimentary environments including eolian, fluvial and mentary processes as a basin-infilling mechanism. playa lake (Donaldson, 1965; LeCheminant et al., Felsite flows are the youngest and most areally restricted 1979b; Rainbird et al., 2003). volcanic rock. Analyses of phlogopite phenocrysts from The Christopher Island Formation comprises alkaline a flow and a syenite intrusion that intrudes the lower volcanic rocks interbedded with volcaniclastic and sili- Baker Lake Group yield 40Ar/39Ar ages of 1845 ± 12 Ma
  • 4. 50 T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 Fig. 3. Stratigraphy of the Dubawnt Supergroup (Donaldson, 1967; Gall et al., 1992; Rainbird and Hadlari, 2000; Rainbird et al., 2003). Geochronology sources: Thelon Fm., 1720 ± 6 Ma (Miller et al., 1989); Pitz Fm. (Rainbird et al., 2003); and Baker Lake Group, 1785 ± 3 Ma (Rainbird et al., 2002), 1833 ± 3 Ma (Rainbird et al., 2006). and 1810 ± 11 Ma, respectively (Rainbird et al., 2002; see In the Thirty Mile Lake area of the Baker Lake sub- discussion Rainbird et al., 2006). A more precise U–Pb basin (Fig. 4) steeply inclined, east–northeast-striking zircon age of 1833 ± 3 Ma has been obtained from a felsic units of conglomerate, sandstone and volcanic strata of minette flow from the western end of Baker Lake Basin, the Baker Lake Group unconformably overlie crystalline providing the best constraint on basin formation basement. Previous mapping in this area identified South (Rainbird et al., 2006). Channel Fm. conglomerate, Kazan Fm. sandstone and The Kunwak Formation (LeCheminant et al., 1979b) mudstone, and Christopher Island Fm. volcanic rocks consists of conglomerate composed primarily of Christo- (Donaldson, 1965, 1967; LeCheminant et al., 1979b). pher Island Fm. volcanic clasts as opposed to basement The Kunwak Formation is exposed to the northwest, rock types in the South Channel Fm. It is differentiated along the Kunwak River, where it contains felsite clasts from the Christopher Island Fm. by its stratigraphic posi- and is unconformably overlain by the Wharton Group tion above volcanic rocks and below the unconformity at (LeCheminant et al., 1979b; Hadlari and Rainbird, the top of the Baker Lake Group. This formation primarily 2001). occurs in the interior of the Baker Lake sub-basin, located At Christopher Island (Fig. 5), the South Channel proximal or downstream from volcanic centres. Formation unconformably overlies the Archean Mac- The Angikuni Formation (Blake, 1980) is restricted to Quoid-Gibson supracrustal belt (Tella et al., 1997; the Angikuni sub-basin (Fig. 1). Aspler et al. (2004) Hanmer et al., 1999) and the 1.9 Ga Kramanituar meta- consider it to be equivalent to the South Channel and morphic complex (Sanborn-Barrie, 1994; Sanborn-Barrie Kazan Formations. Incompatible element chemistry of et al., 2001). The Kazan Formation comprises eolian, mudstones suggests derivation from Christopher Island playa and braided stream deposits (Donaldson, 1965, Formation volcanic rocks, consistent with syn-volcanic 1967; Rainbird et al., 1999). The Christopher Island For- sedimentation and probable lateral interstratification of mation locally comprises volcanic flows, pyroclastic and the Angikuni and Christopher Island Formations (Aspler volcaniclastic deposits. On Christopher Island and sur- et al., 2004). rounding islands (not shown on Fig. 5), volcanism was
  • 5. T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 51 Fig. 4. Geology map of the Thirty Mile Lake study area. Paleocurrent data are derived from cross-bed measurements. primarily explosive, as indicated by bomb and accessory- outlined in Table 1. In general, FA 1 corresponds to the clast sag structures, normal and reverse grading, and South Channel Formation, FA 2 and 3 correspond to the cross-stratification within extensive volcaniclastic depos- Kazan and Kunwak Formations, and FA 3 to 7 its (Rainbird et al., 1999). These structures indicate correspond to the Kazan Formation. deposition, in part, by turbulent pyroclastic surges (cf. Fisher and Schmincke, 1984; Cas and Wright, 1987). 2.1. Facies association 1: alluvial fan 2. Lithofacies associations 2.1.1. Lithofacies description Clast-supported disorganized conglomerate (Gcd) From the principal study areas at Thirty Mile Lake contains cobble- to boulder-grade angular to subrounded and eastern Baker Lake, and other select locations within clasts within 1–5 m thick tabular beds with erosional Baker Lake sub-basin (Fig. 2), the sedimentary rocks of basal contacts. Diffuse horizontal stratification grades the Baker Lake Group are here subdivided into facies laterally into a more massive framework, which is intact associations (FA) more detailed than those presented in to condensed with slight to no imbrication (Fig. 6d). The previous formational descriptions. Individual facies are matrix is typically moderately to very poorly sorted, fine
  • 6. 52 T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 Fig. 5. Location map of the Christopher Island study area with paleocurrent data (St = fluvial, Sw = wave ripple crests, Ste = eolian cross-sets). to coarse sandstone. Atypically, the matrix exhibits both Trough cross-stratified conglomerate facies (Gt) is horizontal stratification and small-scale (less than 5 cm predominantly pebble-grade with a condensed frame- thick) cross-stratification adjacent to cobble- to boulder- work and consists of lenticular units up to 2 m thick and grade clasts. Randomly distributed within sub-tabular 10 m wide that fine upward and laterally. The lower conglomerate beds, mound-shaped accumulations of surfaces of these beds are erosional. granules and coarse sand overlie certain framework Trough cross-stratified sandstone facies (St) consists of clasts (Fig. 6c). Rare examples of reverse grading in the fine- to pebbly cross-stratified sandstone in sets typically matrix can be seen in some of these beds. ranging in thickness from 5 cm to 20 cm. Facies St occurs Clast-supported organized conglomerate facies (Gco) at the top of lenticular conglomerate units or as lenticular contains pebble- to cobble-grade, sub-angular to sub- units overlying conglomerate sheets. It may be overlain rounded clasts, within an intact to condensed, imbricated by parallel-stratified mudstone facies (Fl), consisting of framework. The matrix is moderately well-sorted medium laminated mudstone and minor siltstone or fine sandstone, to coarse sandstone. Tabular beds, 0.5–2 m thick, gene- with rare mud curls. These layers are overlain by erosional rally fine upward, and may form composite conglomerate surfaces that are laterally continuous for more than 100 m. sheets. A typical occurrence would consist of multiple beds consisting of 30 cm of cobble to 20 cm of pebble 2.1.2. Lithofacies interpretation conglomerate comprising a composite thickness of 2– The clast-supported framework, absence of inverse 3 m. Other occurrences include horizontally stratified grading and weak stratification of the disorganized cong- (Fig. 6b) and less common cross-stratified tabular beds. lomerate facies (Gcd) suggests a streamflow origin as Horizontal stratification marks the boundaries of rare, opposed to deposition by a debris flow (e.g. Sohn et al., thin, lenticular beds of trough cross-stratified sandstone. 1999; Blair, 2000a). A similar facies has been described by
  • 7. Table 1 Lithofacies Lithofacies Description Interpretation Ged: framework-supported, Cobble- to boulder-grade clasts; coarse to fine sandstone matrix; poorly to very Gravel sheets emplaced by high disorganized conglomerate poorly sorted; crude and irregular stratification; tabular geometry; magnitude flood flows. T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 erosional base Geo: framework-supported, Pebble- to cobble-grade clasts; granule to medium sandstone matrix; moderately Gravel sheets emplaced by bedload organized conglomerate sorted; organized framework; erosional base; wedge-shaped processes during flood events. and tabular units; predominantly horizontally stratified Gem: framework-supported, Pebble- to cobble-grade clasts; coarse to medium sandstone matrix; Gravel bars in high-energy braided massive conglomerate moderate to well sorted; imbricated; intact framework; tabular geometry streams. Gt: trough cross-stratified Pebble- to cobble-grade clasts; granule to medium sand grade matrix; fine upward; Filling of channels, scours and channel conglomerate cross-stratified; lenticular units with erotional base pools by gravel during flood flows. Sh: horizontally stratified Fine- to medium-grained sandstone; well sorted; planar-horizontal Planar bed flow (upper and lower flow regime). sandstone lamination; ± primary current lineation on bedding planes St: trough cross-stratified Medium to coarse-grained sandstone; trough cross-stratification Migration of three-dimensional dunes. sandstone Ste: trough cross-stratified Fine- to medium-grained sandstone; inversely graded foresets; pinstripe Migration of eolian three-dimensional dunes. sandstone with pinstripe lamination; up to 2 m thick lamination Sr: sandstone with Laminated sandstone with predominantly asymmetric ripples; mudstone Bedload deposition/migration of asymmetric ripples drape; linguoid bedforms common current ripples. Sw: sandstone with Laminated sandstone; symmetrical ripples; ± mud drapes; bifurcating crests; Wave-formed ripples, lacustrine symmetrical ripples sheet-like geometry shoreface or delta mouth bar. SFw: wavy bedded sandstone and Inter-stratified sandstone and siltstone/mudstone; asymmetric and/or Overbank, abandoned channel or siltstone/mudstone symmetric ripples waning flood deposits. Fl: parallel-stratified Mudstone, siltstone, with parallel-laminated and/or cross-stratified Prolonged periods of quiet-water mudstone sandstone suspension deposition. Modified from Miall (1977) and Jo et al. (1997). 53
  • 8. 54 T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 Fig. 6. Sedimentological features of the alluvial fan facies association (FA), Thirty Mile Lake area. (a) Three upward-fining bedsets in the alluvial fan FA; top of first beneath rock hammer (centre); two more to left of hammer. (b) Organized framework cobble conglomerate with alternating cobble- pebble tabular layers, similar to conglomeratic “couplets” described by Blair (2000b). Lens cap diameter is 5 cm. (c) Disorganized framework, cobble conglomerate, with a granular sand accumulation above a framework pebble. Coin is 2.5 cm in diameter. (d) Disorganized framework, cobble conglomerate from the alluvial fan FA, notebook for scale is 20 cm long. Jo et al. (1997), in which an erosional lower boundary, The organized conglomerate facies (Gco) is generally weakly developed clast imbrication, crude stratification and interpreted as gravel sheets or longitudinal gravel bars (e.g. lack of inverse grading were considered to be streamflow Reid and Frostick, 1987; Todd, 1989). Weak internal characteristics. The tabular morphology of similar facies stratification within these deposits probably represents has been attributed to deposition by bedload sheets or low- waxing and waning of individual flood flows. Well-stra- relief longitudinal bars (e.g. Reid and Frostick, 1987; Todd, tified units are similar to a facies of alternating coarse–fine 1989). Because these conclusions are consistent with our conglomerate “couplets” described by Blair (2000b) from observations, this facies (Gcd) is considered to have been the Hell's Gate alluvial fan in Death Valley. These “coup- rapidly deposited (intact framework, poor sorting and non- lets” were interpreted to have been deposited under upper- imbrication) by unconfined high-magnitude stream flood flow-regime conditions during the washout stage of the flows. Sandstone cross-laminae adjacent to clasts indicate standing-wave cycle based on similarities with documented that deposition of the sand occurred within an intact gravel features of supercritical sheetflood events (Blair and framework by sediment-laden currents. Where coarse to McPherson, 1994). Blair (2000b) surmised that the “auto- granular sand mounds occur atop clasts, the sediment is cyclic growth and destruction of standing waves during a interpreted to have been transported downward through a single sheetflood produces 50–250 cm thick sequences of gravel framework to rest upon upper clast surfaces. Rare multiple couplets”. These features are identical to some of inverse grading of the matrix is considered to be formed by our observations, and thus we consider that for the well- a process of sieving, or mechanical sorting through the stratified conglomerates, deposition occurred by bedload framework (Hooke, 1967). processes during high-magnitude unconfined stream flow
  • 9. T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 55 conditions, possibly due to the washout of standing waves. higher order of genetic significance. The upward decrease The development of bedforms differentiates this facies in clast size may be a function of upstream aggradation of from the clast-supported disorganized conglomerate facies the alluvial fan, widening of the active lobe or a decrease in (Gcd), which lacks well-developed stratification. Lenticular trough cross-stratified conglomerate (Gt) is interpreted to have in-filled trough-shaped channels following periods of incision between flood events. This facies is commonly observed within alluvial fan deposits (Jo et al., 1997; Rhee et al., 1998; Blair, 1999, 2000a,b) and is considered to represent secondary, non-catastrophic processes that occurred between infrequent sheetfloods. Cross-stratified sandstone (St) and laminated mudstone (Fl) indicate that low-energy streamflow conditions pre- vailed over a laterally continuous gravel substrate, infilling pits and gullies with sand and mud. Mud curls record subaerial exposure and desiccation between streamflow events. Since the coarsest (up to boulder grade) conglomeratic facies exhibit streamflow indicators, we must consider the reason for streamflow to prevail over debris flow de- positional processes. Blair (1999) has described adjacent alluvial fans in Death Valley, one streamflow-dominated, the other debris flow-dominated. The debris flow-do- minated alluvial fan was fed by a source region of sedi- mentary rocks; the streamflow-dominated alluvial fan had a source region of crystalline rock. Therefore, the dif- ference was not the gradient of the valley wall nor dis- charge, but simply the type of sediment supplied. Clast lithologies from the alluvial fan deposits at Thirty Mile Lake and South Channel match the underlying crystalline basement rocks, consistent with Blair's (1999) theory for streamflow predominance to be a function of derivation from weathered crystalline rock in the source region. 2.1.3. Facies successions Two typical bedset end members consist of: (1) 1–3 m of disorganized cobble to boulder conglomerate (Gcd) overlain by metre-scale channel-fill conglomerate facies (Gt) and/or trough cross-stratified sandstone; or (2) a few metres of organized cobble to pebble conglomerate (Gco), incised by channel fill facies (Gt), trough cross-stratified sandstone (St), and/or overlain by parallel laminated mudstone and siltstone (Fl). Coarse, tabular sheetflood deposits (Gcd, Gco) represent the main accretion units. Bedsets are commonly arranged in pairs that have a composite upward-fining character over 5–10 m (Figs. 6a and 7). Although stratal surfaces within the paired bedsets are discontinuous, the erosional surfaces above ubiquitous sandstone caps that bound the couplets are laterally con- tinuous (N100 m) where viewed transverse to inferred Fig. 7. Stratigraphic section from Thirty Mile Lake study area displaying paleoflow. Whereas bedsets represent sheetflood deposi- upward-fining interval in the alluvial fan facies association. Lithofacies tion and subsequent reworking, coupled bedsets have a abbreviations from Miall (1977) and Jo et al. (1997), see Table 1.
  • 10. 56 T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70
  • 11. T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 57 gradient as the toe migrates forward. The inactive lobe is to granular sandstone matrix. Clasts form a condensed, marked by low-energy streamflow and suspension deposi- imbricated framework that is moderately to well-sorted. tion indicated by stratified sandstone and laminated Tabular beds range in thickness from 10 cm to several mudstone. metres. Sheets of massive conglomerate are continuous Blair (2000b) has described similar stratigraphic units for tens of metres but are discontinuous over hundreds of from Death Valley alluvial fans and noted that generally 2 metres perpendicular to the inferred paleoflow direction. to 8, 50–250 cm sheetflood deposits capped by gully-fill Rare lenticular beds of trough cross-stratified con- or eolian facies were bound by “progressive tectonic un- glomerate (Gt), 30 cm to 50 cm thick incise into the conformities”. These are on the scale of our 5–10 m paired massive conglomerate, but are less prominent than in the bedsets; however, Blair (2000b) was able to observe a alluvial fan facies association. Angular mudstone clasts bedding discordance over the intrafan unconformity, con- are common. cluding that faulting had caused a down-drop of the fan. Medium- to thick-bedded, trough cross-stratified sand- Therefore, this type of stratigraphic unit may be consi- stone beds occur as solitary sets or compound sets up to a dered to represent a fault-generated increment of accom- metre thick, above thick beds of massive conglomerate. modation, where the succession records the characteristic Rare laminated mudstone (Fl) occurs at the tops of 10 m alluvial response: aggradation of the fan surface. thick, upward-fining packages. Alternatively, Mack and Leeder (1999) have de- scribed 3–10 m thick “alluvial fan cyclothems”. These 2.2.2. Lithofacies interpretation were considered to form primarily due to the combined The gravel-bed braided stream FA is distinguished effects of vegetative cover and precipitation (minimum from the alluvial fan facies assemblage by a more sediment yield would correspond to peak precipitation homogeneous, better sorted, imbricated and more con- due to the binding of sediment by vegetation, and vice densed framework conglomerate. Clast imbrication in versa). This model obviously would not apply to alluvial facies Gcm implies bedload transport. The condensed fan deposits from the Baker Lake Basin, because of an framework and better sorting indicate a more sustained absence of vegetative cover in the Paleoproterozoic. streamflow and less rapid aggradation than inferred for Commonality suggests that this nested upward-fining conglomeratic facies from the alluvial fan facies assem- stratal pattern is intrinsic to the alluvial fan depositional blage. Massive texture makes it difficult to differentiate environment in fault-bounded basins from the Precam- gravel-sheet from longitudinal gravel bar deposits, a brian through the Phanerozoic. Since alluvial fans aggrade common characteristic of gravel-bed braided stream via lobe accretion and abandonment, this punctuated deposits (Miall, 1977). The lateral discontinuity of process superimposed on a gradual fault-induced subsi- lithofacies perpendicular to the inferred paleocurrent dence, though unrealistic, would result in the observed direction indicates that deposition occurred in channels succession. Thus, these units do not necessarily indicate smaller than a few hundreds of metres in width. specific fault motions but that subsidence was sufficient to Cross-stratified, channel-fill conglomerate (Gt) prob- provide the grade required for alluvial fan formation. ably represents reworking of abandoned-channel gravel sheets prior to deposition of sandstone. Mudstone rip- 2.2. Facies association 2: gravel-bed braided stream up clasts within conglomerate sheets attest to intermittent suspension deposition, although the deposits were subse- 2.2.1. Lithofacies description quently eroded and transported, between flood events. Clast-supported massive conglomerate facies (Gcm) Trough-cross stratified sandstone was deposited in is pebble- to cobble-grade with rare boulders in a coarse abandoned channels. The laminated mudstone (Fl) and Fig. 8. Sedimentological features from lithofacies associations (FA) 3–7. Lens cap is 5 cm. (a) Linguoid ripples above primary current lineation from the sand- bed braided stream FA; knife is 10 cm long. (b) Erosional surface marked by granule lag truncating medium-grained, cross-stratified sandstone and overlain by inversely graded sandstone laminae, of the sand-bed braided stream FA. The overlying laminae, interpreted as eolian, indicate that this is a deflation lag formed by winnowing of fluvial deposits. (c) Inversely graded lower foresets of a 1.5 m thick eolian cross-set, interpreted as sub-critically climbing wind ripple lamination. Faint cross-laminae are visible within these foresets. (d) Floodplain FA, in which an inclined planar-laminated sandstone (Sh) interval lies between units of horizontally laminated mudstone–siltstone–sandstone (Fl). Some inclined sets are interlaminated with mudstone and form mudstone dishes indicative of subaerial exposure (inset). To the right side of the photograph, on an oblique exposure, arrows highlight inclined surfaces. This is interpreted as a crevasse splay that prograded onto a mud-rich floodplain, was abandoned and subsequently overlain Fl facies. Rock hammer is 75 cm long. (e) Playa FA, showing alternating cross-stratified sandstone grading upward into laminated mudstone with abundant desiccation cracks. (f) Wave-ripple lamination from a rippled sandstone sheet from the lacustrine FA, interpreted as a mouth bar deposit. (g) Erosional surface and lag truncating cross-stratified sandstone overlain by mudstone. This is interpreted as a wave-ravinement surface overlying an interdistributary channel in a deltaic environment. (h) Normally graded, upward- thinning and upward-fining laminae, containing mudstone clasts: interpreted as delta-front turbidite deposits. Rapidograph pen is 1 cm wide.
  • 12. 58 T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 trough cross-stratified sandstone that sharply overly that displays prominent primary current lineation (Fig. conglomerate probably represent low energy deposition 8a). Mudstone drapes are ubiquitous above lenticular following avulsion and channel abandonment (Miall, ripple bedforms. 1977), similar to gravel-bed abandoned channel deposits from the Waimakariri River in New Zealand (Reinfelds 2.3.2. Lithofacies Interpretation and Nanson, 1993). Alternatively, where non-erosional Thin conglomerate beds at the base of upward-fining contacts exist between successive beds of conglomerate, bedsets indicate that coarse sediment load was deposited sandstone and mudstone, the upward-fining pattern may at the base of braided channel-fill, perhaps as braid bars. reflect deposition from waning flood (Miall, 1977). Trough cross-stratified sandstone is a result of three- dimensional dune migration, particularly evident where 2.2.3. Facies successions dune bedforms are exposed. Horizontally stratified sand- Upward-fining packages of the gravel-bed braided stone with primary current lineation is interpreted to stream facies assemblage are considered to be deposits of have been deposited under upper-flow-regime condi- superimposed bars (Miall, 1977). Bedsets are arranged in tions (Allen, 1964; Southard and Boguchwal, 1973). The 5 to 10 m aggradational to mildly upward-fining suc- tabular geometry, lack of lateral accretion surfaces, cessions of massive conglomerate (Gcm), capped by predominance of trough cross-stratification, occurrence sandstone (St) or cross-stratified pebble conglomerate of upper-flow-regime plane beds are consistent with (Gt). Such packages are considered to represent vertical deposition by shallow sand-bed braided streams (cf. aggradation followed by channel belt switching (Miall, Miall, 1977). 1977), represented by sandstone deposition in abandoned Rippled sandstone (Sr) capped by mudstone at the top channels. of upward-fining bedsets is inferred to represent waning of flood flow followed by suspension deposition. Where 2.3. Facies association 3: sand-bed braided stream rippled sandstone and upper-flow-regime plane beds are the dominant lithology in fine-grained sandstone succes- 2.3.1. Lithofacies description sions, this represents sheetflood deposits for which the Massive, clast-supported conglomerate (Gcm) is a grain size was too small to form dunes (cf. Southard and minor component of the sand-bed braided stream FA, Boguchwal, 1990), where linguoid ripples transform occurring as thin beds at the base of upward-fining bed- directly into upper-flow-regime plane beds with increas- sets. Sets of fine-grained to pebbly, trough cross-stratified ing stream velocity (Baas, 1994). Mudstone records sandstone (St) vary in thickness from 10 cm to 1 m, waning flood or abandoned-channel deposition. bedforms of three-dimensional dunes occur on certain Cross-stratified sandstone with inversely graded fore- outcrops. These bedsets commonly have a pebble lag and sets record wind ripple migration during eolian reworking abundant mudstone clasts at the base. Horizontally strati- of abandoned channel deposits (cf. Hunter, 1977). fied sandstone facies (Sh) consists of planar, horizontally laminated, well-sorted, fine- to medium-grained sand- 2.3.3. Facies successions stone that commonly displays primary current lineation. Upward-fining bedsets, 0.5–5 m thick, typically Bedding geometry is predominantly tabular, and large- consist of an erosive base with pebble lag, overlain by scale lateral accretion surfaces appear to be absent. predominantly trough cross-stratified sandstone that Fine- to medium-grained ripple cross-stratified sand- passes gradationally upward into horizontally stratified stone (Sr) infrequently occurs at the top of upward- sandstone, current-rippled sandstone and laminated fining bedsets dominated by medium to thick sets of mudstone (Fig. 9). However, there is a spectrum of trough cross-stratified sandstone (St). heterolithic to sandstone-dominated deposits. The most Laminated mudstone (Fl) occurs at the top of upward- proximal deposits contain conglomerate at the base of fining successions. Trough cross-stratified sandstone (Ste) metre-scale cycles that fine upward to sandstone, depo- with inversely graded foresets and pinstripe lamination also sited by a waning flood flow that carried a load of sand occurs at the top of upward-fining successions. These sets and gravel. Medial deposits consist of predominantly are typically 10 to 50 cm thick, but locally are 1 m thick. In cross-stratified sandstone. Less proximal deposits consist thin sets (5–10 cm), the foreset angle can be very low, about of typically less than metre-scale upward-fining cycles of 5°; thick beds commonly overlie symmetrical ripples (Sw). sandstone with abundant mud drapes, capped by lami- As a sub-association occurring over tens of metres in nated mudstone deposited by waning streamflows that thickness, rippled sandstone (Sr) may be exclusively carried a mixed load of sand and mud. This variation is interbedded with horizontally stratified sandstone (Sh) interpreted to reflect a spectrum of facies from shallow
  • 13. T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 59 Fig. 9. Stratigraphic section from Thirty Mile Lake study area displaying facies successions from braided stream and floodplain facies associations. Lithofacies abbreviations from Miall (1977); see Table 1.
  • 14. 60 T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 braided stream to mixed-load, ephemeral sheetflood (e.g. dinate trough cross-strata (St) and laminated mudstone Sønderholm and Tirsgaard, 1998). In deposits rich in (Fl). Either symmetrical or asymmetrical ripples may mudstone, desiccation cracks are common, indicating that dominate metre-scale intervals of predominantly inter- between flood events the river bed was subaerially ex- laminated sandstone and mudstone. The occurrence of posed. Inversely graded sandstone laminae, characteristic desiccation structures is variable; an absence of desicca- of wind transport, typically occur at the top of upward- tion cracks is coincident with a preponderance of symmet- fining cycles where mudstone is absent, indicating eolian rical ripples. reworking of dry river beds (Fig. 8b). While bedsets represent flood events and deposition- 2.4.2. Lithofacies interpretation abandonment of small braided channels, multiple bed- The FA of current ripples, mudstone, and desiccation sets comprise 5–15 m thick composite, upward-fining cracks suggests periodic overbank flooding followed by successions capped by prominent, laterally continuous suspension deposition and subaerial exposure within a (up to 50 m at least) mudstone or eolian sandstone (Fig. floodplain setting. Current ripples and planar laminae 9). These multiple channels are inferred to comprise a lacking primary current lineation are indicative of lower- larger channel tract. The upward-fining trend indicates flow-regime deposition, and wave ripples of periods that within the channel tract aggradation was accompa- where water remained pooled on the floodplain after nied by a decrease in stream competency. Aggradation floods. Thin, less than 2 m thick intervals of upward- would result in a reduction of slope, channel switching fining cross-stratified sandstone represent small crevasse and abandonment, to produce upward-fining patterns in channels that traversed the generally mudstone-domi- fluvial deposits capped by fine-grained or eolian deposits nated substrate (cf. Rhee et al., 1993). Deposits of eolian (cf. Miall, 1977; Hjellbakk, 1997). These thicker up- sandstone (Ste) indicate subaerial sand dune migration ward-fining successions therefore likely represent ag- over the floodplain where flooding was insufficient to gradation and abandonment of a braided channel inhibit dune formation. complex (Fig. 9). The low-angle inclined sets of parallel-laminated sandstone contain mudstone laminae, discounting an 2.4. Facies association 4: floodplain eolian origin. Desiccation features indicate intermittent subaerial exposure. The low angle of inclination is 2.4.1. Lithofacies description inconsistent with formation by dune migration, but too The floodplain FA is typically composed of the steep to have been deposited as upper-flow-regime plane lithofacies Fl, Sr, Sh, St and Ste. Rippled sandstone (Sr) beds. The lack of a vertical progression of structures, for with nearly ubiquitous mudstone drapes is typically inter- example from dune to ripple-scale cross-sets, suggests stratified with 5 to 20 cm thick laminated mudstone (Fl). that this was not a fluvial channel. The horizontal laminae Sedimentary structures and bedforms include, ripple are therefore considered to have been deposited during lamination and cross-lamination, symmetrical and asym- lower-flow-regime conditions on an inclined sand surface metrical ripples, and V-shaped polygonal cracks in mud- that migrated over floodplain mud. This is similar to stone. Thin intervals (generally less than 2 m) of upward- crevasse splays described from the sand-bed braided fining, trough cross-stratified sandstone (St) occur within Niobrara River (Bristow et al., 1999), in which ∼1 m mudstone-dominated sections. Cross-sets are less than thick inclined sets of horizontal lamination and ripple 50 cm thick and typically contain up to 5 cm angular lamination overlie floodplain fines. We therefore interpret mudstone clasts. Cross-stratified sandstone with inversely inclined sets of laminated sandstone as crevasse splay graded foresets (Ste; Fig. 8c) occurs at the top of upward- deposits that emanated from the thin trough cross- fining intervals, typically as single cross-sets up to 1 m in stratified sandstone-dominated (St) crevasse channels. thickness. Bedding geometries are typically tabular- Intervals dominated by the wavy bedded facies suggest horizontal; however, low-angle inclined cosets, cumula- prolonged periods where pools of water might have re- tively less than 1 m thick, overlying and overlain by ho- mained on the floodplain, perhaps due to a near-surface rizontally laminated mudstone occur locally (Fig. 8d). water table. Such deposits have been described from These inclined strata consist of thin beds of parallel- recent braided fluvial floodplain deposits by Bristow et al. laminated, fine- to medium-grained sandstone overlain by (1999) and ephemeral streams by Martin (2000). mudstone drapes, some of which display desiccation Floodplain deposits with wave ripples and an apparent features such as mudcracks and mud curls. absence of desiccation features have also been described As a subdivision within this FA, is the occurrence of from a Mesoproterozoic braided fluvial system in East wavy bedded sandstone and mudstone (SFw) with subor- Greenland by Sønderholm and Tirsgaard (1998).
  • 15. T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 61 Understanding of the relationship between gradient, pebbly sandstone indicates that interdune areas were sub- sediment grain size and stream type is based mainly on ject to streamflows since the pebbles are too large to have systems that include sediment-binding vegetative cover. In been transported by wind, and so these fluvial deposits the absence of vegetation, braided streams might exist at were reworked resulting in pebble layers interpreted as lower gradients, lower discharge regimes or finer sediment lags. The large-scale cross-sets are therefore considered to grain sizes. Therefore, heterolithic braided streams and be formed by the migration of eolian dunes, with wind- associated floodplains may be the pre-vegetative equiva- ripple lamination preserved on lower slipfaces, and inter- lent to meandering streams and floodplains with respect to dune areas characterized by standing water with infre- these factors. However, the predominance of braided quent streamflow influx from surrounding alluvial plains. streams, even in the finest deposits and hence lowest gra- This is characteristic of a wet condition eolian system dients, could alternatively be due to ephemeral flash-floo- (Kocurek and Havholm, 1993). ding that resulted in episodic high-discharge streamflow. In Simpson et al. (2004) consider eolian deposits from the contrast to recent floodplain deposits, such as along the Baker Lake Basin to consist of two general occurrences, Waimakariri River which generally contains very few pre- as thin sandsheets dominated by wind ripple lamination served depositional structures (Reinfelds and Nanson, associated with ephemeral lacustrine and fluvial deposits, 1993), floodplain deposits from the Paleoproterozoic and thicker (up to 100 m) erg deposits dominated by large- Baker Lake Basin contain a diverse array of structures scale cross-sets (up to 6 m thick). The eolian lithofacies due to the absence of bioturbation or root growth. Together assemblage described herein is primarily based upon with other Precambrian deposits, such as the Mesoproter- observations from northern Christopher Island, where it is ozoic braided fluvial system described by Sønderholm and represented by up to 10 m thick accumulations of large Tirsgaard (1998), they provide a perspective on floodplain scale (up to 2 m) cross-sets of sandstone associated with deposits generally not available from the Phanerozoic. ephemeral lacustrine and fluvial deposits. The presence of interdune deposits between individual cross-sets indicates 2.5. Facies association 5: eolian these were not compound dunes and therefore equivalent to the thin sandsheet subdivision of Simpson et al. (2004). 2.5.1. Lithofacies description The eolian FA is typified by up to 10 m thick accumu- 2.5.3. Facies successions lations of trough cross-stratified sets, 20 cm to 2 m thick, of There are two types of bedset within the eolian facies fine- to medium-grained, well-sorted sandstone (Ste). Basal assemblage (Fig. 10). The first is relatively simple and foresets are typically reverse-graded fine- to medium- consists of large-scale trough cross-stratified sandstone grained sandstone (Fig. 8c), and most exhibit pinstripe (Ste) with wave-rippled sandstone bottom sets (Sw) or lamination (cf. Fryberger and Schenk, 1988). Upper fore- cross-stratified sandstone (St), considered to probably sets are wedge-shaped, tapering downward, and normally represent dune and interdune strata respectively (Kocurek, graded, locally coarse- to medium-grained sandstone. The 1981). tops of cross-sets are typically truncated by horizontal The second type of bedset is more complex. A com- surfaces. These may be associated with granule or pebble plete vertical facies succession consists of: thin (∼10– layers, or cross-stratified pebbly sandstone (St). Between 20 cm) cross-stratified pebbly sandstone (St); pebble or these erosional surfaces and the succeeding large-scale granule lag; approximately 10–20 cm thick interstratified cross-set are 10–20 cm thick intervals of wave-rippled sandstone and mudstone with prominent wave ripples sandstone (Sw) and/or interlaminated mudstone (SFw). (SFw, Sw); overlain by metre-scale eolian cross-sets. The pebbly sandstone is rarely preserved, and so bounding 2.5.2. Lithofacies interpretation surfaces for multiply stacked bedsets are commonly the Pinstripe lamination and reverse-graded foresets are horizontal erosional surfaces. The interpreted succession interpreted as sub-critically climbing translatent stratifi- of depositional events is: fluvial influx of pebbly sand; cation resulting from the migration of wind-ripples over erosion to produce the lag; intermittent wave currents and subaerial dune slipfaces (cf. Hunter, 1977). Wedge- suspension deposition; followed by metre-scale eolian shaped, normally graded foresets are interpreted as grain- dune migration. These bedsets occur as multiply stacked flow deposits. Intervals of wave rippled sandstone (Sw) sets, and so fluvial sandstone overlies eolian cross-sets, and/or interlaminated mudstone (SFw) at the base of representing streamflow flooding of the eolian dune field eolian cross-sets are considered to be wet-condition inter- prior to erosion. dune deposits indicating a near surface water table (Ko- Two potential processes for producing the horizontal curek and Havholm, 1993). The minor occurrence of erosional surfaces are wind deflation and wave-induced
  • 16. 62 T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 erosion. In the first case, deflation of the eolian dune field face of deflation may have been controlled by the ground would be accompanied by streamflows, accounting for water table as a Stokes surface (Stokes, 1968; Fryberger fluvial sandstone overlying the eolian cross-sets. The sur- et al., 1988; Kocurek and Havholm, 1993). Subsequent Fig. 10. Stratigraphic section from northwest Christopher Island study area, showing lacustrine, eolian and playa facies assemblages.
  • 17. T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 63 erosion following fluvial deposition may have been in- up to 5 cm deep filled with sandstone from the overlying hibited by formation of an armoured pebble lag, as ob- bed are prominent. served in periglacial eolian deposits of Iceland (Mountney and Russell, 2004). This would be followed by shallow 2.6.2. Lithofacies interpretation and succession subaqueous conditions with intermittent wave currents and Thick mudstone layers indicate sustained periods of suspension deposition recorded by the interstratified wave suspension deposition; deep v-shaped desiccation cracks rippled sandstone and mudstone laminae. In the absence of indicate subaerial exposure; thin cross-stratified sandstone streamflows an eolian dune field was re-established. beds overlain by mudstone indicate that bedload deposition With respect to wave-induced erosion, initial base level preceded a resumption of suspension deposition. The de- (groundwater table) would be steady or low during eolian positional environment was characterized by playa lake dune field formation. A rise in base level would be accom- expansion due to episodic flooding, leading to sustained panied initially by an influx of fluvial streamflows, then by suspension deposition to form a mud flat environment (5– shallow standing water as adjacent playa lakes expanded. 20 cm of laminated mudstone), followed by subaerial Wave currents would rework the substrate resulting a ho- exposure representing playa lake contraction and desicca- rizontal erosion surface, pebble lag and overlying wave- tion of the mudflat. rippled sandstone. This process is analogous to a trans- The basic depositional unit of this association is an gressive surface of erosion. Contraction of an adjacent upward-fining 10–40 cm cycle of sandstone to mudstone, playa lake was accompanied re-establishment of the eolian which represents playa lake expansion followed by con- dune field. traction and desiccation, likely recording climatic fluctua- It is difficult to determine whether the pebble lags record tions. Successions of these cycles are generally less than wind deflation or transgressive erosion; by association the 5 m thick, but can reach thickness' greater than 50 m overlying SFw/Sw facies are consistent with the latter, (Rainbird et al., 1999). Since this facies association is however a combination of processes is probable. Sweet typically intercalated with eolian and lacustrine facies, we (1999) rationalized a rising water table and wind deflation interpret it to have been deposited in a playa lake-mud flat by supposing that as lake expansion occurred sediment environment. supply from lake margins was cut off. Winds blowing off With respect to the association with eolian deposits, a the playa margin were undersaturated with respect to sand prevalence of playa over eolian environment could be due and effective at deflating dunes. In the Baker Lake Basin, to a relatively higher water table that periodically dam- subsequent to removal of eolian sediment supply and de- pened the substrate sufficiently to inhibit eolian dune flation, shallow lacustrine inundation may have been ac- growth, or there may have been a higher proportion of fine companied by wave erosion and additional planation. sediment. Considering the proximity of a vegetation-free Both models involve rising base level: If base level sandy braidplain, the playa environment was more likely a controlled the erosion surface, then base level fluctuations product of a relatively higher water table. control the accommodation increment in eolian systems, At southern Christopher Island the playa facies is consistent with existing theories for preservation of eolian dominated by mudstone with desiccation cracks and it accumulations (Stokes, 1968; Kocurek and Havholm, reaches a maximum thickness of 50 m (Rainbird et al., 1993; Carr-Crabaugh and Kocurek, 1998; Simpson et al., 1999). This implies a significant source of mud-grade 2004). sediment. Macey (1973) identified detrital phlogopite in This facies association therefore represents environ- the Kazan Formation from southern Christopher Island ments without significant fluvial sediment flux where and proposed that Christopher Island Formation volcanic eolian dunes fields were able to develop, which were and volcaniclastic deposits had supplied volcaniclastic subject to episodes of flooding during expansion and sediment. These chocolate brown, volcaniclastic rocks contraction of an adjacent playa lake in response to base contain significant amounts of ash-sized particles (Blake, level fluctuations. 1980; Rainbird et al., 1999), which indicates the avail- ability of a large volume of fine sediment to an ephemeral 2.6. Facies association 6: playa/mudflat lacustrine environment. 2.6.1. Lithofacies description 2.7. Facies association 7: lacustrine delta This FA is dominated by 5–20 cm thick layers of mudstone (Fm) interstratified with 5–20 cm thick trough 2.7.1. Lithofacies description cross-stratified sandstone (St) and ripple cross-stratified The St facies occurs as 0.2–0.8 m trough cross-sets sandstone (Sr; Fig. 8e). Within mudstone, V-shaped cracks that form 1–2 m thick cosets. Mudstone clasts are
  • 18. 64 T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 common at the base of cosets. Mudstone drapes are by suspension deposition, but subject to wave currents common at the top of cross-stratified sets and on foresets. and occasional bedload deposition of sand. The lack of These units have lenticular bases and incise into under- desiccation features, as in the playa deposits (FA 6), and lying deposits, which may include facies Fl or St. brief periods of wave currents and bedload sedimenta- Laminated mudstone and siltstone facies (Fl) is inter- tion, would be consistent with deposition in a protected stratified with starved symmetrical ripples and beds of bay. The pebble layer at the base is interpreted as a lag, sandstone generally less than 5 cm thick. Pebble lags and together with wave ripples is suggestive of a pre- occur at the base of mudstone-dominated intervals that ceding phase of wave erosion. Subsequent incisement by overlie pebbly sandstone (Fig. 8g). Desiccation features channels that record inter-streamflow slack water are absent. These intervals reach thicknesses up to conditions is consistent with deposition in an interdis- 50 cm and are commonly incised by the 1–2 m thick St tributary bay (cf. Elliott, 1974; Fielding, 1984). units. Within the rippled sandstone sheets, the dominance of Conversely, mudstone drapes are less common in the symmetrical ripples indicates the prevalence of oscillat- symmetrical-rippled sandstone facies (Sw). Ripple types ing currents and therefore wave processes. In-phase include symmetrical ripples that occur as reworked climbing ripples indicate high rates of sedimentation. cross-set tops, and climbing ripples, locally supercriti- Ubiquitous wave-ripple reworked cross-set bed-tops cally climbing (Fig. 8f). Together with thin (5–10 cm) indicating that unidirectional currents were consistently cross-stratified sandstone (St) sets with symmetrical- followed by wave currents, are suggestive of sand bars rippled tops, the rippled sandstone comprises tabular subject to shoaling waves. These features and the sheeted sheets 1–2 m in thickness. geometry are consistent with deposition at a lake margin An uncommon facies within this association is delta front mouth bar (cf. Plint and Browne, 1994; normally graded, horizontally laminated sandstone (Sh; Marshall, 2000). Fig. 8h). It is typified by upward-fining and upward- The graded horizontal lamination is identical to Bouma thinning laminae comprising beds 10–15 cm thick. Basal division Td, which is characterized by fine parallel lami- laminae are coarse-sand grade; upper laminae are fine to nation and textural sorting (Bouma, 1962). Oaie (1998) very fine sand. Angular mudstone clasts of mm-scale are described an Upper Proterozoic occurrence of mudstone common in the thicker laminae. Very thinly laminated microclasts from the T3 subdivision (distinctly laminated siltstone and mudstone occur at the top of upper graded sandstone, equivalent to Td; Stow and Shanmugan, 1980), sandstone laminae; locally these thin laminae are com- and also noted features such as continuous or discontin- posed almost entirely of horizontal mudstone microclasts. uous parallel lamination due to the orientation of micro- Individual laminae can be traced laterally over a few clasts parallel to bedding planes. Ripple cross-laminated metres, to the extent of outcrop (and lichen) limitations, sandstone associated with graded laminae corresponds to and beds are continuous for more than 100 m. Trough Bouma division Tc. These packages of Bouma Tc–d divi- cross-bedded sandstone with up to 10 cm thick inverse to sions locally have wave-ripple reworked tops, and closely normally graded foresets is associated with this facies, as overlie cross-sets that have wave-ripple reworked tops, well as ripple cross-laminated sandstone (Sr). indicating that they were deposited above storm wave base. These upward-thinning and upward-fining units 2.7.2. Lithofacies interpretation with ripple cross-stratified sandstone are interpreted to be Upward-fining bedsets of trough cross-stratified sand- turbidites, reflecting delta front sediment gravity flow stone (St) forming sets that incise into underlying deposits processes. In the absence of tidal features, these turbidites are considered to be channel deposits. Mudstone drapes, are the best indication of a lacustrine environment. To- including those on foresets, indicate suspension deposi- gether, the association of turbidites, distributary channels, tion within channels between streamflow events. Angular interdistributary bays and rippled sandsheets comprise a mudstone clasts are interpreted as mudstone rip-ups. perennial lacustrine deltaic environment. Braided stream deposits (FA 3) are characterized as an ephemeral, high-discharge fluvial system. The channels 2.7.3. Facies successions within this facies association record streamflows alter- There are two types of generally upward-coarsening nating with standing water suspension deposition, per- successions (Fig. 10). In the first, the base is sharp and haps reflecting seasonal discharge within distributary erosion is typically indicated by a transgressive lag channel in a lacustrine environment. overlain by laminated mudstone (Fl). This is succeeded by The association of facies Fl with wave ripples and thin an upward-coarsening interval of cross-stratified sand- beds of sandstone indicates an environment dominated stone with abundant mudstone clasts, which is truncated
  • 19. T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 65 and incised by an upward-fining interval of cross- fans fed gravel-bed braided streams at their base, which, stratified sandstone. Employing the distributary/interdis- with decreasing gradient and competence, graded into tributary bay model presented by Elliott (1974), we in- sand-bed braided streams. The braided streams occur terpret this as a prograding mouth bar overlain by an throughout the basin from the inferred paleomargin (e.g. upward-fining distributary channel. Such distributary Thirty Mile Lake) to the depocentre (Christopher Island) channel deposits generally display wave-reworked tops, (Fig. 11). Paleocurrent data define two drainage patterns for as indicated by wave ripples or a lag. This is likely these braided streams: (1) near the basin margins the trend because an abandoned distributary channel will be a is transverse to the margin (Fig. 4), and (2) at the centre of positive feature, and subject to wave erosion at the delta the elongate Baker Lake sub-basin, where paleocurrent data edge until interdistributary bay sedimentation “catches define an axial drainage system (Figs. 2 and 5). Together up” and buries the sand bar. with asymmetry of stratigraphic thickness of the Baker The second type of upward-coarsening succession is Lake Group from the northwest to the southeast, ∼500 m similar to the first, with a sharp base overlain by mudstone and N 2000 m, respectively (Hadlari and Rainbird, 2000; and upward-coarsening sandstone. Turbidites may occur Rainbird and Hadlari, 2000), the drainage patterns are at the base of these upward-coarsening intervals. Sheets of consistent with deposition in a half-graben (e.g.. Leeder, wave-rippled sandstone (Sw) and the sub-facies of thin 1995), the bounding fault of which was adjacent to the cross-stratified sandstone beds with wave-rippled tops southeast margin (Fig. 2). occur at the top, instead of a distributary channel deposit. The floodplain FA is associated with the sand-bed Similar associations of upward-coarsening succession braided stream FA, but also occurs in stratigraphic contact and thin cross-stratified sets with wave-rippled tops have with eolian, playa and lacustrine FAs. Prominent within been described by Plint and Browne (1994) from a the floodplain depositional environment are indications of Phanerozoic strike-slip basin, and interpreted to represent standing water, such as abundant wave ripples and local the lake margin bay mouth bar of a lacustrine delta. We paucity of desiccation features. Similarly, wet-condition similarly interpret this succession as a bay mouth interdune deposits characterize the eolian facies, where succession capped by progradation of a mouth bar at the thin sandsheet-type eolian deposits are interstratified lake margin. The rippled sandsheet is overlain by eolian within most facies of the Baker Lake Group throughout deposits, so continued progradation of the delta system was interrupted by relative lake level fall and eolian reworking of the delta top (Fig. 10). 3. Depositional model Examination of stratigraphic contacts and areal distribution of the various facies associations enables reconstruction of the paleobasin through a model of linked facies tracts. The alluvial fan FA occurs at the present day basin margin, primarily at kilometre-scale thickness along the southeastern basin margin. Evidence of local derivation includes boulder-sized angular clasts, similar to the underlying crystalline basement, even though contemporaneous volcanic centres were locally active within the basin. Paleocurrent data indicate alluvial transport was transverse to the basin margin (Fig. 4), which suggests that the present-day basin margin approxi- mates the paleobasin margin. The gravel-bed braided stream FA occurs in gradational stratigraphic contact with the alluvial fan FA. This, in turn grades into the sand-bed braided stream FA. The gradational transition indicates that these are linked facies and represent lateral transitions. The change in grain size and inferred depositional gradient therefore is representa- Fig. 11. Schematic block diagram of half-graben and facies tracts from the tive of a proximal to distal fluvial system; proximal alluvial Baker Sequence during the interval of localized felsic minette volcanism.
  • 20. 66 T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 the basin. Thicker eolian deposits, dominated by large- near Christopher Island (Fig. 2). This pattern indicates that scale cross-sets are primarily associated with lacustrine, the Baker Lake sub-basin was a hydrologically closed floodplain, and to a lesser degree braided stream FAs, are system: primary drainage was endemic rather than directed most common near the inferred basin axis along Kazan to an adjacent basin. At the depocentre, deltas fed into a River (Simpson et al., 2004) and the main depocentre at lake that was surrounded by floodplains, mudflats, and Christopher Island (Rainbird et al., 1999; Simpson et al., eolian dunes with prevailing wind directed northwest and 2004; Fig. 5). The playa–mudflat FA occurs primarily in southwest (relative to present geography). stratigraphic contact with the eolian FA on Christopher Island indicating a close spatial relationship near the main 4. Discussion: eolian deposits and paleoclimate depocentre of the Baker Lake sub-basin (Rainbird et al., 2003). The lacustrine delta FA has a small areal extent, Sedimentology of the Baker Lake Group reveals a exposed only at Christopher Island. The stratigraphic variety of climatic indicators. Eolian deposits, which are a transition from fluvial to lacustrine (though rarely com- measure of aridity, are primarily associated with lacustrine, plete) passes through, eolian, playa and floodplain facies floodplain, and to a lesser degree braided-stream facies assemblages, indicating that mud flats and eolian dunes (Fig. 10), and are most common near the inferred basin axis occupied lake margins adjacent to deltas, depending on along Kazan River (Simpson et al., 2004) and the main lake expansion or infilling, respectively. Paleocurrent data depocentre at Christopher Island (Rainbird et al., 1999; Fig. from northwestern Christopher Island (Fig. 4) indicate 11). In very thick deposits (30 to 100 m) of eolian sand- southwesterly streamflow. Therefore, northwestern Chris- stone, some cross-set bounding surfaces indicate dry inter- topher Island marked the eastern edge of the basinal dune conditions (Rainbird et al., 1999; Simpson et al., depocentre. Deltas prograded south and west, into the lake 2004). However, thinner sandsheet-type accumulations in basin, and were fed by braided streams that originated to association with lacustrine and floodplain facies, in parti- the northeast. The present-day basin margin ends at the cular at the inferred depocentre (Christopher Island), con- north shore of Baker Lake and it is likely that the tain a greater proportion of interdune deposits composed of paleobasin originally extended farther northeast, because interlaminated, wave-rippled sandstone and mudstone, these paleocurrent data indicate that sand-bed braided indicating flooding of interdune areas (cf. Kocurek and streams extend to the present margin instead of Havholm, 1993). Almost every facies association includes conglomerate that would be expected, if the present an eolian component: eolian reworking of abandoned northeast margin coincided with the paleobasin margin. channels, eolian sandstone sheets associated with playa– Paleocurrent data from delta-top eolian cross-sets (Fig. mudflat environments, and eolian sandstone interstratified 10) indicate southwesterly wind flow, assuming that dune with floodplain deposits. However, wave ripples and crests were oriented transverse to the primary wind direc- mudstone laminae within floodplain deposits record pe- tion. This appears to be a valid assumption, because the riods where standing water was relatively common. Deltaic paleocurrent directions are perpendicular to the trend of deposits indicate that a perennial lake existed at the main wave ripple crests within the delta complex. Other north- depocentre. These features confirm that the water table was western Christopher Island eolian paleocurrent data that close to the surface, inconsistent with an arid climate. indicate northwesterly aerial transport (Fig. 5) are simi- Climatic fluctuations occur at vastly shorter time scales larly perpendicular to wave ripple crest trends from inter- than the ∼45 Ma span of time represented by the Baker dune intervals, suggesting that waves were generated by a Lake Group. For example, the hyper-arid Rub Al Khali similar prevailing wind direction as the eolian dunes. eolian system of the Arabian Peninsula is presently the These paleocurrents are associated with braided stream world's largest erg; however, lacustrine and paleoground- deposits with southeast-directed paleocurrents, distinct water deposits such as travertine suggest that the climate from the aerial paleocurrent direction. was humid at 35–25 ka and 10–6 ka, coincident with Thus, considering the distribution of alluvial facies, precessional orbital parameters (Bray and Stokes, 2004). paleocurrent data and stratigraphic thickness (Hadlari and Furthermore, eolian systems are not restricted to hot- Rainbird, 2000; Rainbird and Hadlari, 2000), a model of climate environments; for example, the cold-climate Askja linked facies tracts for the Baker Lake sub-basin is set region periglacial sandsheet of Iceland (Mountney and within an elongate half-graben basin (Fig. 11). From the Russell, 2004). These relatively recent, biologically hostile margins, a transverse drainage system of alluvial fans to environments are analogous to those of the Baker Lake braided streams, with floodplains and eolian dunes, fed an Basin in that they developed on a non-vegetated landscape axial fluvial system. Axial drainage was primarily directed with sufficient sediment supply for eolian accumulation. In northeast and less extensively southwest to a depocentre the absence of sediment-binding vegetative cover in the
  • 21. T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 67 Paleoproterozoic, it is possible that eolian deposits are not The floodplain facies association primarily consists of necessarily an indication of an arid climate, but rather a interstratified sandstone and mudstone representing alter- mobile substrate adjacent to a viable sediment source (e.g. nating bedload and suspension deposition in an overbank active fluvial channel belts). Therefore, the Baker Sequence setting. Locally abundant wave ripples record standing deposits broadly suggest a variably semi-arid to semi- water subsequent to flood events, suggesting a shallow humid paleoclimate. With respect to lacustrine deposits, and fluctuating water table. Thin sandstone intervals re- related evaporite minerals and chemogenic lake beds present crevasse channels and inclined sandstone sets within the Angikuni sub-basin, Aspler et al. (2004) has represent crevasse splays. Eolian dunes indicate subaerial similarly suggested a wet paleoclimate with local arid reworking of abandoned fluvial channels. intervals for the Baker Sequence. The eolian facies association includes thin sand- sheets located adjacent to floodplains, playas and deltas. 5. Conclusion Cross-sets up to 2 m thick record eolian dunes bounded by wet-condition interdune intervals indicative of a near The alluvial fan FA consists of upward-fining stratal surface water table, which controlled accumulation of units 5–10 m thick. These indicate that the alluvial fan eolian deposits. This description is in addition to pre- developed by a succession of lobe accretion and aban- viously documented erg deposits at the Kunwak River donment events. The main lobe accretion units are (Simpson et al., 2004), and lesser erg deposits at south- represented by upward-fining, tabular units of the facies eastern Christopher Island associated with playa de- Gcd and Gco, respectively, which record rapid deposi- posits (Rainbird et al., 1999; Simpson et al., 2004). The tion of gravel sheets during high-magnitude streamflows occurrence of eolian deposits within most depositional followed by incisement during secondary low-magni- environments is considered to reflect reworking of tude streamflows. Inactive lobes were characterized by abuandant sand supply on the non-vegetated Precam- sand and mud deposition analogous to overbank pro- brian landscape. cesses on alluvial plains. The predominance of stream- The playa facies association is dominated by lami- flow processes was probably due to weathering and nated mudstone with desiccation cracks and subordinate erosion of crystalline rock in the source region, as in- trough cross-stratified sandstone, representing alternat- dicated by granitoid and gneissic clast lithologies. ing suspension deposition and desiccation of a lacustrine Alluvial fans were primarily located along the south- mudflat, punctuated by bedload flood events. This facies eastern margin of the basin, and combined with regional is associated with the eolian and lacustrine facies assem- paleocurrent and stratigraphic thickness variations blages, and represents a lake margin setting where ex- indicate that the primary basin-bounding fault of the pansion and contraction due to base level fluctuations Baker Lake sub-basin was adjacent to its present south- inhibited eolian sandsheet formation. eastern margin. The lacustrine delta facies association consists of The gravel-bed braided stream FA also preserves prodelta turbidites, rippled sandsheets that accumulated upward-fining bedsets, 5–10 m thick, which record as bay mouth bars, distributary channel sandstone and aggradation and lateral channel-belt switching. These interdistributary bay laminated, rippled sandstone– are differentiated from the alluvial fan facies by better mudstone. The deltaic deposits of northwestern Chris- sorting and condensed framework, with imbricated clasts topher Island record progradation toward a depocentre indicating more sustained streamflow and less rapid de- to the southeast. position. Conglomerate facies are discontinuous at scales In a three-fold subdivision of the volcanic stratigraphy, over 100 m, indicative of approximate channel widths. the lower subdivision comprises felsic minette flows and The gravel-bed FA is gradational between the alluvial fan volcaniclastics erupted at volcanic centres adjacent to and sand-bed braided stream FAs, and distributed from basin-margin alluvial fans. This was followed by volu- the basin margin through the basin axis. minous minette extrusion, in which flows and volcani- The sand-bed braided stream facies association clastic sediments spread from the volcanic centres to comprises 5–15 m thick upward-fining, stacked bedsets blanket most of the basin. Flows are common at Thirty interpreted as channel complex successions. Aggrada- Mile Lake, but are rare at Christopher Island where vol- tion of mixed-load ephemeral sheetflood and shallow, caniclastics comprise most of the volcanic deposits. sand-bed braided streams was followed by upstream Areally restricted felsite domes comprise the upper part of channel-belt switching. The abandoned channels were the volcanic succession. Where the basin was not entirely sites of suspension deposition of overbank fines and filled or overfilled due to minette volcanism, gravel-bed eolian reworking. braided streams transported felsite clasts basinward.
  • 22. 68 T. Hadlari et al. / Sedimentary Geology 190 (2006) 47–70 The sedimentology of the Baker Lake Group indicates a Bray, H.E., Stokes, S., 2004. Temporal patterns of arid-humid transverse drainage system of alluvial fans to braided transitions in the south-eastern Arabian Peninsula based on optical dating. Geomorphology 59, 271–280. streams, with floodplains and eolian dunes adjacent to Bristow, C.S., Skelly, R.L., Ethridge, F.G., 1999. Crevasse splays from inactive channels. This transverse system fed an axial the rapidly aggrading, sand-bed, braided Niobrara River, drainage system that primarily was directed northeast and Nebraska: effect of base-level rise. Sedimentology 46, 1029–1047. less extensively southwest to a depocentre near Christo- Carr-Crabaugh, M., Kocurek, G., 1998. Continental sequence stratigra- phy of a wet eolian system: a key to relative sea level change. Relative pher Island, defining the pattern of a hydrologically closed role of eustasy, climate, and tectonism in continental rocks. SEPM basin. At this depocentre, deltas fed into a lake that was Special Publication 59, 213–228. surrounded by floodplains, mudflats and eolian dunes Cas, R.A.F., Wright, J.V., 1987. Volcanic Successions: Modern and deposited when the prevailing wind was directed north- Ancient. Allen & Unwin, Boston. 528 pp. west and southwest. Sedimentological features such as Cousens, B.L., Aspler, L.B., Chiarenzelli, J.R., Donaldson, J.A., ephemeral, flash flood-type alluvial deposits, playas, and Sandeman, H., Peterson, T.D., LeCheminant, A.N., 2001. Enriched Archean lithospheric mantle beneath Western Churchill eolian sandsheets and ergs, indicate a level of aridity Province tapped during Paleoproterozoic orogenesis. Geology 29, moderated by wet-condition eolian inter-dune deposits and 827–830. floodplain deposits that indicative of a near surface water Donaldson, J.A., 1965. The Dubawnt Group, District of Keewatin and table, and thus a semi-arid to semi-humid paleoclimate. Mackenzie. Geological Survey of Canada, Paper 64-20. 11 pp. Donaldson, J.A., 1967. Study of the Dubawnt Group, Report of Activities, Pt. A. Geological Survey of Canada, Paper 67-1A. 25 pp. Acknowledgements Elliott, T., 1974. Interdistributary bay sequences and their genesis. Sedimentology 21, 611–622. Extensive logistical support from the Geological Eriksson, K.A., Simpson, E.L., 1998. Controls on spatial and temporal Survey of Canada (Natural Resources Canada) is grate- distribution of Precambrian eolianites. Sedimentary Geology 120, fully acknowledged, accordingly this is GSC contribu- 275–294. Fielding, C.R., 1984. Upper delta plain lacustrine and fluviolacustrine tion #2005407. Financial support was obtained from an facies from the Westphalian of the Durham coalfield, NE England. NSERC Discovery Grant to Rob Rainbird. Comments Sedimentology 31, 547–567. from Hazen Russell, Geoff Chiarenzelli, and Guy Plint Fisher, R.V., Schmincke, H.-U., 1984. Pyroclastic Rocks. Springer- were appreciated and improved the manuscript. Verlag, New York. 528 pp. Fryberger, S.G., Schenk, C.J., 1988. Pin stripe lamination—a distinctive feature of modern and ancient eolian sediments. Sedimentary References Geology 55, 1–15. Fryberger, S.G., Schenk, C.J., Krystinik, L.F., 1988. Stokes surfaces Allen, J.R.L., 1964. Primary current lineation in the Lower Old Red and the effects of near-surface groundwater-table on aeolian Sandstone (Devonian), Anglo-Welsh Basin. Sedimentology 3, 89–108. deposition. Sedimentology 35, 21–41. Aspler, L.B., Chiarenzelli, J.R., Cousens, B.L., 2004. Fluvial, lacustrine, Gall, Q., Peterson, T.D., Donaldson, J.A., 1992. A proposed revision and volcanic sedimentation in the Angikuni sub-basin, and initiation of early Proterozoic stratigraphy of the Thelon and Baker Lake of ∼1.84–1.79 Ga Baker Lake Basin, Western Churchill Province, Basins, Northwest Territories. Current Research Part C, Geological Nunavut, Canada. Precambrian Research 129, 225–250. Survey of Canada, pp. 129–137. Baas, J.H., 1994. A flume study on the development and equilibrium Hadlari, T., Rainbird, R.H., 2000. Sequence stratigraphy and morphology of current ripples in very fine sand. Sedimentology sedimentology of the Paleoproterozoic Baker Lake Group in the 41, 185–209. Baker Lake Basin, Thirty Mile Lake, Nunavut Territory. Blair, T.C., 1999. Cause of dominance by sheetflood vs. debris-flow Geological Survey of Canada, Current Research 2000-C9, p. 10. processes on two adjoining alluvial fans, Death Valley, California. Hadlari, T., Rainbird, R.H., 2001. Volcano-sedimentary correlation Sedimentology 46, 1015–1028. and fault relationships in the Baker Lake sub-basin, Thirty Mile Blair, T.C., 2000a. Sedimentary processes and facies of the waterlaid Lake area, Nunavut. Geological Survey of Canada, Current Anvil Spring Canyon alluvial fan, Death Valley, California. Research 2001-C10, p. 9. Sedimentology 46, 913–940. Hanmer, S., Tella, S., Sandeman, H.A., Ryan, J.J., Hadlari, T., Mills, Blair, T.C., 2000b. Sedimentology and progressive tectonic unconfor- A., 1999. Proterozoic reworking in Western Churchill Province, mities of the sheetflood-dominated Hell's Gate alluvial fan, Death Gibson Lake–Cross Bay area (Kivalliq Region, Nunavut): Part 1. Valley, California. Sedimentary Geology 132, 233–262. General geology. Geological Survey of Canada, Current Research Blair, T.C., McPherson, J.G., 1994. Alluvial fans and their natural 1999-C, pp. 55–65. distinction from rivers based on morphology, hydraulic processes, Hjellbakk, A., 1997. Facies and fluvial architecture of a high-energy sedimentary processes, and facies. Journal of Sedimentary braided river: the Upper Proterozoic Seglodden Member, Varanger Research 64, 451–490. Peninsula, northern Norway. Sedimentary Geology 114, 131–161. Blake, D.H., 1980. Volcanic rocks of the Paleohelikian Dubawnt Group Hooke, R.L., 1967. Processes on arid-region alluvial fans. Journal of in the Baker Lake–Angikuni Lake area, District of Keewatin, N.W. Geology 75, 438–460. T. Geological Survey of Canada, Bulletin 309 (39 pp.). Hunter, R.E., 1977. Terminology of cross-stratified sedimentary layers Bouma, A.H., 1962. Sedimentology of Some Flysch Deposits. and climbing-ripple structures. Journal of Sedimentary Petrology 47, Elsevier, Amsterdam. 697–706.