SlideShare ist ein Scribd-Unternehmen logo
1 von 69
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Paulo Novis Rocha Nefrologista Professor Adjunto do Depto. Medicina FMB-UFBA Professor Colaborador do PPgCS
Plano de Apresentação ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Curva Normal (Gauss)
Distribuições de Freqüências ,[object Object],[object Object],Neto, AMS. Biestatística Sem Segredos. 2008
Distribuições de Freqüências Neto, AMS. Biestatística Sem Segredos. 2008
Distribuições de freqüências:  Variáveis contínuas Como idade é uma variável contínua, à medida que o número de observações tende a infinito, podemos abolir os intervalos de classe, sendo cada valor de idade representado na abscissa.  Neto, AMS. Biestatística Sem Segredos. 2008
Age Distribution of 10,000 entrants in senior citizen roller derby ,[object Object],Norman & Streiner. PDQ Statistics. 1986
Distribuições de freqüências:  Variáveis discretas Neto, AMS. Biestatística Sem Segredos. 2008
Tipos de Distribuições de Freqüências ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Distribuições reais: Variáveis contínuas Neto, AMS. Biestatística Sem Segredos. 2008
Distribuição Normal / Gaussiana Curva teórica para população infinita Abraham de Moivre  /  Carl Friederich Gauss
Os estatísticos utilizam distribuições probabilísticas como modelo gráfico e matemático para as distribuições de freqüências A finalidade é lançar mão das propriedades teóricas das primeiras como ferramentas para inferir os resultados obtidos em uma amostra para a população mais ampla de onde esta amostra foi retirada
Curva de Gauss (NORMAL):   Propriedades Matemáticas  ,[object Object],[object Object],[object Object],[object Object],[object Object]
Distribuições de freqüências  Distribuições probabilísticas A área sob a curva representa uma probabilidade. Se  X  = idade,  x 1  = 35 e  x 2  = 45, por exemplo, a área sombreada corresponde à probabilidade de obtermos indivíduos com idade entre 35 e 45 anos. Neto, AMS. Biestatística Sem Segredos. 2008
Cálculo de área:  Figuras geométricas perfeitas Área do círculo =    . r 2
Distribuições de freqüências  Distribuições probabilísticas Neto, AMS. Biestatística Sem Segredos. 2008
1ª Propriedade
Probabilidade = 95% -1,96 DP +1,96 DP Exemplo: n = 311 agentes penitenciários Média idades ± DP = 40,27 ± 7,60 anos 40,27 – [1,96x(7,60)] = 40,27 – 14,896 = 25,374 40,27 + [1,96x(7,60)] = 40,27 + 14,896 = 55,166 Probabilidade dos agentes apresentarem idade entre 25 e 55 anos = 95%
Curva de Gauss (NORMAL):   Propriedades Matemáticas  ,[object Object],[object Object],[object Object],[object Object],[object Object]
2ª Propriedade ,[object Object],[object Object],É completamente determinada por sua média e desvio-padrão Neto, AMS. Biestatística Sem Segredos. 2008
Curva de Gauss (NORMAL):   Propriedades Matemáticas  ,[object Object],[object Object],[object Object],[object Object],[object Object]
Curva Normal Padrão ,[object Object],[object Object],[object Object]
Exemplo: qual a área sob a curva correspondente a valores de Z menores do que 2,00? Neto, AMS. Biestatística Sem Segredos. 2008
 
Exemplo: qual a área sob a curva correspondente a valores de Z menores do que 2,00? Neto, AMS. Biestatística Sem Segredos. 2008  A área sob a curva entre - ∞ e z = 2,00 é 0,9772. Podemos então afirmar que há uma probabilidade de 97,72% de um valor qualquer de Z selecionado aleatoriamente estar entre - ∞ e 2,00.
Exemplo: n = 311 agentes penitenciários Média idade 40,27 anos  com desvio padrão 7,60 anos. Qual a probabilidade de um agente penitenciário ter idade > 47 anos?  - 1º passo: transformar 47 anos em um valor de Z.
 
Exemplo: n = 311 agentes penitenciários Média idade 40,27 anos  com desvio padrão 7,60 anos. Qual a probabilidade de um agente penitenciário ter idade > 47 anos?  - 1º passo: transformar 47 anos em um valor de Z. - 47 anos equivale a 0,88 DP acima da média - 2º passo: encontrar a área entre - ∞ e z = 0,88 na tabela - área = 0,8106 - como queremos área z > 0,88, fazemos 1-0,8106 = 0,1894 Resposta: a probabilidade de um agente penitenciário selecionado aleatoriamente dessa amostra ter idade > 47 anos = 18,94%
Introdução
POPULAÇÃO ( N  = 1.000) AMOSTRA ( n  = 50) RESULTADO: Tempo médio de serviço = 13,73  ± 5,23 anos Neto, AMS. Biestatística Sem Segredos. 2008
Inferência Estatística: definições ,[object Object],[object Object],[object Object],[object Object]
POPULAÇÃO ( N  = 1.000) AMOSTRA 1 ( n  = 50) RESULTADO: Tempo médio de serviço = 13,73  anos AMOSTRA 2 ( n  = 50) RESULTADO: Tempo médio de serviço = 13,90  anos AMOSTRA 3 ( n  = 50) RESULTADO: Tempo médio de serviço = 12,60  anos AMOSTRA 4 ( n  = 50) RESULTADO: Tempo médio de serviço = 19,27  anos AMOSTRA 5 ( n  = 50) RESULTADO: Tempo médio de serviço = 15,80  anos
ƒ( x ) Tempo médio de serviço
 
Distribuição das médias amostrais Neto, AMS. Biestatística Sem Segredos. 2008
Definições ,[object Object],[object Object]
Teorema Central do Limite   Versão Simplificada ,[object Object]
Como Fazer Inferência Estatística: ,[object Object],[object Object]
 
POPULAÇÃO ( N  = 1.000) AMOSTRA ( n  = 50) RESULTADO: Tempo médio de serviço = 13,73  ± 5,23 anos Tempo médio de serviço 16,5 ± 5,53 anos
Teste de Hipóteses ,[object Object],[object Object],[object Object]
ƒ( x ) Tempo médio de serviço P  2,5 P  97,5 Níveis de significância estatística 95,0% Todos os valores localizados entre estes limites de significância estatística seriam considerados como estatísticamente iguais à verdadeira média populacional Valores esperados por variação amostral Valores não esperados por variação amostral Valores não esperados por variação amostral
Teste de Hipóteses ,[object Object],[object Object],[object Object],[object Object]
Hipóteses estatísticas ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Tempo médio de serviço =16,5 ± 5,53 anos ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
ƒ( x ) Tempo médio de serviço P  2,5 P  97,5 µ 0 95,0% H A  :  µ  <  16,5  será testado nesta cauda H A  :  µ  >  16,5  será testado nesta cauda 16,5
Teste de Hipóteses ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Distribuição NORMAL Padrão Média = ZERO DP = EP = 1 µ = 0 -  ∞   +  ∞   σ  = 1 Z
Cálculo do valor de z ,[object Object],[object Object]
No nosso exemplo...
Teste de Hipóteses ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
Valor-p ,[object Object],[object Object]
Teste de Hipóteses ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Comparação do valor-p com o  α ,[object Object],[object Object],[object Object]
Comparação dos valores de z com os valores críticos de z ,[object Object],[object Object],[object Object]
Teste de Hipóteses
Conclusões sobre Teste de Hipóteses ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
CONCLUSÃO DO TESTE REALIDADE SOBRE  H 0 É VERDADEIRA É FALSA Aceitação de  H 0  (“não-significante”) Conclusão correta Erro tipo II β  (0,20) Falso negativo Rejeição de  H 0 (“significante”) Erro tipo I α  (0,05) Falso positivo Conclusão correta (poder)
Sobre ALFA e BETA ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Teste de Hipóteses
Variáveis determinantes da significância estatística ,[object Object],[object Object],[object Object],Relationship of Sample Size and Mean Values to Achieve Statistical Significance PDQ Statistics. Norman & Streiner, 1986. Sample Size Reader Mean Population Mean p 4 110.0 100.0 0.05 25 104.0 100.0 0.05 64 102.5 100.0 0.05 100 102.0 100.0 0.05 400 101.0 100.0 0.05 2500 100.4 100.0 0.05 10000 100.2 100.0 0.05
De uma média
Intervalo de Confiança de uma Média
Intervalo de Confiança de uma média ,[object Object],[object Object],[object Object],[object Object],[object Object]
No nosso exemplo... ,[object Object],[object Object]
Intervalo de Confiança
[email_address]

Weitere ähnliche Inhalte

Was ist angesagt?

Exercicios resolv estatistica
Exercicios resolv estatisticaExercicios resolv estatistica
Exercicios resolv estatisticaJosi2010
 
Slides de estatística aplicada (3º bimestre.2012)
Slides de estatística aplicada (3º bimestre.2012)Slides de estatística aplicada (3º bimestre.2012)
Slides de estatística aplicada (3º bimestre.2012)Enio José Bolognini
 
Probabilidade e estatística - Variáveis Aleatórias
Probabilidade e estatística - Variáveis AleatóriasProbabilidade e estatística - Variáveis Aleatórias
Probabilidade e estatística - Variáveis AleatóriasLucas Vinícius
 
bioestatística - 1 parte
bioestatística - 1 partebioestatística - 1 parte
bioestatística - 1 parteRobson Odé
 
Aula 1 - Bioestatística
Aula 1 - BioestatísticaAula 1 - Bioestatística
Aula 1 - BioestatísticaCaroline Godoy
 
Estatística Para Engenharia - Correlação e Regressão Linear - Exercícios.
Estatística Para Engenharia - Correlação e Regressão Linear - Exercícios.Estatística Para Engenharia - Correlação e Regressão Linear - Exercícios.
Estatística Para Engenharia - Correlação e Regressão Linear - Exercícios.Jean Paulo Mendes Alves
 
Formulario inferencia estatistica - 1 e 2 populacoes
Formulario   inferencia estatistica - 1 e 2 populacoesFormulario   inferencia estatistica - 1 e 2 populacoes
Formulario inferencia estatistica - 1 e 2 populacoesPedro Casquilho
 
Aula bioestatistica
Aula bioestatisticaAula bioestatistica
Aula bioestatisticaAleNiv
 
Estatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formandoEstatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formandoAntonio Mankumbani Chora
 
Estatística e Probabilidade 8 - Medidas de Assimetria e Boxplot
Estatística e Probabilidade 8 - Medidas de Assimetria e BoxplotEstatística e Probabilidade 8 - Medidas de Assimetria e Boxplot
Estatística e Probabilidade 8 - Medidas de Assimetria e BoxplotRanilson Paiva
 

Was ist angesagt? (20)

Exercicios resolv estatistica
Exercicios resolv estatisticaExercicios resolv estatistica
Exercicios resolv estatistica
 
Aula 30 testes de hipóteses
Aula 30   testes de hipótesesAula 30   testes de hipóteses
Aula 30 testes de hipóteses
 
Testes hipoteses introducao
Testes hipoteses introducaoTestes hipoteses introducao
Testes hipoteses introducao
 
Estatistica descritiva
Estatistica descritiva Estatistica descritiva
Estatistica descritiva
 
Distribuição binomial, poisson e hipergeométrica - Estatística I
Distribuição binomial, poisson e hipergeométrica - Estatística IDistribuição binomial, poisson e hipergeométrica - Estatística I
Distribuição binomial, poisson e hipergeométrica - Estatística I
 
Regressão Linear I
Regressão Linear IRegressão Linear I
Regressão Linear I
 
Regressão Linear Simples
Regressão Linear SimplesRegressão Linear Simples
Regressão Linear Simples
 
Slides de estatística aplicada (3º bimestre.2012)
Slides de estatística aplicada (3º bimestre.2012)Slides de estatística aplicada (3º bimestre.2012)
Slides de estatística aplicada (3º bimestre.2012)
 
Probabilidade e estatística - Variáveis Aleatórias
Probabilidade e estatística - Variáveis AleatóriasProbabilidade e estatística - Variáveis Aleatórias
Probabilidade e estatística - Variáveis Aleatórias
 
Correlação
CorrelaçãoCorrelação
Correlação
 
bioestatística - 1 parte
bioestatística - 1 partebioestatística - 1 parte
bioestatística - 1 parte
 
Estatística básica
Estatística básicaEstatística básica
Estatística básica
 
Aula 1 - Bioestatística
Aula 1 - BioestatísticaAula 1 - Bioestatística
Aula 1 - Bioestatística
 
Estatística Para Engenharia - Correlação e Regressão Linear - Exercícios.
Estatística Para Engenharia - Correlação e Regressão Linear - Exercícios.Estatística Para Engenharia - Correlação e Regressão Linear - Exercícios.
Estatística Para Engenharia - Correlação e Regressão Linear - Exercícios.
 
Formulario inferencia estatistica - 1 e 2 populacoes
Formulario   inferencia estatistica - 1 e 2 populacoesFormulario   inferencia estatistica - 1 e 2 populacoes
Formulario inferencia estatistica - 1 e 2 populacoes
 
Aula 05 Gráficos Estatísticos
Aula 05   Gráficos EstatísticosAula 05   Gráficos Estatísticos
Aula 05 Gráficos Estatísticos
 
Estatística Descritiva
Estatística DescritivaEstatística Descritiva
Estatística Descritiva
 
Aula bioestatistica
Aula bioestatisticaAula bioestatistica
Aula bioestatistica
 
Estatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formandoEstatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formando
 
Estatística e Probabilidade 8 - Medidas de Assimetria e Boxplot
Estatística e Probabilidade 8 - Medidas de Assimetria e BoxplotEstatística e Probabilidade 8 - Medidas de Assimetria e Boxplot
Estatística e Probabilidade 8 - Medidas de Assimetria e Boxplot
 

Ähnlich wie Princípios de Estatística Inferencial - I

Distribuição Amostral da Média
Distribuição Amostral da MédiaDistribuição Amostral da Média
Distribuição Amostral da MédiaAnderson Pinho
 
Estatística na educação
Estatística na educação Estatística na educação
Estatística na educação UFMA e UEMA
 
Fundamentos da bioestatística
Fundamentos da bioestatísticaFundamentos da bioestatística
Fundamentos da bioestatísticaJuliano van Melis
 
A distribuição normal
A distribuição normalA distribuição normal
A distribuição normalLiliane Ennes
 
Resumo -estimacao
Resumo  -estimacaoResumo  -estimacao
Resumo -estimacaocarneiro62
 
ESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdf
ESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdfESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdf
ESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdfssuserac1de6
 
HEP175Aula9 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(1).ppt
HEP175Aula9 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(1).pptHEP175Aula9 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(1).ppt
HEP175Aula9 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(1).pptElizeuNetto2
 
Medidas de Posição e Dispersão
Medidas de Posição e DispersãoMedidas de Posição e Dispersão
Medidas de Posição e DispersãoLucasCoimbra24
 
Medidas de dispersão AULA 1 EXPERIMENTACAO.pptx
Medidas de dispersão AULA 1 EXPERIMENTACAO.pptxMedidas de dispersão AULA 1 EXPERIMENTACAO.pptx
Medidas de dispersão AULA 1 EXPERIMENTACAO.pptxPatriciaFerreiradaSi9
 

Ähnlich wie Princípios de Estatística Inferencial - I (20)

Distribuição normal
Distribuição normalDistribuição normal
Distribuição normal
 
Bioestatística
 Bioestatística Bioestatística
Bioestatística
 
Conceitos Básicos de Estatística II
Conceitos Básicos de Estatística IIConceitos Básicos de Estatística II
Conceitos Básicos de Estatística II
 
Aula7
Aula7Aula7
Aula7
 
Distribuição Amostral da Média
Distribuição Amostral da MédiaDistribuição Amostral da Média
Distribuição Amostral da Média
 
Estatística na educação
Estatística na educação Estatística na educação
Estatística na educação
 
Princípios de Estatística Inferencial - II
Princípios de Estatística Inferencial - IIPrincípios de Estatística Inferencial - II
Princípios de Estatística Inferencial - II
 
Estatística básica
Estatística básicaEstatística básica
Estatística básica
 
Bioestatística
BioestatísticaBioestatística
Bioestatística
 
Fundamentos da bioestatística
Fundamentos da bioestatísticaFundamentos da bioestatística
Fundamentos da bioestatística
 
Estatística distribuição normal (aula 2)
Estatística   distribuição normal (aula 2)Estatística   distribuição normal (aula 2)
Estatística distribuição normal (aula 2)
 
A distribuição normal
A distribuição normalA distribuição normal
A distribuição normal
 
Resumo -estimacao
Resumo  -estimacaoResumo  -estimacao
Resumo -estimacao
 
Estatística intervalo de confiança (aula 4)
Estatística   intervalo de confiança (aula 4)Estatística   intervalo de confiança (aula 4)
Estatística intervalo de confiança (aula 4)
 
ESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdf
ESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdfESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdf
ESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdf
 
1. intervalo de confiança parte i
1. intervalo de confiança   parte i1. intervalo de confiança   parte i
1. intervalo de confiança parte i
 
HEP175Aula9 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(1).ppt
HEP175Aula9 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(1).pptHEP175Aula9 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(1).ppt
HEP175Aula9 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(1).ppt
 
Atps estatistica
Atps estatisticaAtps estatistica
Atps estatistica
 
Medidas de Posição e Dispersão
Medidas de Posição e DispersãoMedidas de Posição e Dispersão
Medidas de Posição e Dispersão
 
Medidas de dispersão AULA 1 EXPERIMENTACAO.pptx
Medidas de dispersão AULA 1 EXPERIMENTACAO.pptxMedidas de dispersão AULA 1 EXPERIMENTACAO.pptx
Medidas de dispersão AULA 1 EXPERIMENTACAO.pptx
 

Mehr von Federal University of Bahia

Avaliação hemodinâmica no paciente criticamente enfermo
Avaliação hemodinâmica no paciente criticamente enfermoAvaliação hemodinâmica no paciente criticamente enfermo
Avaliação hemodinâmica no paciente criticamente enfermoFederal University of Bahia
 
Suporte Nutricional No Paciente com Lesão Renal Aguda
Suporte Nutricional No Paciente com Lesão Renal AgudaSuporte Nutricional No Paciente com Lesão Renal Aguda
Suporte Nutricional No Paciente com Lesão Renal AgudaFederal University of Bahia
 
O Que Mudou no Tratamento da Lesão Renal Aguda nos úLtimos 10 Anos
O Que Mudou no Tratamento da Lesão Renal Aguda nos úLtimos 10 AnosO Que Mudou no Tratamento da Lesão Renal Aguda nos úLtimos 10 Anos
O Que Mudou no Tratamento da Lesão Renal Aguda nos úLtimos 10 AnosFederal University of Bahia
 

Mehr von Federal University of Bahia (20)

Análise de Sobrevivência
Análise de SobrevivênciaAnálise de Sobrevivência
Análise de Sobrevivência
 
Regressão Logística
Regressão LogísticaRegressão Logística
Regressão Logística
 
Hiponatremia
HiponatremiaHiponatremia
Hiponatremia
 
Acute Kidney Injury in Nephrotic Syndrome
Acute Kidney Injury in Nephrotic SyndromeAcute Kidney Injury in Nephrotic Syndrome
Acute Kidney Injury in Nephrotic Syndrome
 
Hiponatremia revisão geral em 20 min
Hiponatremia   revisão geral em 20 minHiponatremia   revisão geral em 20 min
Hiponatremia revisão geral em 20 min
 
Distúrbio
DistúrbioDistúrbio
Distúrbio
 
Avaliação hemodinâmica no paciente criticamente enfermo
Avaliação hemodinâmica no paciente criticamente enfermoAvaliação hemodinâmica no paciente criticamente enfermo
Avaliação hemodinâmica no paciente criticamente enfermo
 
Suporte Nutricional No Paciente com Lesão Renal Aguda
Suporte Nutricional No Paciente com Lesão Renal AgudaSuporte Nutricional No Paciente com Lesão Renal Aguda
Suporte Nutricional No Paciente com Lesão Renal Aguda
 
O Que Mudou no Tratamento da Lesão Renal Aguda nos úLtimos 10 Anos
O Que Mudou no Tratamento da Lesão Renal Aguda nos úLtimos 10 AnosO Que Mudou no Tratamento da Lesão Renal Aguda nos úLtimos 10 Anos
O Que Mudou no Tratamento da Lesão Renal Aguda nos úLtimos 10 Anos
 
Estratificação da Lesão Renal Aguda
Estratificação da Lesão Renal AgudaEstratificação da Lesão Renal Aguda
Estratificação da Lesão Renal Aguda
 
Amostragem
AmostragemAmostragem
Amostragem
 
Uso de Bicarbonato na Acidose Metabólica
Uso de Bicarbonato na Acidose MetabólicaUso de Bicarbonato na Acidose Metabólica
Uso de Bicarbonato na Acidose Metabólica
 
Discurso Paraninfia FMB-UFBA 2008.1
Discurso Paraninfia FMB-UFBA 2008.1Discurso Paraninfia FMB-UFBA 2008.1
Discurso Paraninfia FMB-UFBA 2008.1
 
Ira No Ofidismo
Ira No OfidismoIra No Ofidismo
Ira No Ofidismo
 
Hiponatremia
HiponatremiaHiponatremia
Hiponatremia
 
SIHAD
SIHADSIHAD
SIHAD
 
Hiponatremia
HiponatremiaHiponatremia
Hiponatremia
 
Imunidade Humoral e Rejeição
Imunidade Humoral e RejeiçãoImunidade Humoral e Rejeição
Imunidade Humoral e Rejeição
 
Eletrólitos Urinários
Eletrólitos UrináriosEletrólitos Urinários
Eletrólitos Urinários
 
Sumário de Urina
Sumário de UrinaSumário de Urina
Sumário de Urina
 

Kürzlich hochgeladen

Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Centro Jacques Delors
 
activIDADES CUENTO lobo esta CUENTO CUARTO GRADO
activIDADES CUENTO  lobo esta  CUENTO CUARTO GRADOactivIDADES CUENTO  lobo esta  CUENTO CUARTO GRADO
activIDADES CUENTO lobo esta CUENTO CUARTO GRADOcarolinacespedes23
 
UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfManuais Formação
 
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)Mary Alvarenga
 
Universidade Empreendedora como uma Plataforma para o Bem comum
Universidade Empreendedora como uma Plataforma para o Bem comumUniversidade Empreendedora como uma Plataforma para o Bem comum
Universidade Empreendedora como uma Plataforma para o Bem comumPatrícia de Sá Freire, PhD. Eng.
 
Recurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de PartículasRecurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de PartículasCasa Ciências
 
Governo Provisório Era Vargas 1930-1934 Brasil
Governo Provisório Era Vargas 1930-1934 BrasilGoverno Provisório Era Vargas 1930-1934 Brasil
Governo Provisório Era Vargas 1930-1934 Brasillucasp132400
 
Programa de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasPrograma de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasCassio Meira Jr.
 
Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.keislayyovera123
 
Pedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxPedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxleandropereira983288
 
Bullying - Atividade com caça- palavras
Bullying   - Atividade com  caça- palavrasBullying   - Atividade com  caça- palavras
Bullying - Atividade com caça- palavrasMary Alvarenga
 
Slides 1 - O gênero textual entrevista.pptx
Slides 1 - O gênero textual entrevista.pptxSlides 1 - O gênero textual entrevista.pptx
Slides 1 - O gênero textual entrevista.pptxSilvana Silva
 
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxSlides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxLuizHenriquedeAlmeid6
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasCassio Meira Jr.
 
D9 RECONHECER GENERO DISCURSIVO SPA.pptx
D9 RECONHECER GENERO DISCURSIVO SPA.pptxD9 RECONHECER GENERO DISCURSIVO SPA.pptx
D9 RECONHECER GENERO DISCURSIVO SPA.pptxRonys4
 
Simulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdfSimulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdfEditoraEnovus
 
William J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdfWilliam J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdfAdrianaCunha84
 
Simulado 2 Etapa - 2024 Proximo Passo.pdf
Simulado 2 Etapa  - 2024 Proximo Passo.pdfSimulado 2 Etapa  - 2024 Proximo Passo.pdf
Simulado 2 Etapa - 2024 Proximo Passo.pdfEditoraEnovus
 

Kürzlich hochgeladen (20)

Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029
 
activIDADES CUENTO lobo esta CUENTO CUARTO GRADO
activIDADES CUENTO  lobo esta  CUENTO CUARTO GRADOactivIDADES CUENTO  lobo esta  CUENTO CUARTO GRADO
activIDADES CUENTO lobo esta CUENTO CUARTO GRADO
 
UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdf
 
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
 
Universidade Empreendedora como uma Plataforma para o Bem comum
Universidade Empreendedora como uma Plataforma para o Bem comumUniversidade Empreendedora como uma Plataforma para o Bem comum
Universidade Empreendedora como uma Plataforma para o Bem comum
 
Recurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de PartículasRecurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de Partículas
 
Governo Provisório Era Vargas 1930-1934 Brasil
Governo Provisório Era Vargas 1930-1934 BrasilGoverno Provisório Era Vargas 1930-1934 Brasil
Governo Provisório Era Vargas 1930-1934 Brasil
 
Programa de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasPrograma de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades Motoras
 
CINEMATICA DE LOS MATERIALES Y PARTICULA
CINEMATICA DE LOS MATERIALES Y PARTICULACINEMATICA DE LOS MATERIALES Y PARTICULA
CINEMATICA DE LOS MATERIALES Y PARTICULA
 
Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.
 
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
 
Pedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxPedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptx
 
Bullying - Atividade com caça- palavras
Bullying   - Atividade com  caça- palavrasBullying   - Atividade com  caça- palavras
Bullying - Atividade com caça- palavras
 
Slides 1 - O gênero textual entrevista.pptx
Slides 1 - O gênero textual entrevista.pptxSlides 1 - O gênero textual entrevista.pptx
Slides 1 - O gênero textual entrevista.pptx
 
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxSlides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e Específicas
 
D9 RECONHECER GENERO DISCURSIVO SPA.pptx
D9 RECONHECER GENERO DISCURSIVO SPA.pptxD9 RECONHECER GENERO DISCURSIVO SPA.pptx
D9 RECONHECER GENERO DISCURSIVO SPA.pptx
 
Simulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdfSimulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdf
 
William J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdfWilliam J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdf
 
Simulado 2 Etapa - 2024 Proximo Passo.pdf
Simulado 2 Etapa  - 2024 Proximo Passo.pdfSimulado 2 Etapa  - 2024 Proximo Passo.pdf
Simulado 2 Etapa - 2024 Proximo Passo.pdf
 

Princípios de Estatística Inferencial - I

  • 1.
  • 2. Paulo Novis Rocha Nefrologista Professor Adjunto do Depto. Medicina FMB-UFBA Professor Colaborador do PPgCS
  • 3.
  • 5.
  • 6. Distribuições de Freqüências Neto, AMS. Biestatística Sem Segredos. 2008
  • 7. Distribuições de freqüências: Variáveis contínuas Como idade é uma variável contínua, à medida que o número de observações tende a infinito, podemos abolir os intervalos de classe, sendo cada valor de idade representado na abscissa. Neto, AMS. Biestatística Sem Segredos. 2008
  • 8.
  • 9. Distribuições de freqüências: Variáveis discretas Neto, AMS. Biestatística Sem Segredos. 2008
  • 10.
  • 11. Distribuições reais: Variáveis contínuas Neto, AMS. Biestatística Sem Segredos. 2008
  • 12. Distribuição Normal / Gaussiana Curva teórica para população infinita Abraham de Moivre / Carl Friederich Gauss
  • 13. Os estatísticos utilizam distribuições probabilísticas como modelo gráfico e matemático para as distribuições de freqüências A finalidade é lançar mão das propriedades teóricas das primeiras como ferramentas para inferir os resultados obtidos em uma amostra para a população mais ampla de onde esta amostra foi retirada
  • 14.
  • 15. Distribuições de freqüências Distribuições probabilísticas A área sob a curva representa uma probabilidade. Se X = idade, x 1 = 35 e x 2 = 45, por exemplo, a área sombreada corresponde à probabilidade de obtermos indivíduos com idade entre 35 e 45 anos. Neto, AMS. Biestatística Sem Segredos. 2008
  • 16. Cálculo de área: Figuras geométricas perfeitas Área do círculo =  . r 2
  • 17. Distribuições de freqüências Distribuições probabilísticas Neto, AMS. Biestatística Sem Segredos. 2008
  • 19. Probabilidade = 95% -1,96 DP +1,96 DP Exemplo: n = 311 agentes penitenciários Média idades ± DP = 40,27 ± 7,60 anos 40,27 – [1,96x(7,60)] = 40,27 – 14,896 = 25,374 40,27 + [1,96x(7,60)] = 40,27 + 14,896 = 55,166 Probabilidade dos agentes apresentarem idade entre 25 e 55 anos = 95%
  • 20.
  • 21.
  • 22.
  • 23.
  • 24. Exemplo: qual a área sob a curva correspondente a valores de Z menores do que 2,00? Neto, AMS. Biestatística Sem Segredos. 2008
  • 25.  
  • 26. Exemplo: qual a área sob a curva correspondente a valores de Z menores do que 2,00? Neto, AMS. Biestatística Sem Segredos. 2008 A área sob a curva entre - ∞ e z = 2,00 é 0,9772. Podemos então afirmar que há uma probabilidade de 97,72% de um valor qualquer de Z selecionado aleatoriamente estar entre - ∞ e 2,00.
  • 27. Exemplo: n = 311 agentes penitenciários Média idade 40,27 anos com desvio padrão 7,60 anos. Qual a probabilidade de um agente penitenciário ter idade > 47 anos? - 1º passo: transformar 47 anos em um valor de Z.
  • 28.  
  • 29. Exemplo: n = 311 agentes penitenciários Média idade 40,27 anos com desvio padrão 7,60 anos. Qual a probabilidade de um agente penitenciário ter idade > 47 anos? - 1º passo: transformar 47 anos em um valor de Z. - 47 anos equivale a 0,88 DP acima da média - 2º passo: encontrar a área entre - ∞ e z = 0,88 na tabela - área = 0,8106 - como queremos área z > 0,88, fazemos 1-0,8106 = 0,1894 Resposta: a probabilidade de um agente penitenciário selecionado aleatoriamente dessa amostra ter idade > 47 anos = 18,94%
  • 31. POPULAÇÃO ( N = 1.000) AMOSTRA ( n = 50) RESULTADO: Tempo médio de serviço = 13,73 ± 5,23 anos Neto, AMS. Biestatística Sem Segredos. 2008
  • 32.
  • 33. POPULAÇÃO ( N = 1.000) AMOSTRA 1 ( n = 50) RESULTADO: Tempo médio de serviço = 13,73 anos AMOSTRA 2 ( n = 50) RESULTADO: Tempo médio de serviço = 13,90 anos AMOSTRA 3 ( n = 50) RESULTADO: Tempo médio de serviço = 12,60 anos AMOSTRA 4 ( n = 50) RESULTADO: Tempo médio de serviço = 19,27 anos AMOSTRA 5 ( n = 50) RESULTADO: Tempo médio de serviço = 15,80 anos
  • 34. ƒ( x ) Tempo médio de serviço
  • 35.  
  • 36. Distribuição das médias amostrais Neto, AMS. Biestatística Sem Segredos. 2008
  • 37.
  • 38.
  • 39.
  • 40.  
  • 41. POPULAÇÃO ( N = 1.000) AMOSTRA ( n = 50) RESULTADO: Tempo médio de serviço = 13,73 ± 5,23 anos Tempo médio de serviço 16,5 ± 5,53 anos
  • 42.
  • 43. ƒ( x ) Tempo médio de serviço P 2,5 P 97,5 Níveis de significância estatística 95,0% Todos os valores localizados entre estes limites de significância estatística seriam considerados como estatísticamente iguais à verdadeira média populacional Valores esperados por variação amostral Valores não esperados por variação amostral Valores não esperados por variação amostral
  • 44.
  • 45.
  • 46.
  • 47. ƒ( x ) Tempo médio de serviço P 2,5 P 97,5 µ 0 95,0% H A : µ < 16,5 será testado nesta cauda H A : µ > 16,5 será testado nesta cauda 16,5
  • 48.
  • 49. Distribuição NORMAL Padrão Média = ZERO DP = EP = 1 µ = 0 - ∞ + ∞ σ = 1 Z
  • 50.
  • 52.
  • 53.  
  • 54.
  • 55.
  • 56.
  • 57.
  • 59.
  • 60. CONCLUSÃO DO TESTE REALIDADE SOBRE H 0 É VERDADEIRA É FALSA Aceitação de H 0 (“não-significante”) Conclusão correta Erro tipo II β (0,20) Falso negativo Rejeição de H 0 (“significante”) Erro tipo I α (0,05) Falso positivo Conclusão correta (poder)
  • 61.
  • 63.
  • 65. Intervalo de Confiança de uma Média
  • 66.
  • 67.

Hinweis der Redaktion

  1. Preciso exemplificar melhor o exemplo do teste Z e procurar uma forma de fazer isto no computador para mostrar
  2. Fórmula matemática de uma distribuição normal
  3. A primeira propriedade é comum à todas as distribuições probabilísticas PROPRIEDADES DA DISTRIBUIÇÃO DE GAUSS: W é simétrica em torno da média, tem a forma de um sino - cada lado é uma imagem no espelho do outro lado m - média ocupa o centro da distribuição. Média = mediana = moda. Ç - área total sob a curva é igual a 1, estando 50% à direita e 50% à esquerda s - cerca de dois terços da população está a 1 desvio padrão da média, para mais e para menos (68,27%), 95% dos valores estão compreendidos dentro de 1,96 (aproximadamente 2) desvios padrão da média para mais e para menos e 99,7% dos valores estão a 3 desvios padrão da média. É assintótica, ou seja, as extremidades se aproximam, mas não tocam a linha das abscissas. DEFINIÇÃO DOS LIMITES DE NORMALIDADE ATRAVÉS DA APROXIMAÇÃO DE GAUSS: Normal = x ± 1,96 . s (utilizando-se 1,96 se está considerando 5% como anormal - definição estatística de normal) Assim, sabendo-se que a média da temperatura sérica em adultos hígidos é de 36,8 ° C e o desvio padrão é de 0,27 ° C, o intervalo da normalidade para a temperatura de adultos será: Limite inferior da normalidade= 36,8 – 1,96 X 0,27 = 36,8 – 0,5292 = 36,2708 Limite superior da normalidade= 36,8 – 1,96 X 0,27 = 36,8 + 0,5292 = 37,3292 Por esta fórmula consideramos febre quando a temperatura corporal estiver acima do limite superior e hipotermia quando a temperatura estiver abaixo do limite inferior. Esta fórmula é utilizada para determinar a maioria dos valores normais usados na área da saúde. Quando a variável tiver uma distribuição assimétrica ou não normal, o cálculo do intervalo de normalidade não poderá ser feito desta forma. Neste caso são usados geralmente os percentis. Tudo o que estiver abaixo do percentil 3 ou acima do percentil 97 será considerado anormal.
  4. W é simétrica em torno da média, tem a forma de um sino - cada lado é uma imagem no espelho do outro lado. m - média ocupa o centro da distribuição. Média = mediana = moda. Ç - área total sob a curva é igual a 1, estando 50% à direita e 50% à esquerda s - cerca de dois terços da população está a 1 desvio padrão da média, para mais e para menos (68,27%), 95% dos valores estão compreendidos dentro de 1,96 (aproximadamente 2) desvios padrão da média para mais e para menos e 99,7% dos valores estão a 3 desvios padrão da média. É assintótica, ou seja, as extremidades se aproximam, mas não tocam a linha das abscissas.
  5. Sabendo-se que a glicemia em jejum em pessoas sadias tem distribuição normal, com média igual a 90 mg/100ml e desvio padrão de 5 mg/100ml, qual a probabilidade de se encontrar ao acaso um indivíduo pertencente a esta população com glicemia acima de 100 mg/100ml? Para se fazer este cálculo é necessário primeiro trabalhar com a curva normal padrão, ou seja, converter a média de qualquer variável para uma distribuição normal padronizada com média igual a zero e desvio padrão igual a 1. Esta distribuição, chamada normal reduzida ou normal padrão tem média zero e desvio padrão um. Ela é chamada também distribuição “z”, onde z é quantidade de desvios padrão do qual o valor encontra-se afastado da média. Z mede o afastamento dos valores de x em relação à média em unidades de desvio padrão. Para se obter as probabilidades precisamos primeiro transformar o nosso valor x em z e depois consultar a tabela da distribuição normal padrão, usando-se a fórmula abaixo: z =(x - µ)/ σ No nosso exemplo: z= ( 100-90 ) /5 = 2 Isso significa que o valor 100 está a 2 desvios padrão da média. Vamos agora consultar a curva normal padrão. Desejamos saber qual a área correspondente a valores de z acima de 2, pois queremos saber qual a probabilidade de um indivíduo tomado ao acaso ter glicemia acima de 100 mg/100ml. 1) A curva toda tem área igual a 1, portanto a área à direita de zero é 0,5 2) Na tabela da curva normal, verifica-se que a área entre z=0 e z=2,00 é 0,4772 3) A área à direita de z=2 é, portanto, 0,5-0,4772 = 0,0228 4) A probabilidade de um indivíduo tomado ao acaso da população ter glicemia acima de 100 mg/100ml é 0,0228 x 100= 2,3%.
  6. Distribuição normal padrão: média ZERO, DP 1. Valores de Z (unidades de desvio-padrão). Todas as áreas sob a curva normal padrão já foram calculadas e colocadas sob forma de tabela (TABELA Z).
  7. Em estatística muitas vezes desejamos estimar a proporção com que determinado evento ocorre. Queremos saber, por exemplo, qual a prevalência de fumo entre os estudantes de Medicina da UFMA. Se desejarmos saber esta prevalência sem erro aleatório teremos que estudar toda a população dos estudantes. A teoria estatística nos ensina que, se tomarmos uma amostra aleatória da população de estudantes, podemos estimar com uma probabilidade de erro conhecida, a verdadeira prevalência de fumo na população de estudantes. Estimação é o processo pelo qual, usando-se um valor amostral (estatística) inferimos o valor populacional (parâmetro). Há duas formas de estimação.
  8. O DP pode ser da população ou da amostra estudada
  9. É com base nele que utilizaremos a distribuição normal como modelo para fazermos inferência estatística sobre médias, já que podemos assumir que, seja qual for o tipo de distribuição de frequências de uma variável em uma população, a distribuição de frequências dos resultados obtidos para as médias dessa variável em numerosas amostras retiradas dessa população será normal (se o tamanho da amostra for suficientemente grande).
  10. Amostra suficientemente grande (n  30)
  11. P = porcentil Situações de escolha de alfa &gt; 0,05: regressão logística, quando se está estudando interação entre variáveis (embora as associações não sejam muito fortes, elas podem interagir de forma importante). Alfas de 0,15 a 1,25 são recomendáveis na fase inicial de análise.
  12. Amostra suficientemente grande (n  30)
  13. No teste bi-caudado, o valor de p encontrado na tabela z é multiplicado por 2 (2 caudas); os valores críticos de z são ± 1,96 No teste uni-caudado, o valor de p encontrado na tabela z não é multiplicado por 2 (1 cauda); os valores críticos de z são ± 1,65
  14. P = porcentil Situações de escolha de alfa &gt; 0,05: regressão logística, quando se está estudando interação entre variáveis (embora as associações não sejam muito fortes, elas podem interagir de forma importante). Alfas de 0,15 a 1,25 são recomendáveis na fase inicial de análise.
  15. Amostra suficientemente grande (n  30) P é uma probabilidade sob uma distribuição probabilística (ex: distribuição normal)
  16. DP: variabilidade em 1 amostra ou 1 população EP: variabilidade em diversas amostras
  17. Amostra suficientemente grande (n  30) P é uma probabilidade sob uma distribuição probabilística (ex: distribuição normal)
  18. Amostra suficientemente grande (n  30) P é uma probabilidade sob uma distribuição probabilística (ex: distribuição normal)
  19. Erro tipo I – probabilidade mais freqüentemente admitida é 5% (alfa) – MAIS GRAVE Erro tipo II – probabilidade mais freqüentemente admitida é 20% (beta) – MENOS GRAVE Probabilidade de erro do tipo I - geralmente fixado em 0.05 Probabilidade de erro do tipo II - geralmente fixado em 0.20 Poder do teste- (1-b) – geralmente fixado em 0,80 Quando se diminui a probabilidade de erro do tipo I se aumenta a probabilidade de erro do tipo II e vice-versa. Para se diminuir ambos os erros ao mesmo tempo é necessário aumentar o tamanho da amostra.
  20. Intervalo que contenha mi com 95% de probabilidade
  21. Preciso exemplificar melhor o exemplo do teste Z e procurar uma forma de fazer isto no computador para mostrar