SlideShare ist ein Scribd-Unternehmen logo
1 von 15
The ankle and foot
The ankle and foot
Foot and ankle combine flexibility ( propulsion) with stability(support)
structure because consist of a complex of joints, bony structure,
ligamentous attachments, and muscle contraction. The flexible/rigid
characteristics of the ankle/foot complex provide multiple functions,
including:
1. Ankle joint forces up to 4.5 times body weight to occur while walking.
2. It provides a base of support.
3. It acts as a lever during push-off period of stance.
4. It provides adequate flexibility for absorption of the shock of the body
weight and for accommodation to uneven terrain.
5. Prehensile.
Structure of the ankle and foot (see figure 1).
Bony Parts: It contains a total of 26 bones
1. Leg
Tibia and fibula
2. Hindfoot
Talus and calcaneus
3. Midfoot
Navicular, cuboid, and three cuneiforms
4. Forefoot
Five metatarsals and 14 phalanges, which make up the 5 toes (3
phalanges for each toe except the large toe, which has 2 phalanges)
Figure 1: Structure of the ankle and foot
Arches of the Foot (see figure 2).
They are formed by the structure and arrangement of the bones (tarsus
and metatarsus) and maintained by ligaments and tendons the arches are
not rigid; they “give” when weight is placed on the foot, and they spring
back as the weight is lifted.
There are 2 types of arches:
Longitudinal arch: divided into medial and lateral parts
•The medial part originates at the calcaneus, rises at the talus, and
descends to the first three metatarsal bones and receives weight of
the body. The medial arch is supported by the spring ligament.
• Lateral part consists of the calcaneus, cuboid, and fourth and fifth
metatarsal bones and acting essentially as a space through which
tendons canpass. It is supported by the long and short
plantarligaments.
Transverse Arch – side to side concavity from anterior tarsal bones
(calcaneus, navicular, and cuboid) to all fivemetatarsal bones.
Figure 2: Arches of the Foot
The factors maintaining the arches of the foot (see figur3).
Figur3: The factors maintaining the arches of the foot.
Functions of the arches:
1. Support the weight of the body in standing.
2. Act as a lever to propel the body in walking and running.
3. During weight bearing, mechanical energy is stored released to assist
with push-off of the foot from the surface.
Transmission of body weight:
The structures of the foot are anatomically linked such that the load is
evenly distributed over the foot during weight bearing.
Approximately 50% of body weight is distributed through the subtalar
joint to the calcaneus, with the remaining 50% transmitted across the
metatarsal heads. The head of the first metatarsal sustains twice the load
borne by each of the other metatarsal heads. Tibia is the only true weight-
bearing bone in the body.
Muscle Function in the Ankle and Foot (see figuer4):
Both the extrinsic muscles (11) and the intrinsic (22) muscles of the foot
play a vital role in the mechanics of the foot. (See appendix 1).
Figure 4: Muscles
Muscle control of the ankle during gait
1. The muscles of the anterior compartment (dorsiflexors)
actprimarily during swing and early stance phase. This action
enables the foot to clear the ground during swing phase and then
allows it to be placed gently on the ground after heel strike.
2. The posterior, or calf, group acts from midstance to toe-off.
3. In normal standing, the gravitational line falls anteriorly to the
axis of the ankle joint, creating a dorsiflexion moment. The soleus
muscle contracts to counter the gravitational moment through its
pull on the tibia.
4. The intrinsic muscles of the foot activity in the last half of the
stance phase.
Joints
The joints of the foot are divided into three sections—hindfoot
(rearfoot), midfoot, and forefoot (see figure 5-6).
Figure 5: ankle and foot joints Figure 6: Joints
Hindfoot (Rearfoot)
1. Talocrural (Ankle) Joint.
2. Subtalar (Talocakanean).
Midfoot (Midtarsal Joints, Transverse Tarsal Joint, Chopart’s
amputation) .
1. Talocalcaneonavicula r joint.
2. Cuneocuboid Joint.
3. Cuneonavicular Joints
4. Cuboideonavicular joint
5. Calcaneocuboid Joint.
Fore foot
1. Tarsormetatarsal Joints.
2. Metathrsophafangeat Joints.
3. Interphalangeal joints.
Important joints of the foot:
Ankle Joint (Talocrural): The talocrural joint is a uniaxia (,modified
hinge, synovial joint) located between the talus, themedial malleolus of
the tibia, and the lateral malleolus of thefibula and the movements
possible at this joint are dorsiflexionand plantar flexion.
Subtalar (Talocakanean) Joint: A gliding multiaxialsynovial joint
which consists of the talus on top and calcaneuson the bottom. The
subtalar joint allows movements about an oblique axis, allowing the foot
to side to side motion (inversion and eversion).
Transverse tarsal joint: It is formed of 2 joints that lie sideby-side.
These are the talo-navicular joint (between the headof talus and
navicular), and calcaneo-cuboid joint (between the caleaneus. and
cuboid). It is little to no motion and assists in eversion and inversion.
Locking and unlocking of the ankle joint: During
dorsiflexion, the wide anterior part of the trochlear surface of the talus is
lodged into the narrow posterior part of the superior articular surface
(socket). In this position, the ankle joint is locked as the foot cannot be
moved from side to side. During plantar flexion, the narrow posterior part
of the trochlear surface is lodged in the wide anterior part of the socket.
In this position, the ankle joint is unlocked as the foot can be
movedslightly from side to side.
Accordingly, the ankle joint is locked during dorsiflexion and unlocked
during plantar flexion.
Ligaments:
Figure 7: Ankle Ligaments Figure 8:
Ligaments
Ankle Ligaments (see figure 7-8) :
Lateral Ankle Ligaments:
Talofibular ligaments: from the lateral malleolus of the fibula to
connects the talus and support the lateral side of the joint .
Divided in:
• Anterior Talofibular Ligament: It is prevents anterior
subluxation of talus when ankle is in plantar flexion.
• Posterior Talofibular Ligament: it is prevents posterior and
rotatory subluxation of the talus.
Calcaneofibular: connecting lateral malleolus to calcaneus.
It acts primarily to stabilize sub-talar joint & limit inversion. it is lax in
normal, standing position due to relative valgus orientation of calcaneus
Medial Ankle Ligaments
Deltoid ligaments: supports the medial side, triangular shaped, apex at
tip of medial malleolus,, base at talus, navicular, calcaneus which has two
major components;
- Superficial deltoid which resist talar abduction and primarily
resists eversion of hindfoot. Tibionavicular portion prevents inward
displacement of head of talus, while tibiocalcaneal portion prevents
valgus displacement.
- Deep deltoid ligament is prevents lateral displacement of talus &
prevents external rotation of the talus and latter effect is
pronounced in plantar flexion, when deep deltoid tends to pull talus
into internal rotation.
Ligaments of the Foot:
Spring ligament: attaches from calcaneus to navicular. It is supports
longitudinal arch and the head of talus especially in standing.
Plantar aponeurosis: runs from calcaneus to proximal phalanges, ties
posterior an anterior sections together and windlass action in ankle, where
full dorsflexion is limited by plantar aponeurosis.
Movements of the Foot and Ankle
1. Primary plane motions defined
a. Sagittal plane motion is dorsflexion and plantarfiexion.
b. Frontal plane motion is inversion and eversion .
c. Transverse plane motion is abduction and adduction.
2. Triplanar motions occurring about oblique axes defined
a. Pronation is a combination of dorsiflexion, eversion, and
abduction.
b. Supination is a combination of plantarfiexion, inversion, and
adduction.
ROM:
Plantar flexion(55°), Dorsiflexion(15°), Inversion(35°),
Eversion(20°), Pronation (20°)and Supination(35°).
The ankle and foot during gait:
The biomechanics of the foot are best explained by describing
what happens to the foot during the stance phase of the gait
cycle.
Stance phase:
Heel strike
The impact of the heel as it contacts the floor, with subsequent rapid
loading of the foot, results in a floor reaction that exceeds the body
weight by 20 per cent. The sudden impact is partially absorbed by
lowering the body through plantar flexion of the ankle. It is during this
phase that the foot begins to act like a shock absorber. The ankle
dorsiflexors function during the initial foot contact to counter the
plantarflexion torque and to control the lowering of the foot to the
ground.
Midstance
During midstance the entire foot is in contact with the ground (ankle is
neutral again) and the weight of the body is directly over the foot. The
vertical floor reaction is less than the body weight because of the falling
CM. The longitudinal arch of the foot is elevated and the foot everts, with
concomitant motion in the subtalar joint due to the eversion , pronation
and external rotation of the lower limb.
As the body weight shifts forward the foot begins to return to a neutral
position in preparation for heel lift.
Push-off
The ankle plantarflexors , supinates and the metatarsal phalangeal joints
go into extension begin functioning near the end of mid-stance and during
terminal stance and preswing (heel-off to toe-off) to control the rate of
forward movement of the tibia and also to plantarfiex the ankle for push-
off.
During this period the heel rises rapidly with increased ground reaction,
up to 40 per cent above body weight.
Swing Phase of Gait:
Much of kinetic energy for swinging limb is provided by inertia, which is
augmented by the plantarflexors (85%) and hip flexors (15%). During
swing, the ankle dorsiflexes by the concentric contraction of anterior
tibialis muscle and all other muscles are silent. Sub-talar joint assumes
near neutral position, and toes dorsiflex slightly as foot prepares for next
episode.
Common injuries of the ankle and foot
Foot injuries may develop from various causes, such as congenital
malformations of bones, muscular paralysis or spasticity, stresses and
strains in weight-bearing.
Alignment Anomalies of the Foot and Abnormal foot contact (see
figure 9):
1. Pes varus (Club foot).
2. Pes valgus (Pes planus or flat foot).
3. Pes equines.
4. Pes cavus.
5. Pes Calcaneus.
Figure 9: Alignment Anomalies of the Foot.
Injuries Related to High and Low Arch Structures:
Arches that are higher or lower than the normal range have been found to
influence lower extremity kinematics and kinetics, with implications for
injury. High- arched exhibit increased vertical loading rate, with related
higher incidences of ankle sprains, plantar fascitis, and 5° metatarsal
stress fractures. Low-arched exhibit increased range of motion and
velocity in rearfoot eversion, as well as an increased eversion to tibial
internal rotation ratio.
Injuries of the Ligaments
Ankle sprains (see figure 10).
Figure 10: Ankle sprains.
Injuries of the lateral ligament
Ankle sprains usually occur on the lateral side because the joint capsule
and ligaments are stronger on the medial side of the ankle. Mechanism
injury of ankle sprain is inversion of the supinated , plantarflexed foot . It
usually occurs when the foot rolls over on the outside of the ankle. When
the ligament is completely torn or detached from the fibula, the talus is
free to tilt in the mortice of the tibia and fibula.
If the lateral ligament fails to heal, chronic instability of the ankle results.
Fractures with Deloid Injury ligament (Maisonneuve fracture):
The medial ligament is immensely strong and if stressed in ankle joint
injuries generally avulses the medial malleolus rather than itself tearing.
Nevertheless tears do occur, and are seen particularly in conjunction with
lateral malleolar fractures. A mechanism is combination of external
rotation at ankle, abduction of hindfoot,& eversion of forefoot while the
upper body externally rotates over the fixed foot.
Paralysis or Spasticity:
Tibialis Posterior:
Paralysis of tibialis posterior alone causes a planovalgus deformity.
Spasticity of Tibialis Posterior cause dynamic varus deformities of foot.
Tibialis Anterior:
Paralysis (polio) results in development of equinovalgus deformity this is
seen initially during swing phase of gait. Failure to raise the foot
sufficiently during the early swing phase causes Toe drag.
gastrocnemius-soleus paralyzed:
The patient cannot rise on tiptoes, and the gait is severely affected
because inability to increase walking speeds beyond the normal pacing.
However, despite uneven step lengths, she had uniform forward
progression. She had excessive dorsiflexion of the ankle and diminished
plantar flexion on the involved side .
The act of climbing stairs is awkward and slow, and activities such as
running and jumping are all but impossible.
Other soft tissues injuries:
Footballer’s ankle:
Repeated incidents of forced plantar flexion of the foot which result in
tearing of the anterior capsule of the ankle joint. These may lead to
mechanical restriction of dorsiflexion.
Peroneal tendon disruption (peroneus brevis tear):
Mechanism of this injury is forced dorsiflexion with slight inversion and
concomitant eccentric contraction of the peroneal muscles may produce a
subluxation or dislocation of the peroneal tendons.
Anterior (Talotibial) Impingement Syndrome:
The mechanism of injury is repetitive forced dorsiflexion as demiplie
position in ballet can lead to impingement of anterior lip of tibia on talar
neck.
Posterior (Talotililal,) Impillgement Syndrome:
The mechanism of injury is repetitive, forced plantarflexion such as may
occur with practicing karate kicks or dancing en pointe.
Shortening of the Achilles tendon
Mechanisms for tendinitis have been proposed by repeated tension or
repeated loading .Shortening results in plantar flexion of the foot and
clumsiness of gait as the heel fails to reach the ground (Insufficient push
off).
Plantar Fasciltis:
Mechanism of Injury are overuse or repetitive stretching of the plantar
fascia associated with training errors or associated with incomplete
rehabilitation (strengthening) following a previous ankle injure because
weak peroneal muscles may inadequately support the arch. Thus placing
additional stress on the plantar fascia. All of which reduce the foot’s
shockabsorbing capability.
Fracture:
Both the end of the fibula (1) and the tibia (2) are broken .If
both malleoli are broken, this is called a bimallolar fracture or Pott's
fracture.
Stress Fractures
The shafts of the second through the fifth metatarsals are the most
common sites of injury. These injuries are perhaps most commonly seen
in athletes involved in endurance running activities.
Pediatric Ankle Fractures
The age distribution of was typical: malleolar fractures predominated
among the younger children, epiphyseal fractures among the older.
Most common epiphyseal injury to ankle is distal tibia caused by
supination and external rotation. Complications of this fracture is :
1. Growth Plate Arrest.
2. Angular Deformities - varus or valgus deformity.
3. Leg Length Discrepancy.
Appendix 1:
Muscles of ankle and foot
References:
1. Adams,J. and Hamblen,D.(1995).Outline of Orthopaedics. (12 th
edition).Churchill Livingstone.
2. Donatelli,R. and Wooden ,M.(1994).Orthopaedic Physical Therapy.
(2ed
edition).Churchill Livingstone.
3. Downie,P. (1993).Cash's Textbook of :Orthopaedics and
Rheumatology
for Physiotherapists.( 1est edition). Jaypee Brothers.
4. Kisner,C. and Colby,L.(1996).Therapeutic Exercise Foundations and
Techniques.(3th edition).F.A.Davis company .Philadelphia.
5. Lehmkuhl.L.and Smith,L.(1986).Brunnstrom's Clinical Kinesiology.(4
th edition).F.A.Davis company.
6. Magee,D.(1997). Orthopedic physical assessment.(3th
edition).W.B.Sunders Company.
7. Marieb, Elaine Nicpon (2000). Essentials of human anatomy and
physiology. San Francisco: Benjamin Cummings.
8. McKinley, Michael P.; Martini, Frederic; Timmons, Michael J. (2000).
Human anatomy. Englewood Cliffs, N.J: Prentice Hall.
9. McRae,R. (1997).Clinical Orthopaedic Examination . (4 th
edition).Churchill Livingstone.
10. Morris,M.(1977). Biomechanics of the foot and ankle. Clin Orthop
Relat Res.(122):10-7.
11. Noor.El.Din,M.(1992).Illustrated Human Anatomy for Medical
Students.(2ed edition).National Library Legal Deposit.
12. Trew,M. and Everett,T. (1997).Human Movement. (3 th
edition).Churchill Livingstone.

Weitere ähnliche Inhalte

Was ist angesagt?

Q angle (Quadriceps angle) Assessment
Q angle (Quadriceps angle) Assessment   Q angle (Quadriceps angle) Assessment
Q angle (Quadriceps angle) Assessment Syed Adil
 
Glenohumeral joint-ppt.
Glenohumeral joint-ppt.Glenohumeral joint-ppt.
Glenohumeral joint-ppt.Mohammad Akeel
 
Kinesiology of the Shoulder
Kinesiology of the ShoulderKinesiology of the Shoulder
Kinesiology of the ShoulderSado Anatomist
 
Gait parameters , determinants and assessment (2)
Gait   parameters , determinants and assessment (2)Gait   parameters , determinants and assessment (2)
Gait parameters , determinants and assessment (2)DR.SUSHIL KUMAR NAYAK
 
Kinematics and kinetics of gait
Kinematics and kinetics of gaitKinematics and kinetics of gait
Kinematics and kinetics of gaitSukanya1411
 
biomechanics of shoulder
biomechanics of shoulderbiomechanics of shoulder
biomechanics of shouldermrinal joshi
 
Gait, Phases of Gait, Kinamatics and kinetics of gait
Gait, Phases of Gait, Kinamatics and kinetics of gaitGait, Phases of Gait, Kinamatics and kinetics of gait
Gait, Phases of Gait, Kinamatics and kinetics of gaitSaurab Sharma
 
Biomechanics of shoulder
Biomechanics of shoulderBiomechanics of shoulder
Biomechanics of shoulderKumarpal Singh
 
Biomechanical analysis of lifting
Biomechanical analysis of liftingBiomechanical analysis of lifting
Biomechanical analysis of liftingchhavi007
 
Biomechanics of elbow joint
Biomechanics of elbow jointBiomechanics of elbow joint
Biomechanics of elbow jointKumarpal Singh
 
Lumbar Spnine: Anatomy, Biomechanics and Pathomechanics
Lumbar Spnine: Anatomy, Biomechanics and PathomechanicsLumbar Spnine: Anatomy, Biomechanics and Pathomechanics
Lumbar Spnine: Anatomy, Biomechanics and PathomechanicsRadhika Chintamani
 

Was ist angesagt? (20)

Q angle (Quadriceps angle) Assessment
Q angle (Quadriceps angle) Assessment   Q angle (Quadriceps angle) Assessment
Q angle (Quadriceps angle) Assessment
 
Glenohumeral joint-ppt.
Glenohumeral joint-ppt.Glenohumeral joint-ppt.
Glenohumeral joint-ppt.
 
Bio-mechanics of the hip joint
Bio-mechanics of the hip jointBio-mechanics of the hip joint
Bio-mechanics of the hip joint
 
Kinesiology of the Shoulder
Kinesiology of the ShoulderKinesiology of the Shoulder
Kinesiology of the Shoulder
 
Gait parameters , determinants and assessment (2)
Gait   parameters , determinants and assessment (2)Gait   parameters , determinants and assessment (2)
Gait parameters , determinants and assessment (2)
 
Kinematics and kinetics of gait
Kinematics and kinetics of gaitKinematics and kinetics of gait
Kinematics and kinetics of gait
 
The ankle and foot complex
The ankle and foot complexThe ankle and foot complex
The ankle and foot complex
 
biomechanics of shoulder
biomechanics of shoulderbiomechanics of shoulder
biomechanics of shoulder
 
Gait, Phases of Gait, Kinamatics and kinetics of gait
Gait, Phases of Gait, Kinamatics and kinetics of gaitGait, Phases of Gait, Kinamatics and kinetics of gait
Gait, Phases of Gait, Kinamatics and kinetics of gait
 
Bio-mechanics of the wrist joint
Bio-mechanics of the wrist jointBio-mechanics of the wrist joint
Bio-mechanics of the wrist joint
 
Biomechanics of foot
Biomechanics  of footBiomechanics  of foot
Biomechanics of foot
 
Biomechanics of hip complex 3
Biomechanics of hip complex 3Biomechanics of hip complex 3
Biomechanics of hip complex 3
 
Biomechanics of shoulder
Biomechanics of shoulderBiomechanics of shoulder
Biomechanics of shoulder
 
Biomechanical analysis of lifting
Biomechanical analysis of liftingBiomechanical analysis of lifting
Biomechanical analysis of lifting
 
Knee biomechanic
Knee biomechanicKnee biomechanic
Knee biomechanic
 
Biomechanics of elbow joint
Biomechanics of elbow jointBiomechanics of elbow joint
Biomechanics of elbow joint
 
Bio-mechanics of the ankle joint
Bio-mechanics of the ankle jointBio-mechanics of the ankle joint
Bio-mechanics of the ankle joint
 
Lumbar Spnine: Anatomy, Biomechanics and Pathomechanics
Lumbar Spnine: Anatomy, Biomechanics and PathomechanicsLumbar Spnine: Anatomy, Biomechanics and Pathomechanics
Lumbar Spnine: Anatomy, Biomechanics and Pathomechanics
 
Prehension
PrehensionPrehension
Prehension
 
Biomechanics of HIP
Biomechanics of HIPBiomechanics of HIP
Biomechanics of HIP
 

Andere mochten auch

Presentation1.pptx ankle joint..
Presentation1.pptx ankle joint..Presentation1.pptx ankle joint..
Presentation1.pptx ankle joint..Abdellah Nazeer
 
Imaging of shoulder - Dr. Vishal Sankpal
Imaging of shoulder - Dr. Vishal SankpalImaging of shoulder - Dr. Vishal Sankpal
Imaging of shoulder - Dr. Vishal SankpalVishal Sankpal
 
Femoro Acetabular Impingement
Femoro Acetabular ImpingementFemoro Acetabular Impingement
Femoro Acetabular ImpingementJames Kingsmill
 
Foot and ankle problems - Derek Park
Foot and ankle problems - Derek ParkFoot and ankle problems - Derek Park
Foot and ankle problems - Derek ParkDerek Park
 
Femoro acetabular impingement syndrome
Femoro acetabular impingement syndromeFemoro acetabular impingement syndrome
Femoro acetabular impingement syndromeJayant Sharma
 
Anatomy shoulder
Anatomy shoulderAnatomy shoulder
Anatomy shoulderorthoprince
 
Shoulder impingement syndrome
Shoulder impingement syndromeShoulder impingement syndrome
Shoulder impingement syndromeRatan Khuman
 
Muscles of shoulder
Muscles of shoulderMuscles of shoulder
Muscles of shoulderLucidante1
 
Anatomy of shoulder joint - vamshi kiran
Anatomy of shoulder joint - vamshi kiranAnatomy of shoulder joint - vamshi kiran
Anatomy of shoulder joint - vamshi kiranbadamvamshikiran
 

Andere mochten auch (16)

Presentation1.pptx ankle joint..
Presentation1.pptx ankle joint..Presentation1.pptx ankle joint..
Presentation1.pptx ankle joint..
 
Femoroacetabular impingement
Femoroacetabular impingementFemoroacetabular impingement
Femoroacetabular impingement
 
Imaging of shoulder - Dr. Vishal Sankpal
Imaging of shoulder - Dr. Vishal SankpalImaging of shoulder - Dr. Vishal Sankpal
Imaging of shoulder - Dr. Vishal Sankpal
 
Femoroacetabular impingement
Femoroacetabular impingementFemoroacetabular impingement
Femoroacetabular impingement
 
Femoro Acetabular Impingement
Femoro Acetabular ImpingementFemoro Acetabular Impingement
Femoro Acetabular Impingement
 
Foot and ankle problems - Derek Park
Foot and ankle problems - Derek ParkFoot and ankle problems - Derek Park
Foot and ankle problems - Derek Park
 
Femoro acetabular impingement syndrome
Femoro acetabular impingement syndromeFemoro acetabular impingement syndrome
Femoro acetabular impingement syndrome
 
Anatomy shoulder
Anatomy shoulderAnatomy shoulder
Anatomy shoulder
 
Shoulder impingement syndrome
Shoulder impingement syndromeShoulder impingement syndrome
Shoulder impingement syndrome
 
Rotator cuff tears
Rotator cuff tearsRotator cuff tears
Rotator cuff tears
 
talus #
talus #talus #
talus #
 
MRI of Shoulder anatomy
MRI of Shoulder anatomyMRI of Shoulder anatomy
MRI of Shoulder anatomy
 
Muscles of shoulder
Muscles of shoulderMuscles of shoulder
Muscles of shoulder
 
Anatomy of shoulder joint - vamshi kiran
Anatomy of shoulder joint - vamshi kiranAnatomy of shoulder joint - vamshi kiran
Anatomy of shoulder joint - vamshi kiran
 
MRI OF SHOULDER INJURY
MRI OF SHOULDER INJURYMRI OF SHOULDER INJURY
MRI OF SHOULDER INJURY
 
MRI of the shoulder
MRI of the shoulderMRI of the shoulder
MRI of the shoulder
 

Ähnlich wie Biomechanics of ankle and foot

ankleandfootcomplex-190730140126 (1).pdf
ankleandfootcomplex-190730140126 (1).pdfankleandfootcomplex-190730140126 (1).pdf
ankleandfootcomplex-190730140126 (1).pdfShiriShir
 
Biomechanics of ankle and foot
Biomechanics of ankle and footBiomechanics of ankle and foot
Biomechanics of ankle and footAragyaKhadka
 
Anatomy and biomechanics of soleus muscle
Anatomy and biomechanics of soleus muscleAnatomy and biomechanics of soleus muscle
Anatomy and biomechanics of soleus musclejasmeen kaur
 
Ankle & foot biomechanics
Ankle & foot biomechanicsAnkle & foot biomechanics
Ankle & foot biomechanicsMeghan Phutane
 
Ankle & foot biomechanics
Ankle & foot biomechanicsAnkle & foot biomechanics
Ankle & foot biomechanicsMeghan Phutane
 
anklefootbiomechanics-180308063536.pdf
anklefootbiomechanics-180308063536.pdfanklefootbiomechanics-180308063536.pdf
anklefootbiomechanics-180308063536.pdfShiriShir
 
Ankle Foot Biomechanics-.pdf
Ankle Foot Biomechanics-.pdfAnkle Foot Biomechanics-.pdf
Ankle Foot Biomechanics-.pdfKahindiIssaya
 
Biomechanics of Foot and Ankle complex, CP orthotic management &Tone reducing...
Biomechanics of Foot and Ankle complex, CP orthotic management &Tone reducing...Biomechanics of Foot and Ankle complex, CP orthotic management &Tone reducing...
Biomechanics of Foot and Ankle complex, CP orthotic management &Tone reducing...Fiona Verma
 
Ankle anatomy and biomechanics
Ankle anatomy and biomechanicsAnkle anatomy and biomechanics
Ankle anatomy and biomechanicsRadhika Chintamani
 
knee joint biomechanics 2nd BPTH Kinesiology
knee joint biomechanics 2nd BPTH Kinesiologyknee joint biomechanics 2nd BPTH Kinesiology
knee joint biomechanics 2nd BPTH KinesiologyNIKITAWAGHMARE6
 
ARCHES OF FOOT 1.ppsx
ARCHES OF FOOT 1.ppsxARCHES OF FOOT 1.ppsx
ARCHES OF FOOT 1.ppsxNana Mends
 
Biomechanics of knee complex 6 tibiofemoral jt function
Biomechanics of knee complex 6 tibiofemoral jt functionBiomechanics of knee complex 6 tibiofemoral jt function
Biomechanics of knee complex 6 tibiofemoral jt functionDibyendunarayan Bid
 
Biomechanics of knee complex 6 tibiofemoral jt function
Biomechanics of knee complex 6 tibiofemoral jt functionBiomechanics of knee complex 6 tibiofemoral jt function
Biomechanics of knee complex 6 tibiofemoral jt functionDibyendunarayan Bid
 
Biomechanics of ankle_joint
Biomechanics of ankle_jointBiomechanics of ankle_joint
Biomechanics of ankle_jointNityal Kumar
 

Ähnlich wie Biomechanics of ankle and foot (20)

ankleandfootcomplex-190730140126 (1).pdf
ankleandfootcomplex-190730140126 (1).pdfankleandfootcomplex-190730140126 (1).pdf
ankleandfootcomplex-190730140126 (1).pdf
 
Ankle and foot complex
Ankle and foot complexAnkle and foot complex
Ankle and foot complex
 
Ankle and foot complex
Ankle and foot complexAnkle and foot complex
Ankle and foot complex
 
Biomechanics of ankle and foot
Biomechanics of ankle and footBiomechanics of ankle and foot
Biomechanics of ankle and foot
 
Anatomy and biomechanics of soleus muscle
Anatomy and biomechanics of soleus muscleAnatomy and biomechanics of soleus muscle
Anatomy and biomechanics of soleus muscle
 
Ankle & foot biomechanics
Ankle & foot biomechanicsAnkle & foot biomechanics
Ankle & foot biomechanics
 
Ankle & foot biomechanics
Ankle & foot biomechanicsAnkle & foot biomechanics
Ankle & foot biomechanics
 
anklefootbiomechanics-180308063536.pdf
anklefootbiomechanics-180308063536.pdfanklefootbiomechanics-180308063536.pdf
anklefootbiomechanics-180308063536.pdf
 
Ankle Foot Biomechanics-.pdf
Ankle Foot Biomechanics-.pdfAnkle Foot Biomechanics-.pdf
Ankle Foot Biomechanics-.pdf
 
Arches (2)
Arches (2)Arches (2)
Arches (2)
 
Ankle joint
Ankle  jointAnkle  joint
Ankle joint
 
Biomechanics of Foot and Ankle complex, CP orthotic management &Tone reducing...
Biomechanics of Foot and Ankle complex, CP orthotic management &Tone reducing...Biomechanics of Foot and Ankle complex, CP orthotic management &Tone reducing...
Biomechanics of Foot and Ankle complex, CP orthotic management &Tone reducing...
 
Ankle anatomy and biomechanics
Ankle anatomy and biomechanicsAnkle anatomy and biomechanics
Ankle anatomy and biomechanics
 
knee joint biomechanics 2nd BPTH Kinesiology
knee joint biomechanics 2nd BPTH Kinesiologyknee joint biomechanics 2nd BPTH Kinesiology
knee joint biomechanics 2nd BPTH Kinesiology
 
ARCHES OF FOOT 1.ppsx
ARCHES OF FOOT 1.ppsxARCHES OF FOOT 1.ppsx
ARCHES OF FOOT 1.ppsx
 
Biomechanics of knee complex 6 tibiofemoral jt function
Biomechanics of knee complex 6 tibiofemoral jt functionBiomechanics of knee complex 6 tibiofemoral jt function
Biomechanics of knee complex 6 tibiofemoral jt function
 
Biomechanics of knee complex 6 tibiofemoral jt function
Biomechanics of knee complex 6 tibiofemoral jt functionBiomechanics of knee complex 6 tibiofemoral jt function
Biomechanics of knee complex 6 tibiofemoral jt function
 
Biomechanics of ankle_joint
Biomechanics of ankle_jointBiomechanics of ankle_joint
Biomechanics of ankle_joint
 
SPINE 2.pptx
SPINE 2.pptxSPINE 2.pptx
SPINE 2.pptx
 
GAIT
GAITGAIT
GAIT
 

Kürzlich hochgeladen

College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceCollege Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceNehru place Escorts
 
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...narwatsonia7
 
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service MumbaiLow Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbaisonalikaur4
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...Miss joya
 
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort ServiceCall Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Serviceparulsinha
 
97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAA97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAAjennyeacort
 
Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024Gabriel Guevara MD
 
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️saminamagar
 
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...narwatsonia7
 
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking ModelsMumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Modelssonalikaur4
 
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy GirlsCall Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girlsnehamumbai
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...narwatsonia7
 
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbersBook Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbersnarwatsonia7
 
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdfHemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdfMedicoseAcademics
 
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safenarwatsonia7
 
Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000aliya bhat
 
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service MumbaiVIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbaisonalikaur4
 

Kürzlich hochgeladen (20)

College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceCollege Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
 
sauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Service
sauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Servicesauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Service
sauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Service
 
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
 
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service MumbaiLow Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
 
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort ServiceCall Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
 
97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAA97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAA
 
Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024
 
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
 
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
 
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking ModelsMumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
 
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy GirlsCall Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
 
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
 
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbersBook Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
 
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdfHemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdf
 
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
 
Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000
 
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
 
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service MumbaiVIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
 

Biomechanics of ankle and foot

  • 1. The ankle and foot The ankle and foot Foot and ankle combine flexibility ( propulsion) with stability(support) structure because consist of a complex of joints, bony structure, ligamentous attachments, and muscle contraction. The flexible/rigid characteristics of the ankle/foot complex provide multiple functions, including: 1. Ankle joint forces up to 4.5 times body weight to occur while walking. 2. It provides a base of support. 3. It acts as a lever during push-off period of stance. 4. It provides adequate flexibility for absorption of the shock of the body weight and for accommodation to uneven terrain. 5. Prehensile. Structure of the ankle and foot (see figure 1). Bony Parts: It contains a total of 26 bones 1. Leg Tibia and fibula 2. Hindfoot Talus and calcaneus 3. Midfoot Navicular, cuboid, and three cuneiforms 4. Forefoot Five metatarsals and 14 phalanges, which make up the 5 toes (3 phalanges for each toe except the large toe, which has 2 phalanges)
  • 2. Figure 1: Structure of the ankle and foot Arches of the Foot (see figure 2). They are formed by the structure and arrangement of the bones (tarsus and metatarsus) and maintained by ligaments and tendons the arches are not rigid; they “give” when weight is placed on the foot, and they spring back as the weight is lifted. There are 2 types of arches: Longitudinal arch: divided into medial and lateral parts •The medial part originates at the calcaneus, rises at the talus, and descends to the first three metatarsal bones and receives weight of the body. The medial arch is supported by the spring ligament. • Lateral part consists of the calcaneus, cuboid, and fourth and fifth metatarsal bones and acting essentially as a space through which tendons canpass. It is supported by the long and short plantarligaments. Transverse Arch – side to side concavity from anterior tarsal bones (calcaneus, navicular, and cuboid) to all fivemetatarsal bones.
  • 3. Figure 2: Arches of the Foot The factors maintaining the arches of the foot (see figur3). Figur3: The factors maintaining the arches of the foot. Functions of the arches: 1. Support the weight of the body in standing. 2. Act as a lever to propel the body in walking and running. 3. During weight bearing, mechanical energy is stored released to assist with push-off of the foot from the surface. Transmission of body weight: The structures of the foot are anatomically linked such that the load is evenly distributed over the foot during weight bearing. Approximately 50% of body weight is distributed through the subtalar joint to the calcaneus, with the remaining 50% transmitted across the
  • 4. metatarsal heads. The head of the first metatarsal sustains twice the load borne by each of the other metatarsal heads. Tibia is the only true weight- bearing bone in the body. Muscle Function in the Ankle and Foot (see figuer4): Both the extrinsic muscles (11) and the intrinsic (22) muscles of the foot play a vital role in the mechanics of the foot. (See appendix 1). Figure 4: Muscles Muscle control of the ankle during gait 1. The muscles of the anterior compartment (dorsiflexors) actprimarily during swing and early stance phase. This action enables the foot to clear the ground during swing phase and then allows it to be placed gently on the ground after heel strike. 2. The posterior, or calf, group acts from midstance to toe-off. 3. In normal standing, the gravitational line falls anteriorly to the axis of the ankle joint, creating a dorsiflexion moment. The soleus muscle contracts to counter the gravitational moment through its pull on the tibia. 4. The intrinsic muscles of the foot activity in the last half of the stance phase. Joints The joints of the foot are divided into three sections—hindfoot (rearfoot), midfoot, and forefoot (see figure 5-6).
  • 5. Figure 5: ankle and foot joints Figure 6: Joints Hindfoot (Rearfoot) 1. Talocrural (Ankle) Joint. 2. Subtalar (Talocakanean). Midfoot (Midtarsal Joints, Transverse Tarsal Joint, Chopart’s amputation) . 1. Talocalcaneonavicula r joint. 2. Cuneocuboid Joint. 3. Cuneonavicular Joints 4. Cuboideonavicular joint 5. Calcaneocuboid Joint. Fore foot 1. Tarsormetatarsal Joints. 2. Metathrsophafangeat Joints. 3. Interphalangeal joints. Important joints of the foot: Ankle Joint (Talocrural): The talocrural joint is a uniaxia (,modified hinge, synovial joint) located between the talus, themedial malleolus of
  • 6. the tibia, and the lateral malleolus of thefibula and the movements possible at this joint are dorsiflexionand plantar flexion. Subtalar (Talocakanean) Joint: A gliding multiaxialsynovial joint which consists of the talus on top and calcaneuson the bottom. The subtalar joint allows movements about an oblique axis, allowing the foot to side to side motion (inversion and eversion). Transverse tarsal joint: It is formed of 2 joints that lie sideby-side. These are the talo-navicular joint (between the headof talus and navicular), and calcaneo-cuboid joint (between the caleaneus. and cuboid). It is little to no motion and assists in eversion and inversion. Locking and unlocking of the ankle joint: During dorsiflexion, the wide anterior part of the trochlear surface of the talus is lodged into the narrow posterior part of the superior articular surface (socket). In this position, the ankle joint is locked as the foot cannot be moved from side to side. During plantar flexion, the narrow posterior part of the trochlear surface is lodged in the wide anterior part of the socket. In this position, the ankle joint is unlocked as the foot can be movedslightly from side to side. Accordingly, the ankle joint is locked during dorsiflexion and unlocked during plantar flexion. Ligaments: Figure 7: Ankle Ligaments Figure 8: Ligaments Ankle Ligaments (see figure 7-8) :
  • 7. Lateral Ankle Ligaments: Talofibular ligaments: from the lateral malleolus of the fibula to connects the talus and support the lateral side of the joint . Divided in: • Anterior Talofibular Ligament: It is prevents anterior subluxation of talus when ankle is in plantar flexion. • Posterior Talofibular Ligament: it is prevents posterior and rotatory subluxation of the talus. Calcaneofibular: connecting lateral malleolus to calcaneus. It acts primarily to stabilize sub-talar joint & limit inversion. it is lax in normal, standing position due to relative valgus orientation of calcaneus Medial Ankle Ligaments Deltoid ligaments: supports the medial side, triangular shaped, apex at tip of medial malleolus,, base at talus, navicular, calcaneus which has two major components; - Superficial deltoid which resist talar abduction and primarily resists eversion of hindfoot. Tibionavicular portion prevents inward displacement of head of talus, while tibiocalcaneal portion prevents valgus displacement. - Deep deltoid ligament is prevents lateral displacement of talus & prevents external rotation of the talus and latter effect is pronounced in plantar flexion, when deep deltoid tends to pull talus into internal rotation. Ligaments of the Foot: Spring ligament: attaches from calcaneus to navicular. It is supports longitudinal arch and the head of talus especially in standing. Plantar aponeurosis: runs from calcaneus to proximal phalanges, ties posterior an anterior sections together and windlass action in ankle, where full dorsflexion is limited by plantar aponeurosis.
  • 8. Movements of the Foot and Ankle 1. Primary plane motions defined a. Sagittal plane motion is dorsflexion and plantarfiexion. b. Frontal plane motion is inversion and eversion . c. Transverse plane motion is abduction and adduction. 2. Triplanar motions occurring about oblique axes defined a. Pronation is a combination of dorsiflexion, eversion, and abduction. b. Supination is a combination of plantarfiexion, inversion, and adduction. ROM: Plantar flexion(55°), Dorsiflexion(15°), Inversion(35°), Eversion(20°), Pronation (20°)and Supination(35°). The ankle and foot during gait: The biomechanics of the foot are best explained by describing what happens to the foot during the stance phase of the gait cycle. Stance phase: Heel strike The impact of the heel as it contacts the floor, with subsequent rapid loading of the foot, results in a floor reaction that exceeds the body weight by 20 per cent. The sudden impact is partially absorbed by lowering the body through plantar flexion of the ankle. It is during this phase that the foot begins to act like a shock absorber. The ankle dorsiflexors function during the initial foot contact to counter the plantarflexion torque and to control the lowering of the foot to the ground. Midstance
  • 9. During midstance the entire foot is in contact with the ground (ankle is neutral again) and the weight of the body is directly over the foot. The vertical floor reaction is less than the body weight because of the falling CM. The longitudinal arch of the foot is elevated and the foot everts, with concomitant motion in the subtalar joint due to the eversion , pronation and external rotation of the lower limb. As the body weight shifts forward the foot begins to return to a neutral position in preparation for heel lift. Push-off The ankle plantarflexors , supinates and the metatarsal phalangeal joints go into extension begin functioning near the end of mid-stance and during terminal stance and preswing (heel-off to toe-off) to control the rate of forward movement of the tibia and also to plantarfiex the ankle for push- off. During this period the heel rises rapidly with increased ground reaction, up to 40 per cent above body weight. Swing Phase of Gait: Much of kinetic energy for swinging limb is provided by inertia, which is augmented by the plantarflexors (85%) and hip flexors (15%). During swing, the ankle dorsiflexes by the concentric contraction of anterior tibialis muscle and all other muscles are silent. Sub-talar joint assumes near neutral position, and toes dorsiflex slightly as foot prepares for next episode. Common injuries of the ankle and foot Foot injuries may develop from various causes, such as congenital malformations of bones, muscular paralysis or spasticity, stresses and strains in weight-bearing. Alignment Anomalies of the Foot and Abnormal foot contact (see figure 9):
  • 10. 1. Pes varus (Club foot). 2. Pes valgus (Pes planus or flat foot). 3. Pes equines. 4. Pes cavus. 5. Pes Calcaneus. Figure 9: Alignment Anomalies of the Foot. Injuries Related to High and Low Arch Structures: Arches that are higher or lower than the normal range have been found to influence lower extremity kinematics and kinetics, with implications for injury. High- arched exhibit increased vertical loading rate, with related higher incidences of ankle sprains, plantar fascitis, and 5° metatarsal stress fractures. Low-arched exhibit increased range of motion and
  • 11. velocity in rearfoot eversion, as well as an increased eversion to tibial internal rotation ratio. Injuries of the Ligaments Ankle sprains (see figure 10). Figure 10: Ankle sprains. Injuries of the lateral ligament Ankle sprains usually occur on the lateral side because the joint capsule and ligaments are stronger on the medial side of the ankle. Mechanism injury of ankle sprain is inversion of the supinated , plantarflexed foot . It usually occurs when the foot rolls over on the outside of the ankle. When the ligament is completely torn or detached from the fibula, the talus is free to tilt in the mortice of the tibia and fibula. If the lateral ligament fails to heal, chronic instability of the ankle results. Fractures with Deloid Injury ligament (Maisonneuve fracture): The medial ligament is immensely strong and if stressed in ankle joint injuries generally avulses the medial malleolus rather than itself tearing. Nevertheless tears do occur, and are seen particularly in conjunction with lateral malleolar fractures. A mechanism is combination of external rotation at ankle, abduction of hindfoot,& eversion of forefoot while the upper body externally rotates over the fixed foot.
  • 12. Paralysis or Spasticity: Tibialis Posterior: Paralysis of tibialis posterior alone causes a planovalgus deformity. Spasticity of Tibialis Posterior cause dynamic varus deformities of foot. Tibialis Anterior: Paralysis (polio) results in development of equinovalgus deformity this is seen initially during swing phase of gait. Failure to raise the foot sufficiently during the early swing phase causes Toe drag. gastrocnemius-soleus paralyzed: The patient cannot rise on tiptoes, and the gait is severely affected because inability to increase walking speeds beyond the normal pacing. However, despite uneven step lengths, she had uniform forward progression. She had excessive dorsiflexion of the ankle and diminished plantar flexion on the involved side . The act of climbing stairs is awkward and slow, and activities such as running and jumping are all but impossible. Other soft tissues injuries: Footballer’s ankle: Repeated incidents of forced plantar flexion of the foot which result in tearing of the anterior capsule of the ankle joint. These may lead to mechanical restriction of dorsiflexion. Peroneal tendon disruption (peroneus brevis tear): Mechanism of this injury is forced dorsiflexion with slight inversion and concomitant eccentric contraction of the peroneal muscles may produce a subluxation or dislocation of the peroneal tendons. Anterior (Talotibial) Impingement Syndrome: The mechanism of injury is repetitive forced dorsiflexion as demiplie position in ballet can lead to impingement of anterior lip of tibia on talar neck.
  • 13. Posterior (Talotililal,) Impillgement Syndrome: The mechanism of injury is repetitive, forced plantarflexion such as may occur with practicing karate kicks or dancing en pointe. Shortening of the Achilles tendon Mechanisms for tendinitis have been proposed by repeated tension or repeated loading .Shortening results in plantar flexion of the foot and clumsiness of gait as the heel fails to reach the ground (Insufficient push off). Plantar Fasciltis: Mechanism of Injury are overuse or repetitive stretching of the plantar fascia associated with training errors or associated with incomplete rehabilitation (strengthening) following a previous ankle injure because weak peroneal muscles may inadequately support the arch. Thus placing additional stress on the plantar fascia. All of which reduce the foot’s shockabsorbing capability. Fracture: Both the end of the fibula (1) and the tibia (2) are broken .If both malleoli are broken, this is called a bimallolar fracture or Pott's fracture. Stress Fractures The shafts of the second through the fifth metatarsals are the most common sites of injury. These injuries are perhaps most commonly seen in athletes involved in endurance running activities. Pediatric Ankle Fractures The age distribution of was typical: malleolar fractures predominated among the younger children, epiphyseal fractures among the older. Most common epiphyseal injury to ankle is distal tibia caused by supination and external rotation. Complications of this fracture is : 1. Growth Plate Arrest.
  • 14. 2. Angular Deformities - varus or valgus deformity. 3. Leg Length Discrepancy. Appendix 1: Muscles of ankle and foot References: 1. Adams,J. and Hamblen,D.(1995).Outline of Orthopaedics. (12 th
  • 15. edition).Churchill Livingstone. 2. Donatelli,R. and Wooden ,M.(1994).Orthopaedic Physical Therapy. (2ed edition).Churchill Livingstone. 3. Downie,P. (1993).Cash's Textbook of :Orthopaedics and Rheumatology for Physiotherapists.( 1est edition). Jaypee Brothers. 4. Kisner,C. and Colby,L.(1996).Therapeutic Exercise Foundations and Techniques.(3th edition).F.A.Davis company .Philadelphia. 5. Lehmkuhl.L.and Smith,L.(1986).Brunnstrom's Clinical Kinesiology.(4 th edition).F.A.Davis company. 6. Magee,D.(1997). Orthopedic physical assessment.(3th edition).W.B.Sunders Company. 7. Marieb, Elaine Nicpon (2000). Essentials of human anatomy and physiology. San Francisco: Benjamin Cummings. 8. McKinley, Michael P.; Martini, Frederic; Timmons, Michael J. (2000). Human anatomy. Englewood Cliffs, N.J: Prentice Hall. 9. McRae,R. (1997).Clinical Orthopaedic Examination . (4 th edition).Churchill Livingstone. 10. Morris,M.(1977). Biomechanics of the foot and ankle. Clin Orthop Relat Res.(122):10-7. 11. Noor.El.Din,M.(1992).Illustrated Human Anatomy for Medical Students.(2ed edition).National Library Legal Deposit. 12. Trew,M. and Everett,T. (1997).Human Movement. (3 th edition).Churchill Livingstone.