SlideShare ist ein Scribd-Unternehmen logo
1 von 233
Downloaden Sie, um offline zu lesen
Twitter
990
10
583.7
170.1
http://www.toeic.or.jp/toeic/about/data/data_avelist/data_ave01_04.html
http://www.toeic.or.jp/toeic/about/data/data_avelist/data_dist01_04.html
990
10
583.7
170.1
http://www.toeic.or.jp/toeic/about/data/data_avelist/data_ave01_04.html
http://www.toeic.or.jp/toeic/about/data/data_avelist/data_dist01_04.html
D = {x1, x2, · · · , xn}
¯x =
1
n
nX
i=1
xi
2
=
1
n
nX
i=1
(xi ¯x)2
=
v
u
u
t 1
n
nX
i=1
(xi ¯x)2
=
1
n
nX
i=1
|xi ¯x|
=
1
n
nX
i=1
(xi ¯x)2
p
=
v
u
u
t 1
N
NX
i=1
(xi ¯x)2
p
probability
! 2 ⌦ = {!1, !2, · · · , !m}
⌦ = { , }
! 2 { , }
!(1)
= !(2)
=
!(n)
=
⌦ = {1, 2, 3, 4, 5, 6}
!(1)
= !(2)
=
!(n)
=
⌦ = {!1, !2, · · · , !49870000}
!(1)
= !43890298 = 171cm
!(2)
= !29184638 = 168cm
!(n)
= !51398579 = 174cm
!(1)
= !(2)
=
!(n)
=!(3)
=
!1 !2 !3 !4 !5 !6 !7 !8 !9 !10
= {!1, !2, !3, · · · , !10}
! 2 ⌦ = {ID1, ID2, ID3, · · · , ID10}
⌦ !
!
X = X(!)
⌦ !
!
X(!1) = 0
X(!2) = 0
X(!3) = 0
X(!4) = 0
X(!5) = 0
X(!6) = 0
X(!7) = 0
X(!8) = 0
X(!9) = 0
X(!10) = 100
!
{! 2 ⌦ : X(!) 2 A}
{X 2 A}
X(!) X
{! 2 ⌦ : X(!) 2 A}
!1 !2 !3 !4 !5 !6 !7 !8 !9 !10
A X(!) = 100Ac
X(!) = 0
!5 or !9
PX (A) = P(X 2 A) = P({! 2 ⌦ : X(!) 2 A})
⌦
!5, !9 !5, !9
PX (A) =
#({! 2 ⌦ : X(!) 2 A})
#( )
=
#(!5, !9)
#( )
=
2
10
= 0.2
PX(⌦) = 1
A1, A2, · · ·
PX ([iAi) =
X
i
PX (Ai)
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
0  PX(A)  1
X = X(!)
⌦
A
A
!1
!2
!3
!4
!5
!6
!7
!8
!11
!10
!9
!12
!13
!14
!15
!16
B
C
D
X(!) = 0
X(!) = 0
#A = #{! 2 ⌦ : X(!) = 0} = 7
#B = #{! 2 ⌦ : X(!) = 1} = 2
#C = #{! 2 ⌦ : X(!) = 2} = 4
#D = #{! 2 ⌦ : X(!) = 3} = 3
⌦
A
A
!1
!2
!3
!4
!5
!6
!7
!8
!11
!10
!9
!12
!13
!14
!15
!16
B
C
DX(!) = 0
P(X = 0) = PX(A) =
#{! 2 ⌦ : X(!) = 0}
#⌦
=
7
16
P(X = 1) = PX (B) =
#{! 2 ⌦ : X(!) = 1}
#⌦
=
2
16
P(X = 2) = PX(C) =
#{! 2 ⌦ : X(!) = 2}
#⌦
=
4
16
P(X = 3) = PX(D) =
#{! 2 ⌦ : X(!) = 3}
#⌦
=
3
16
{x1, x2, · · · , xk}
P(X = xi) = f(xi)
F(x) = P(X  x)
P(x < X  x + x)
x + xx
x x ! 0
f(x) = lim
x!0
P(x < X  x + x)
x
x + xx
f(x)
F(x) = P(X  x) =
Z x
1
f(u)du
f(a < x < b) =
Z b
a
f(x)dx
http://www.math.wm.edu/~leemis/2008amstat.pdf
P(X = x) = px
(1 p)1 x
(x = 0, 1)
#
#
p = 0.7
trial_size = 10000
set.seed(71)
#
data <- rbern(trial_size, p)
#
dens <- data.frame(y=c((1-p),p)*trial_size, x=c(0, 1))
#
ggplot() +
layer(data=data.frame(x=data), mapping=aes(x=x), geom="bar",
stat="bin", bandwidth=0.1
) + layer(data=dens, mapping=aes(x=x, y=y), geom="bar",
stat="identity", width=0.05, fill="#777799", alpha=0.7)
(x = 0, 1, · · · , n)
#
p = 0.7
trial_size = 10000
sample_size = 30
set.seed(71)
#
gen_binom_var <- function() {
return(sum(rbern(sample_size, p)))
}
result <- rdply(trial_size, gen_binom_var())
#
dens <- data.frame(y=dbinom(seq(sample_size),
sample_size, 0.7))*trial_size
#
ggplot() +
layer(data=resuylt, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=1, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(sample_size)+.5, y=y),
geom="line", stat="identity", position="identity",colour="red"
) + ggtitle("Bernoulli to Binomial.")
P(X = x) =
e x
x!
trial_size = 5000; width <- 1;
#
p = 0.7; n = 10;
np <- p*n
# n!∞ p!0 np=
n = 100000; p <- np/n
#
gen_binom_var <- function() {
return(sum(rbern(n, p)))
}
result <- rdply(trial_size, gen_binom_var())
#
dens <- data.frame(y=dpois(seq(20), np))*trial_size
#
ggplot() +
layer(data=result, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(20)+.5, y=y),
geom="line", stat="identity", position="identity",
colour="red"
) + ggtitle("Bernoulli to Poisson.")
f(x) =
1
p
2⇡ 2
exp
⇢
1
2
(x µ)2
2
( 1 < x < 1)
#
n <- 10000; p <- 0.7;
trial_size = 10000
width=10
#
gen_binom_var <- function() {
return(sum(rbern(n, p)))
}
result <- rdply(trial_size, gen_binom_var())
#
dens <- data.frame(y=dnorm(seq(6800,7200), mean=n*p,
sd=sqrt(n*p*(1-p)))*trial_size*width)
#
ggplot() +
layer(data=result, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(6800,7200), y=y),
geom="line", stat="identity", position="identity",
colour="red") + ggtitle("Bernoulli to Normal.")
( 1 < x < 1)
f(x) =
1
p
2⇡
exp
⇢
1
2
x2
#
n <- 10000; p <- 0.7
trial_size = 30000
width=0.18
#
gen_binom_var <- function() {
return(sum(rbern(n, p)))
}
result <- rdply(trial_size, gen_binom_var())
m <- mean(result$V1); sd <- sd(result$V1);
result <- (result - m)/sd
#
dens <- data.frame(y=dnorm(seq(-4,4,0.05), mean=0,
sd=1)*trial_size*width)
#
ggplot() +
layer(data=result, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(-4,4,0.05), y=y),
geom="line", stat="identity", position=“identity",
colour="red"
) + ggtitle("Bernoulli to Standard Normal.")
f(x, k) =
(1/2)k/2
(k/2)
xk/2 1
e x/2
(0  x)
Xi
Z = X2
1 + · · · + X2
k
#
p <- 0.7; n <- 1000;
trial_size <- 100000; width <- 0.3;
df <- 3
# (3 )
gen_binom_var <- function() {
return(sum(rbern(n, p)))
}
gen_chisq_var <- function() {
result <- rdply(trial_size, gen_binom_var())
return(((result$V1 - mean(result$V1))/sd(result$V1))**2)
}
# df
result <- rlply(df, gen_chisq_var(),.progress = "text")
res <- data.frame(x=result[[1]] + result[[2]] + result[[3]])
# ( =3)
xx <- seq(0,20,0.1)
dens <- data.frame(y=dchisq(x=xx, df=df)*trial_size*width)
#
ggplot() + layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=xx, y=y),
geom="line", stat="identity", position="identity",
colour="blue" ) + ggtitle("Bernoulli to Chisquare")
f(x, ) =
⇢
e x
(x 0)
0 (x < 0)
trial_size = 7000; width <- .01;
#
p = 0.7; n = 10; np <- p*n;
# n!∞ p!0 np=
n = 10000; p <- np/n
#
gen_exp_var <- function() {
cnt <- 0
while (TRUE) {
cnt <- cnt + 1
if (rbern(1, p)==1){
return(cnt) # 1
}
}
}
data <- data.frame(x=rdply(trial_size, gen_exp_var())/n)
names(data) <- c("n", "x")
#
dens <- data.frame(y=dexp(seq(0, 1.5, 0.1), np)*trial_size*width)
ggplot() +
layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(0, 1.5, 0.1), y=y),
geom="line", stat="identity", position="identity", colour="red"
) + ggtitle("Bernoulli to Exponential.")
f(x, ↵, ) =
↵
(↵)
x↵ 1
exp( x)
(0  x < 1)
↵X
i=1
Xi ⇠ (↵, )Xi ⇠ Exp( )
trial_size = 7000; width <- .035;
#
p = 0.7; n = 10; np <- p*n;
# n!∞ p!0 np=
n = 10000; p <- np/n; alpha <- 5
#
get_interval <- function(){
cnt <- 0
while (TRUE) {
cnt <- cnt + 1
if (rbern(1, p)==1){ return(cnt) }
}
}
gen_exp_var <- function() {
data <- data.frame(x=rdply(trial_size, get_interval())/n)
names(data) <- c("n", "x")
return(data)
}
result <- rlply(alpha, gen_exp_var())
data <- data.frame(x=result[[1]]$x + result[[2]]$x + result[[3]]$x + result[[4]]$x +
result[[5]]$x)
#
dens <- data.frame(y=dgamma(seq(0, 3,.01), shape=alpha, rate=np)*trial_size*width)
ggplot() +
layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(0,3,.01), y=y),
geom="line", stat="identity", position="identity", colour="red"
) + ggtitle("Bernoulli to Gamma")
f(x, ↵, ) =
↵
(↵)
x (↵+1)
exp
✓
x
◆
(0  x < 1)
Xi ⇠ Exp( ) Z =
↵X
i=1
Xi ⇠ (↵, )
1/Z ⇠ IG(↵, )
trial_size = 7000; width <- .;
#
p = 0.7; n = 10; np <- p*n;
# n!∞ p!0 np=
n = 10000; p <- np/n; alpha <- 5
#
get_interval <- function(){
cnt <- 0
while (TRUE) {
cnt <- cnt + 1
if (rbern(1, p)==1){ return(cnt) }
}
}
gen_exp_var <- function() {
data <- data.frame(x=rdply(trial_size, get_interval())/n)
names(data) <- c("n", "x")
return(data)
}
result <- rlply(alpha, gen_exp_var())
data <- data.frame(x=1/(result[[1]]$x + result[[2]]$x + result[[3]]$x +
result[[4]]$x + result[[5]]$x))
#
dens <- data.frame(y=dinvgamma(seq(0, 23,.01), shape=5, rate=1/np)*trial_size*width)
ggplot() +
layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(0,3,.01), y=y),
geom="line", stat="identity", position="identity", colour="red"
) + ggtitle("Bernoulli to Inversegamma")
f(x) =
⇢
1 (0  x  1)
0 (otherwise)
Z = x1(1/2)1
+ x2(1/2)2
+ · · · + xq(1/2)q
width <- 0.02
p <- 0.5;
sample_size <- 1000
trial_size <- 100000
gen_unif_rand <- function() {
# sample_size 2
#
return (sum(rbern(sample_size, p) * (rep(1/2, sample_size)
** seq(sample_size))))
}
gen_rand <- function(){
return( rdply(trial_size, gen_unif_rand()) )
}
system.time(res <- gen_rand())
ggplot() +
layer(data=res, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + ggtitle("Bernoulli to Standard Uniform")
f(x, a, b) =
⇢
(b a) 1
(a  x  b)
0 (otherwise)
a <- 5
b <- 8;
width <- 0.05
p <- 0.5
sample_size <- 1000
trial_size <- 500000
gen_unif_rand <- function() {
# sample_size 2
#
return (sum(rbern(sample_size, p) * (rep(1/2, sample_size)
** seq(sample_size))))
}
gen_rand <- function(){
return( rdply(trial_size, gen_unif_rand()) )
}
system.time(res <- gen_rand())
res$V1 <- res$V1 * (b-a) + a
ggplot() +
layer(data=res, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + ggtitle("Bernoulli to Uniform") + xlim(4,9)
f(x, ↵, ) =
1
B(↵, )
x↵ 1
(1 x) 1
(0 < x < 1)
Xi ⇠ U(0, 1)iid
(i = 1, 2, · · · , ↵ + 1)
width <- 0.03; p <- 0.5
digits_length <- 30; set_size <- 3
trial_size <- 30000
gen_unif_rand <- function() {
# digits_length 2
#
return (sum(rbern(digits_length, p) *
(rep(1/2, digits_length) **
seq(digits_length))))
}
gen_rand <- function(){
return( rdply(set_size, gen_unif_rand())$V1 )
}
unif_dataset <- rlply(trial_size, gen_rand, .progress='text')
p <- ceiling(set_size * 0.5); q <- set_size - p + 1
get_nth_data <- function(a){ return(a[order(a)][p]) }
disp_data <- data.frame(lapply(unif_dataset, get_nth_data))
names(disp_data) <- seq(length(disp_data)); disp_data <- data.frame(t(disp_data))
names(disp_data) <- "V1"
x_range <- seq(0, 1, 0.001)
dens <- data.frame(y=dbeta(x_range, p, q)*trial_size*width)
ggplot() +
layer(data=disp_data, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=x_range, y=y),
geom="line", stat="identity", position="identity", colour="red"
) + ggtitle("Bernoulli to Beta")
E[X] = X( )P( ) + X( )P( )
= 0 ⇥ 0.8 + 1, 000, 000 ⇥ 0.2
= 200, 000
E[X] =
X
x
xp(x)
µ
✓
n
x
◆
=
n!
(n x)!x!
E[X] =
nX
x=0
xP(x) =
nX
x=0
x
✓
n
x
◆
px
(1 p)n x
=
nX
x=0
x
n!
(n x)!x!
px
(1 p)n x
=
nX
x=0
n
(n 1)!
(n x)!(x 1)!
px
(1 p)n x
= np
nX
x=0
✓
n 1
m 1
◆
p(x 1)
(1 p)(n 1) (x 1)
= np
= np
nX
x=1
✓
n 1
m 1
◆
p(x 1)
(1 p)(n 1) (x 1)
= np
Var[X] = E[(X E[X])2
]
=
X
x
(x E[x])2
P(x)
= 2
µ
Var[x] = E[(X E[X])2
]
=
Z 1
1
(x E[x])2
f(x)dx
= 2
E[X] =
Z 1
1
xf(x)dx
= µ
E[g(X)] =
Z 1
1
g(x)f(x)dx
g(X) = (X E[X])2
E[ · ] =
Z 1
1
· f(x)dx
g(x) = xk
E[g(X)] = E[Xk
] =
Z 1
1
xk
f(x)dx
µ0
k
g(x) = (x E[x])k
E[g(X)] = E[(X E[X]])k
] =
Z 1
1
(x E[x])k
f(x)dx
µk
E[cX] = cE[X]
* E[cX] =
Z 1
1
cxf(x)dx = c
Z 1
1
xf(x)dx
= cE[X]
Var[cX] = c2
Var[X]
* Var[cX] =
Z 1
1
(cx E[cx])2
f(x)dx
=
Z 1
1
(cx cµ)2
f(x)dx
=
Z 1
1
c2
(x µ)2
f(x)dx
= c2
Z 1
1
(x µ)2
f(x)dx
= c2
Var[X]
P(x < X 5 x + x, y < Y 5 y + y)
x, y ! 0
f(x, y) = lim
x, y!0
P(x < X 5 x + x, y < Y 5 y + y)
f(x, y)
g(x) =
Z 1
1
f(x, y)dy
h(y) =
Z 1
1
f(x, y)dx
g(x)
h(y)
EX,Y [ g(X, Y )] =
Z 1
1
Z 1
1
g(x, y)f(x, y)dxdy
g(x, y) = x0.8
y0.8 (x, y) ⇠ N((4, 4), S) S =

1 0.5
0.4 1
EX,Y [ g(X, Y )] = 8.02
g(X, Y ) = (X µX)(Y µY )
Cov[X, Y ] = E[(X µX)(Y µY )]
g(X, Y ) = (X µX)(Y µY )
µX µX
µX µX
µY
µY
µY
µY
S1 = S2 =
S3 = S4 =

1 0.8
0.8 1

1 0.8
0.8 1

1 0
0 1

1 0.999
0.999 1
Cov[X, Y ] = E[(X µX)(Y µY )]
(x, y) ⇠ N((4, 4), S)
f(x, y)
f(x, y) = g(x)h(y)
f(x, y) = g(x)h(y)
= 0
(x1, x2, · · · , xn)
x1
f(x1) =
Z
· · ·
Z
f(x1, · · · , xn)dx2 · · · dxn
x1
f(x1, · · · , xn) = f(x1) · · · f(xn)
x1 · · · xn
x1 · · · xn
g1(x1), · · · , gn(xn) x1 · · · xn
E[
nY
i=1
gi(xi)] =
nY
i=1
E[gi(xi)]
E[g1(x1)] E[gn(xn)]
E[
nY
i=1
gi(xi)] =
Z 1
1
· · ·
Z 1
1
g1(x1) · · · gn(xn)f(x1, · · · , xn)dx1 · · · dxn
=
Z 1
1
g1(x1)f(x1)dx1 · · ·
Z 1
1
gn(xn)f(xn)dxn
=
nY
i=1
E[gi(xi)]
f(x1) · · · f(xn)
x1 · · · xn
xi µi 2
i i = 1, 2, · · · , n
c = (c1, · · · , cn) c1x1 + · · · + cnxn
c1µ1 + · · · + cnµn
c2
1
2
1 + · · · + c2
n
2
n
E[c1x1 + · · · + cnxn]
=
Z 1
1
· · ·
Z 1
1
(c1x1 + · · · + cnxn)f(x1 · · · , xn)dx1 · · · dxn
= c1
Z 1
1
· · ·
Z 1
1
x1f(x1 · · · , xn)dx1 · · · dxn · · ·
cn
Z 1
1
· · ·
Z 1
1
xnf(x1 · · · , xn)dx1 · · · dxn
=c1
Z 1
1
x1dx1 · · · cn
Z 1
1
xndxn
=c1µ1 + · · · + cnµn
f(x1) · · · f(xn)
f(x1) · · · f(xn)
µ1 µn
=c1
Z 1
1
x1dx1 · · · cn
Z 1
1
xndxn
=c1µ1 + · · · + cnµn
Var[c1x1 + · · · + cnxn]
= E[{(c1x1 + · · · + cnxn) E[c1x1 + · · · + cnxn]}2
]
= E[{c1(x1 µ1) + · · · + c1(x1 µ1)}2
]
= E[
nX
i=1
c2
i (xi µi)2
+
X
i6=j
cicj(xi µj)(xi µj)]
=
nX
i=1
c2
i E[(xi µi)2
] +
X
i6=j
cicjE[(xi µj)(xi µj)]
= c2
1
2
1 + · · · + c2
n
2
n
c1µ1 + · · · + cnµn
= E[xi µi]E[xj µj] = 0= 2
i
x1 · · · xn
x1 · · · xn
xi
µ 2
(µ, 2
)
x1 · · · xn
T = x1 + · · · + xn
E[T] = E[x1 + · · · + xn]
= E[x1] + · · · + E[xn]
= nµ
Var[T] = Var[x1 + · · · + xn]
= Var[x1] + · · · + Var[xn]
= n 2
2
1 = · · · = 2
n
c1 = · · · = cn = 1
Var[c1x1 + · · · + cnxn]
= c2
1
2
1 + · · · + c2
n
2
n
¯x =
1
n
nX
i=1
xi =
1
n
T
E[¯x] =
1
n
E[T] = n ·
1
n
µ = µ
Var[¯x] = Var[
1
n
T] =
1
n2
Var[T] =
2
n
µ
2
Var[¯x] =
2
n
=
0.0833
500
= 0.000166
E[¯x] = 0.5
Var[¯x]
µ 2
P(|x µ| > ) 5
1
2
µ 2
1/ 2
= 1 ) P(|x µ| > ) 5 1
= 2 ) P(|x µ| > ) 5 1/4
= 3 ) P(|x µ| > ) 5 1/9
2
=
Z 1
1
(x µ)2
f(x)dx
=
Z
I1
(x µ)2
f(x)dx +
Z
I2
(x µ)2
f(x)dx +
Z
I3
(x µ)2
f(x)dx
2
=
Z
I1
(x µ)2
f(x)dx +
Z
I3
(x µ)2
f(x)dx
=
Z
I1
2 2
f(x)dx +
Z
I3
2 2
f(x)dx
= 2 2
[P(x 2 I1) + P(x 2 I3)]
I1 = ( 1, µ ),
I2 = [µ , µ + ],
I3 = (µ + , 1)
= P(|x µ| > )
P(|x µ| > ) 5
1
2
)
x1 · · · xn µ
2
" > 0
lim
n!1
P{|¯xn µ| = "} = 0
¯xn =
1
n
nX
i=1
xi
¯xn µ
¯xn ! µ in P
" > 0
P(|¯xn µ| > ")
= P(|¯xn µ| > "
p
n
p
n
)
5
2
"2n
= 2
¯x=
=
1
2
f(x) =
1
p
2⇡ 2
exp
✓
(x µ)2
2 2
◆
f(x) =
1
p
2⇡
exp
✓
x2
2
◆
1 < x < 1
1 < x < 1
f(y) = y2
f(x) = x2
f(y) = y2
f(y) = exp( y2
)
z =
p
2y
f(z) = exp
✓
1
2
z2
◆
Z 1
1
e y2
dy =
p
⇡
Z 1
1
exp
✓
z2
2
◆
dz =
p
2⇡
Z 1
1
1
p
2⇡
exp
✓
z2
2
◆
dz = 1
dz =
p
2dy
Z 1
1
1
p
2⇡
exp
✓
z2
2
◆
dz
z =
x µ dz
dx
=
1
f(x) =
Z 1
1
1
p
2⇡ 2
exp
✓
(x µ)2
2 2
◆
dx
1/
D = (x1, · · · , xn) µ 2
¯x µ
/
p
n
, n ! 1 N(0, 1)
= 0.1, µ =
1
= 10, 2
=
1
2
= 100 ¯x = p
n
=
r
1
2n
=
r
1
0.01 ⇥ 10000
=
r
1
100
=
1
10
g(x) = ext
E[ext
] =
Z 1
1
ext
f(x)dx
Mx(t) = E[ext
]
Mx(t)
My(t)
x
t = 0
y
g(x) = ext
ext
= 1 + xt +
t2
2!
x2
+ · · · +
tk
k!
xk
+ · · ·
Mx(t) = E[ext
]
= E[1 + xt +
t2
2!
x2
+ · · · +
tk
k!
xk
+ · · · ]
= 1 + tE[x] +
t2
2!
E[x2
] + · · · +
tk
k!
E[xk
] + · · ·
= 1 + xµ0
1 +
t2
2!
µ0
2 + · · · +
tk
k!
µ0
k + · · ·
Mx(t)
d
dtk
Mx(t) = E[xk
ext
]
t = 0
d
dtk
Mx(0) = E[xk
] = µ0
k
x ⇠ N(µ, )
Mx(t) = E[ext
] =
Z 1
1
ext 1
p
2⇡ 2
exp
✓
1
2
(x µ)2
2
◆
dx
z =
x µ
x = µ + z dx = dz
Mx(t) =
Z 1
1
e(µ+ z)t 1
p
2⇡ 2
exp
✓
1
2
z2
◆
dz
= eµt
Z 1
1
1
p
2⇡
exp
✓
tz
1
2
z2
◆
dz
= eµt
Z 1
1
1
p
2⇡
exp
✓
1
2
[z2
2 tz 2
t2
+ 2
t2
]
◆
dz
= eµt
Z 1
1
1
p
2⇡
e
2t2
2 exp
✓
1
2
(z t)2
◆
dz
= eµt
e
2t2
2
Z 1
1
1
p
2⇡
exp
✓
1
2
(z t)2
◆
dz
z t = w dz = dw
Mx(t) = eµt
e
2t2
2
Z 1
1
1
p
2⇡
exp
✓
w2
2
◆
dw = eµt+
2t2
2
(f · g)0
= f0
· g + f · g0
(f g)0
(x) = f0
(g(x))g0
(x)
M0
x(t) = (µ + 2
t)eµt+
2t2
2
M00
x (t) = (µ + 2
t)2
⇣
eµt+
2t2
2
⌘
+ 2
⇣
eµt+
2t2
2
⌘
=
⇣
eµt+
2t2
2
⌘
{(µ + 2
t)2
+ 2
}
Var[x] = E[x2
] (E[x])2
= (µ2
+ 2
) (µ)2
= 2
Var[x] = E[(x E[x])2
]
= E[x2
2E[x]x + E[x]2
)
= E[x2
] 2E[x]2
+ E[x]2
= E[x2
] E[x]2
t = 0
E[x] = M0
x(0) = (µ + 2
· 0)eµ·0+
2·02
2 = µ
E[x2
] = M00
x (0) =
⇣
eµ·0+
2·02
2
⌘
{(µ + 2
· 0)2
+ 2
} = µ2
+ 2
D = (x1, · · · , xn) µ 2
¯x µ
/
p
n
, n ! 1
N(0, 1)
T = x1 + · · · + xn
T nµ
p
n
2T0
=
T nµ
p
n
=
¯x µ
1/
p
n
Mx(t)
My(t)
x
t = 0
y
T T0
=
T nµ
p
n
N(0, 2
)
Mxi
(t) = 1 + µ0
1t + µ0
2
t2
2!
+ µ0
3
t3
3!
+ · · ·
Mxi µ(t) = 1 + µ1t + µ2
t2
2!
+ µ3
t3
3!
+ · · ·
= 1 + 0 + 2 t2
2!
+ µ3
t3
3!
+ · · ·
xi µ
p
n
xi µ
p
n
Mxi µ
p
n
(t) = E[e
xi µ
p
n
t
]
= 1 + 2 t2
2!n
+ µ3
t3
3!n3/2
+ · · · + µk
tk
k!nk/2
+ · · ·
= 1 +
2
t2
2n
+
n
2n
=
1
2n
n n ! 0 n ! 0
= 1 +
2
t2
+ n
2n
T0
=
x1 µ
p
n
+
x2 nµ
p
n
+ · · · +
xn µ
p
n
=
nX
i=1
xi µ
p
n
MT 0 (t) = MPn
i=1
⇣
xi µ
p
n
⌘(t) = E[e
Pn
i=1
⇣
xi µ
p
n
⌘
t
]
=
nY
i=0
E[e
⇣
xi µ
p
n
⌘
t
] =
✓
1 +
1
n
2
t2
+ n
2
◆n
er
⌘ lim
n!1
⇣
1 +
r
n
⌘n
r
r
= lim
n!1
⇣
1 +
r
n
⌘n
n ! 1
lim
n!1
MT 0 = lim
n!1
✓
1 +
1
n
2
t2
+ n
2
◆n
= e
2t2
2
lim
n!1
n = 0
N(0, 2
)
T0
=
T nµ
p
n
2
n = 100000
sample_size = 1000
rvs_list = []
m_list = []
for i in range(n):
unif_rvs = st.uniform.rvs(4.5, size=sample_size) # 5
beta_rvs = st.beta.rvs(a=3, b=3, size=sample_size) # 0.5 β
gamma_rvs = st.gamma.rvs(a=3, size=sample_size) # 3
chi2_rvs = st.chi2.rvs(df=5, size=sample_size) #
exp_rvs = st.expon.rvs(loc=0, size=sample_size) # 1
rvs = np.array([unif_rvs, beta_rvs, gamma_rvs, chi2_rvs, exp_rvs]).flatten()
m_list.append(np.mean(rvs))
rvs_list.append(rvs)
#
n = 10000
sample_size = 1000
rvs_list = []
m_list = []
m_unif = st.uniform.rvs(4, 2, size=sample_size)
m_beta_a = st.uniform.rvs(4, 2, size=sample_size)
m_beta_b = st.uniform.rvs(4, 2, size=sample_size)
m_gamma = rd.randint(2,5,size=sample_size)
m_chi2_df = rd.randint(3,6,size=sample_size)
m_exp = st.uniform.rvs(4, 2, size=sample_size)
def gen_random_state():
return int(dt.now().timestamp() * 10**6) - 1492914610000000 + rd.randint(0, 1000000)
def create_rvs(n):
#rd.seed = int(dt.now().timestamp() * 10**6) - 1492914610000000 + rd.randint(0, 1000000)
print("[START]")
for _ in range(n):
unif_rvs = [st.uniform.rvs(m, size=1, random_state=gen_random_state()) for m in
m_unif] # 5
beta_rvs = [st.beta.rvs(a=a, b=b, size=1, random_state=gen_random_state()) for a, b
in zip(m_beta_a, m_beta_b)]# 0.5 β
gamma_rvs = [st.gamma.rvs(a=a, size=1, random_state=gen_random_state()) for a in
m_gamma] # 3
chi2_rvs = [st.chi2.rvs(df=d, size=1, random_state=gen_random_state()) for d in
m_chi2_df] #
exp_rvs = [st.expon.rvs(loc=l, size=1, random_state=gen_random_state()) for l in
m_exp] # 1
rvs = np.array([unif_rvs, beta_rvs, gamma_rvs, chi2_rvs, exp_rvs]).flatten()
l_mean.append(np.mean(rvs))
l_rvs.append(rvs)
print("[END]")
n_jobs = 20
n_each = int(n/n_jobs)
jobs = [Process(target=create_rvs, args=(n_each,)) for _ in range(n_jobs)]
manager = Manager()
l_rvs = manager.list(range(len(jobs)))
l_mean = manager.list(range(len(jobs)))
start_time = time.time()
for j in jobs:
j.start()
time.sleep(0.2)
for j in jobs:
j.join()
finish_time = time.time()
print(finish_time - start_time)
m_list = l_mean[n_jobs:]
rvs_list = np.array(l_rvs[n_jobs:])
print(rvs_list.shape)
D = (x1, · · · , xn)
✓0 = ˆ✓(X1, · · · , Xn)
ˆ✓lower(X1, · · · , Xn) 5 ✓0 5 ˆ✓upper(X1, · · · , Xn)
ˆ✓(X)
E[(ˆ✓(X) ✓)2
]
E[(ˆ✓(X) ✓)2
]
= E[{(E[ˆ✓(X)] ✓) + (ˆ✓(X) E[ˆ✓(X)])}2
]
= E[(E[ˆ✓(X)] ✓)2
+ 2(E[ˆ✓(X)] ✓)(ˆ✓(X) E[ˆ✓(X)]) + (ˆ✓(X) E[ˆ✓(X)])2
]
= (E[ˆ✓(X)] ✓)2
+ Var[ˆ✓(X)]
E[ˆ✓(X)] ✓
E[(ˆ✓(X) ✓)2
] = Var[ˆ✓(X)]
E[¯x] =
1
n
E[T] = n ·
1
n
µ = µ
¯x
s2
=
1
n 1
nX
i=1
(xi ¯x)2
lim
n!1
P{|¯xn µ| = "} = 0 ¯xn ! µ in P
ˆ✓n(X) n ! 1
ˆ✓n(X) ! ✓ in P
ˆ✓n(X)
¯xn µ
Var[ˆ✓(X)]
ˆ✓(X)
D = (x1, · · · , xn) xi
f(xi)
nY
i=1
f(xi)
nY
i=1
f(xi|✓)
xi
`(✓|x1, x2, · · · , xn) =
nY
i=1
f(xi|✓)
x1, x2, · · · , x10
f(x1, x2, · · · , x10|µ, 2
) =
10Y
i=1
1
p
2⇡ 2
exp
✓
1
2
(xi µ)2
2
◆
`(µ, 2
|x1, x2, · · · , x10) =
10Y
i=1
1
p
2⇡ 2
exp
✓
1
2
(xi µ)2
2
◆
✓⇤
= arg max
✓
`(✓|x1, x2, · · · , xn)
log `(✓|x1, · · · , xn) ⌘ L(✓|x1, · · · , xn)
`
µ, 2
L(µ, 2
|x1, x2, · · · , x10) =
n
2
(2⇡)
n
2
log 2 1
2 2
nX
i=1
(xi µ)2
@L
@µ
=
1
2 2
nX
i=1
(xi µ)2
)
nX
i=1
xi = nµ
) µ⇤
=
1
n
nX
i=1
xi
`(µ, 2
|x1, x2, · · · , xn) =
nY
i=1
1
p
2⇡ 2
exp
✓
1
2
(xi µ)2
2
◆
@L
@ 2
=
n
2
1
2
+
1
2( 2)2
nX
i=1
(xi µ)2
= 0
)
1
2( 2)2
nX
i=1
(xi µ)2
=
n
2 2
) 2⇤
=
1
n
nX
i=1
(xi µ)2
2⇤
D = (x1, · · · , xn)µ 2
µ
u ⇠ N(0, 1)
t =
u
p
v/m
v ⇠ 2
(m)
f(t) =
m+1
2
p
m⇡ m
2
✓
t2
m
+ 1
◆ m+1
2
u ⇠ N(0, 1) v ⇠ 2
(m) v > 01 < u < +1
f(u, v) =
1
p
2⇡
exp
✓
u2
2
◆
(1/2)n/2
(n/2)
vn/2 1
e v/2
t =
u
p
v/m
x = v
f(t) =
m+1
2
p
m⇡ m
2
✓
t2
m
+ 1
◆ m+1
2
(z) =
Z 1
0
tz 1
e t
dt
µ
D = (x1, · · · , xn) xi ⇠ N(µ, 2
)
¯x ⇠ N(µ, 2
/n)¯x
1
2
nX
i=1
(xi ¯x)2
⇠ 2
n 1
u =
¯x µ
/
p
n
⇠ N(0, 1) v =
1
2
nX
i=1
(xi ¯x)2
⇠ 2
n 1
t =
u
p
v/(n 1)
=
¯x µ
/
p
n
·
"
1
2
1
(n 1)
nX
i=1
(xi ¯x)2
# 1/2
=
¯x µ
1/
p
n
·
1
p
s2
=
¯x µ
s/
p
n
⇠ tn 1
s2
=
1
n 1
nX
i=1
(xi ¯x)2
s2
P
✓
tn 1;↵/2 5
¯x µ
s/
p
n
5 tn 1;↵/2
◆
= 1 ↵
tn 1;↵/2 tn 1;↵/2
↵/2 ↵/2
1 ↵
1 ↵
1 ↵
P
✓
¯x tn 1;↵/2
s
p
n
5 µ 5 ¯x + tn 1;↵/2
s
p
n
◆
= 1 ↵
[ tn 1;↵/2, tn 1;↵/2]
µ
1 ↵
P
✓
tn 1;↵/2 5
¯x µ
s/
p
n
5 tn 1;↵/2
◆
= 1 ↵
tn 1;↵/2 tn 1;↵/2
↵/2 ↵/2
1 ↵
1 ↵
1 ↵
P
✓
¯x tn 1;↵/2
s
p
n
5 µ 5 ¯x + tn 1;↵/2
s
p
n
◆
= 1 ↵
[ tn 1;↵/2, tn 1;↵/2]
µ
1 ↵
= 1 µ = 0
H0 : µ0 = 0
H1 : µ 6= µ0
¯x = /
p
n
/
p
10 ; /3.16
↵/2 ↵/2
H0 : µ0 = 0
H1 : µ = 1
H1 : µ = 0.5
H1 : µ = 3
µ0H1 : µ = 3
H0 : µ0 = 0
e↵ect size : =
µ µ0
…
…
…
…
…
…
…
…
r =
1
n
Pn
i=1(xi ¯x)(yi ¯y)
q
1
n
Pn
i=1(xi ¯x)2
q
1
n
Pn
i=1(yi ¯y)2
r =
1
n
Pn
i=1(xi ¯x)(yi ¯y)
q
1
n
Pn
i=1(xi ¯x)2
q
1
n
Pn
i=1(yi ¯y)2
r =
1
n
Pn
i=1(xi ¯x)(yi ¯y)
q
1
n
Pn
i=1(xi ¯x)2
q
1
n
Pn
i=1(yi ¯y)2
r =
1
n
Pn
i=1(xi ¯x)(yi ¯y)
q
1
n
Pn
i=1(xi ¯x)2
q
1
n
Pn
i=1(yi ¯y)2
1
n
nX
i=1
(xi ¯x)(yi ¯y)
1
n
nX
i=1
(xi ¯x)(yi ¯y)
1
n
nX
i=1
(xi ¯x)(yi ¯y)
1
n
nX
i=1
(xi ¯x)(yi ¯y)
1
n
nX
i=1
(xi ¯x)(yi ¯y)
1
n
nX
i=1
(xi ¯x)(yi ¯y)
1
n
nX
i=1
(xi ¯x)(yi ¯y)
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」

Weitere ähnliche Inhalte

Was ist angesagt?

ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介Naoki Hayashi
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法Hirokatsu Kataoka
 
【DL輪読会】時系列予測 Transfomers の精度向上手法
【DL輪読会】時系列予測 Transfomers の精度向上手法【DL輪読会】時系列予測 Transfomers の精度向上手法
【DL輪読会】時系列予測 Transfomers の精度向上手法Deep Learning JP
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)Takao Yamanaka
 
強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習Eiji Uchibe
 
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)Shota Imai
 
Visual Studio CodeでRを使う
Visual Studio CodeでRを使うVisual Studio CodeでRを使う
Visual Studio CodeでRを使うAtsushi Hayakawa
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Yusuke Uchida
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!TransformerArithmer Inc.
 
トピックモデルの評価指標 Perplexity とは何なのか?
トピックモデルの評価指標 Perplexity とは何なのか?トピックモデルの評価指標 Perplexity とは何なのか?
トピックモデルの評価指標 Perplexity とは何なのか?hoxo_m
 
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)MLSE
 
関数データ解析の概要とその方法
関数データ解析の概要とその方法関数データ解析の概要とその方法
関数データ解析の概要とその方法Hidetoshi Matsui
 
比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!takehikoihayashi
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明Satoshi Hara
 
AHC-Lab M1勉強会 論文の読み方・書き方
AHC-Lab M1勉強会 論文の読み方・書き方AHC-Lab M1勉強会 論文の読み方・書き方
AHC-Lab M1勉強会 論文の読み方・書き方Shinagawa Seitaro
 
差分プライバシーとは何か? (定義 & 解釈編)
差分プライバシーとは何か? (定義 & 解釈編)差分プライバシーとは何か? (定義 & 解釈編)
差分プライバシーとは何か? (定義 & 解釈編)Kentaro Minami
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究についてMasahiro Suzuki
 
社会心理学者のための時系列分析入門_小森
社会心理学者のための時系列分析入門_小森社会心理学者のための時系列分析入門_小森
社会心理学者のための時系列分析入門_小森Masashi Komori
 
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築Kosuke Shinoda
 
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic DatasetsDeep Learning JP
 

Was ist angesagt? (20)

ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法
 
【DL輪読会】時系列予測 Transfomers の精度向上手法
【DL輪読会】時系列予測 Transfomers の精度向上手法【DL輪読会】時系列予測 Transfomers の精度向上手法
【DL輪読会】時系列予測 Transfomers の精度向上手法
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)
 
強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習
 
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
 
Visual Studio CodeでRを使う
Visual Studio CodeでRを使うVisual Studio CodeでRを使う
Visual Studio CodeでRを使う
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
 
トピックモデルの評価指標 Perplexity とは何なのか?
トピックモデルの評価指標 Perplexity とは何なのか?トピックモデルの評価指標 Perplexity とは何なのか?
トピックモデルの評価指標 Perplexity とは何なのか?
 
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
 
関数データ解析の概要とその方法
関数データ解析の概要とその方法関数データ解析の概要とその方法
関数データ解析の概要とその方法
 
比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
 
AHC-Lab M1勉強会 論文の読み方・書き方
AHC-Lab M1勉強会 論文の読み方・書き方AHC-Lab M1勉強会 論文の読み方・書き方
AHC-Lab M1勉強会 論文の読み方・書き方
 
差分プライバシーとは何か? (定義 & 解釈編)
差分プライバシーとは何か? (定義 & 解釈編)差分プライバシーとは何か? (定義 & 解釈編)
差分プライバシーとは何か? (定義 & 解釈編)
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究について
 
社会心理学者のための時系列分析入門_小森
社会心理学者のための時系列分析入門_小森社会心理学者のための時系列分析入門_小森
社会心理学者のための時系列分析入門_小森
 
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築
 
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
 

Andere mochten auch

楕円曲線入門 トーラスと楕円曲線のつながり
楕円曲線入門トーラスと楕円曲線のつながり楕円曲線入門トーラスと楕円曲線のつながり
楕円曲線入門 トーラスと楕円曲線のつながりMITSUNARI Shigeo
 
数学つまみぐい入門編
数学つまみぐい入門編数学つまみぐい入門編
数学つまみぐい入門編Akira Yamaguchi
 
20170422 数学カフェ Part2
20170422 数学カフェ Part220170422 数学カフェ Part2
20170422 数学カフェ Part2Kenta Oono
 
20170422 数学カフェ Part1
20170422 数学カフェ Part120170422 数学カフェ Part1
20170422 数学カフェ Part1Kenta Oono
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門hoxo_m
 

Andere mochten auch (7)

圏とHaskellの型
圏とHaskellの型圏とHaskellの型
圏とHaskellの型
 
楕円曲線入門 トーラスと楕円曲線のつながり
楕円曲線入門トーラスと楕円曲線のつながり楕円曲線入門トーラスと楕円曲線のつながり
楕円曲線入門 トーラスと楕円曲線のつながり
 
数学つまみぐい入門編
数学つまみぐい入門編数学つまみぐい入門編
数学つまみぐい入門編
 
20170422 数学カフェ Part2
20170422 数学カフェ Part220170422 数学カフェ Part2
20170422 数学カフェ Part2
 
20170422 数学カフェ Part1
20170422 数学カフェ Part120170422 数学カフェ Part1
20170422 数学カフェ Part1
 
CuPy解説
CuPy解説CuPy解説
CuPy解説
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
 

Ähnlich wie 数学カフェ 確率・統計・機械学習回 「速習 確率・統計」

第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」Ken'ichi Matsui
 
Advanced Data Visualization in R- Somes Examples.
Advanced Data Visualization in R- Somes Examples.Advanced Data Visualization in R- Somes Examples.
Advanced Data Visualization in R- Somes Examples.Dr. Volkan OBAN
 
Cg my own programs
Cg my own programsCg my own programs
Cg my own programsAmit Kapoor
 
Computer Graphics Lab File C Programs
Computer Graphics Lab File C ProgramsComputer Graphics Lab File C Programs
Computer Graphics Lab File C ProgramsKandarp Tiwari
 
cps170_bayes_nets.ppt
cps170_bayes_nets.pptcps170_bayes_nets.ppt
cps170_bayes_nets.pptFaizAbaas
 
Advanced Data Visualization Examples with R-Part II
Advanced Data Visualization Examples with R-Part IIAdvanced Data Visualization Examples with R-Part II
Advanced Data Visualization Examples with R-Part IIDr. Volkan OBAN
 
A/B Testing for Game Design
A/B Testing for Game DesignA/B Testing for Game Design
A/B Testing for Game DesignTrieu Nguyen
 
The Ring programming language version 1.10 book - Part 81 of 212
The Ring programming language version 1.10 book - Part 81 of 212The Ring programming language version 1.10 book - Part 81 of 212
The Ring programming language version 1.10 book - Part 81 of 212Mahmoud Samir Fayed
 
Computer graphics lab manual
Computer graphics lab manualComputer graphics lab manual
Computer graphics lab manualUma mohan
 
Haskellで学ぶ関数型言語
Haskellで学ぶ関数型言語Haskellで学ぶ関数型言語
Haskellで学ぶ関数型言語ikdysfm
 
Javasccript MV* frameworks
Javasccript MV* frameworksJavasccript MV* frameworks
Javasccript MV* frameworksKerry Buckley
 
Plot3D Package and Example in R.-Data visualizat,on
Plot3D Package and Example in R.-Data visualizat,onPlot3D Package and Example in R.-Data visualizat,on
Plot3D Package and Example in R.-Data visualizat,onDr. Volkan OBAN
 
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.Dr. Volkan OBAN
 
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...Создание картограмм на принципах грамматики графики. С помощью R-расширения g...
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...Matrunich Consulting
 
MH prediction modeling and validation in r (2) classification 190709
MH prediction modeling and validation in r (2) classification 190709MH prediction modeling and validation in r (2) classification 190709
MH prediction modeling and validation in r (2) classification 190709Min-hyung Kim
 
ゲーム理論BASIC 第40回 -仁-
ゲーム理論BASIC 第40回 -仁-ゲーム理論BASIC 第40回 -仁-
ゲーム理論BASIC 第40回 -仁-ssusere0a682
 

Ähnlich wie 数学カフェ 確率・統計・機械学習回 「速習 確率・統計」 (20)

第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
 
Advanced Data Visualization in R- Somes Examples.
Advanced Data Visualization in R- Somes Examples.Advanced Data Visualization in R- Somes Examples.
Advanced Data Visualization in R- Somes Examples.
 
Cg my own programs
Cg my own programsCg my own programs
Cg my own programs
 
Computer Graphics Lab File C Programs
Computer Graphics Lab File C ProgramsComputer Graphics Lab File C Programs
Computer Graphics Lab File C Programs
 
cps170_bayes_nets.ppt
cps170_bayes_nets.pptcps170_bayes_nets.ppt
cps170_bayes_nets.ppt
 
Advanced Data Visualization Examples with R-Part II
Advanced Data Visualization Examples with R-Part IIAdvanced Data Visualization Examples with R-Part II
Advanced Data Visualization Examples with R-Part II
 
A/B Testing for Game Design
A/B Testing for Game DesignA/B Testing for Game Design
A/B Testing for Game Design
 
Joclad 2010 d
Joclad 2010 dJoclad 2010 d
Joclad 2010 d
 
Genomic Graphics
Genomic GraphicsGenomic Graphics
Genomic Graphics
 
The Ring programming language version 1.10 book - Part 81 of 212
The Ring programming language version 1.10 book - Part 81 of 212The Ring programming language version 1.10 book - Part 81 of 212
The Ring programming language version 1.10 book - Part 81 of 212
 
Computer graphics lab manual
Computer graphics lab manualComputer graphics lab manual
Computer graphics lab manual
 
Haskellで学ぶ関数型言語
Haskellで学ぶ関数型言語Haskellで学ぶ関数型言語
Haskellで学ぶ関数型言語
 
Javasccript MV* frameworks
Javasccript MV* frameworksJavasccript MV* frameworks
Javasccript MV* frameworks
 
Plot3D Package and Example in R.-Data visualizat,on
Plot3D Package and Example in R.-Data visualizat,onPlot3D Package and Example in R.-Data visualizat,on
Plot3D Package and Example in R.-Data visualizat,on
 
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.
 
Scrollytelling
ScrollytellingScrollytelling
Scrollytelling
 
Introduction to R
Introduction to RIntroduction to R
Introduction to R
 
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...Создание картограмм на принципах грамматики графики. С помощью R-расширения g...
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...
 
MH prediction modeling and validation in r (2) classification 190709
MH prediction modeling and validation in r (2) classification 190709MH prediction modeling and validation in r (2) classification 190709
MH prediction modeling and validation in r (2) classification 190709
 
ゲーム理論BASIC 第40回 -仁-
ゲーム理論BASIC 第40回 -仁-ゲーム理論BASIC 第40回 -仁-
ゲーム理論BASIC 第40回 -仁-
 

Mehr von Ken'ichi Matsui

ベータ分布の謎に迫る
ベータ分布の謎に迫るベータ分布の謎に迫る
ベータ分布の謎に迫るKen'ichi Matsui
 
音楽波形データからコードを推定してみる
音楽波形データからコードを推定してみる音楽波形データからコードを推定してみる
音楽波形データからコードを推定してみるKen'ichi Matsui
 
データサイエンティストの仕事とデータ分析コンテスト
データサイエンティストの仕事とデータ分析コンテストデータサイエンティストの仕事とデータ分析コンテスト
データサイエンティストの仕事とデータ分析コンテストKen'ichi Matsui
 
分析コンペティションの光と影
分析コンペティションの光と影分析コンペティションの光と影
分析コンペティションの光と影Ken'ichi Matsui
 
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solutionKaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solutionKen'ichi Matsui
 
データ分析コンテストとデータサイエンティストの働きかた
データ分析コンテストとデータサイエンティストの働きかたデータ分析コンテストとデータサイエンティストの働きかた
データ分析コンテストとデータサイエンティストの働きかたKen'ichi Matsui
 
確率分布の成り立ちを理解してスポーツにあてはめてみる
確率分布の成り立ちを理解してスポーツにあてはめてみる確率分布の成り立ちを理解してスポーツにあてはめてみる
確率分布の成り立ちを理解してスポーツにあてはめてみるKen'ichi Matsui
 
SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点
SIGNATE産業技術総合研究所 衛星画像分析コンテスト2位入賞モデルの工夫点SIGNATE産業技術総合研究所 衛星画像分析コンテスト2位入賞モデルの工夫点
SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点Ken'ichi Matsui
 
Variational Autoencoderの紹介
Variational Autoencoderの紹介Variational Autoencoderの紹介
Variational Autoencoderの紹介Ken'ichi Matsui
 
DS LT祭り 「AUCが0.01改善したって どういうことですか?」
DS LT祭り 「AUCが0.01改善したって どういうことですか?」DS LT祭り 「AUCが0.01改善したって どういうことですか?」
DS LT祭り 「AUCが0.01改善したって どういうことですか?」Ken'ichi Matsui
 
統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半Ken'ichi Matsui
 
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」Ken'ichi Matsui
 
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料Ken'ichi Matsui
 
15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学Ken'ichi Matsui
 
Random Forest による分類
Random Forest による分類Random Forest による分類
Random Forest による分類Ken'ichi Matsui
 
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法Ken'ichi Matsui
 
「全ての確率はコイン投げに通ず」 Japan.R 発表資料
「全ての確率はコイン投げに通ず」 Japan.R 発表資料「全ての確率はコイン投げに通ず」 Japan.R 発表資料
「全ての確率はコイン投げに通ず」 Japan.R 発表資料Ken'ichi Matsui
 
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料 「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料 Ken'ichi Matsui
 

Mehr von Ken'ichi Matsui (20)

ベータ分布の謎に迫る
ベータ分布の謎に迫るベータ分布の謎に迫る
ベータ分布の謎に迫る
 
音楽波形データからコードを推定してみる
音楽波形データからコードを推定してみる音楽波形データからコードを推定してみる
音楽波形データからコードを推定してみる
 
データサイエンティストの仕事とデータ分析コンテスト
データサイエンティストの仕事とデータ分析コンテストデータサイエンティストの仕事とデータ分析コンテスト
データサイエンティストの仕事とデータ分析コンテスト
 
分析コンペティションの光と影
分析コンペティションの光と影分析コンペティションの光と影
分析コンペティションの光と影
 
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solutionKaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
 
BERT入門
BERT入門BERT入門
BERT入門
 
データ分析コンテストとデータサイエンティストの働きかた
データ分析コンテストとデータサイエンティストの働きかたデータ分析コンテストとデータサイエンティストの働きかた
データ分析コンテストとデータサイエンティストの働きかた
 
確率分布の成り立ちを理解してスポーツにあてはめてみる
確率分布の成り立ちを理解してスポーツにあてはめてみる確率分布の成り立ちを理解してスポーツにあてはめてみる
確率分布の成り立ちを理解してスポーツにあてはめてみる
 
SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点
SIGNATE産業技術総合研究所 衛星画像分析コンテスト2位入賞モデルの工夫点SIGNATE産業技術総合研究所 衛星画像分析コンテスト2位入賞モデルの工夫点
SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点
 
Introduction of VAE
Introduction of VAEIntroduction of VAE
Introduction of VAE
 
Variational Autoencoderの紹介
Variational Autoencoderの紹介Variational Autoencoderの紹介
Variational Autoencoderの紹介
 
DS LT祭り 「AUCが0.01改善したって どういうことですか?」
DS LT祭り 「AUCが0.01改善したって どういうことですか?」DS LT祭り 「AUCが0.01改善したって どういうことですか?」
DS LT祭り 「AUCが0.01改善したって どういうことですか?」
 
統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半
 
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」
 
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
 
15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学
 
Random Forest による分類
Random Forest による分類Random Forest による分類
Random Forest による分類
 
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
 
「全ての確率はコイン投げに通ず」 Japan.R 発表資料
「全ての確率はコイン投げに通ず」 Japan.R 発表資料「全ての確率はコイン投げに通ず」 Japan.R 発表資料
「全ての確率はコイン投げに通ず」 Japan.R 発表資料
 
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料 「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
 

Kürzlich hochgeladen

Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024thyngster
 
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Jack DiGiovanna
 
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改yuu sss
 
DBA Basics: Getting Started with Performance Tuning.pdf
DBA Basics: Getting Started with Performance Tuning.pdfDBA Basics: Getting Started with Performance Tuning.pdf
DBA Basics: Getting Started with Performance Tuning.pdfJohn Sterrett
 
Advanced Machine Learning for Business Professionals
Advanced Machine Learning for Business ProfessionalsAdvanced Machine Learning for Business Professionals
Advanced Machine Learning for Business ProfessionalsVICTOR MAESTRE RAMIREZ
 
Easter Eggs From Star Wars and in cars 1 and 2
Easter Eggs From Star Wars and in cars 1 and 2Easter Eggs From Star Wars and in cars 1 and 2
Easter Eggs From Star Wars and in cars 1 and 217djon017
 
INTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTDINTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTDRafezzaman
 
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort servicejennyeacort
 
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一F sss
 
Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Colleen Farrelly
 
ASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel CanterASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel Cantervoginip
 
PKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptxPKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptxPramod Kumar Srivastava
 
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...dajasot375
 
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝DelhiRS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhijennyeacort
 
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档208367051
 
Predicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdfPredicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdfBoston Institute of Analytics
 
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)jennyeacort
 

Kürzlich hochgeladen (20)

Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
 
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
 
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
 
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
 
Call Girls in Saket 99530🔝 56974 Escort Service
Call Girls in Saket 99530🔝 56974 Escort ServiceCall Girls in Saket 99530🔝 56974 Escort Service
Call Girls in Saket 99530🔝 56974 Escort Service
 
DBA Basics: Getting Started with Performance Tuning.pdf
DBA Basics: Getting Started with Performance Tuning.pdfDBA Basics: Getting Started with Performance Tuning.pdf
DBA Basics: Getting Started with Performance Tuning.pdf
 
E-Commerce Order PredictionShraddha Kamble.pptx
E-Commerce Order PredictionShraddha Kamble.pptxE-Commerce Order PredictionShraddha Kamble.pptx
E-Commerce Order PredictionShraddha Kamble.pptx
 
Advanced Machine Learning for Business Professionals
Advanced Machine Learning for Business ProfessionalsAdvanced Machine Learning for Business Professionals
Advanced Machine Learning for Business Professionals
 
Easter Eggs From Star Wars and in cars 1 and 2
Easter Eggs From Star Wars and in cars 1 and 2Easter Eggs From Star Wars and in cars 1 and 2
Easter Eggs From Star Wars and in cars 1 and 2
 
INTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTDINTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTD
 
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
 
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
 
Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024
 
ASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel CanterASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel Canter
 
PKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptxPKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptx
 
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
 
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝DelhiRS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
 
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
 
Predicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdfPredicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdf
 
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
 

数学カフェ 確率・統計・機械学習回 「速習 確率・統計」

  • 1.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 11. D = {x1, x2, · · · , xn} ¯x = 1 n nX i=1 xi 2 = 1 n nX i=1 (xi ¯x)2 = v u u t 1 n nX i=1 (xi ¯x)2
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 20.
  • 21.
  • 22.
  • 24. p
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 35. ! 2 ⌦ = {!1, !2, · · · , !m} ⌦ = { , } ! 2 { , } !(1) = !(2) = !(n) =
  • 36. ⌦ = {1, 2, 3, 4, 5, 6} !(1) = !(2) = !(n) = ⌦ = {!1, !2, · · · , !49870000} !(1) = !43890298 = 171cm !(2) = !29184638 = 168cm !(n) = !51398579 = 174cm
  • 37. !(1) = !(2) = !(n) =!(3) = !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 = {!1, !2, !3, · · · , !10} ! 2 ⌦ = {ID1, ID2, ID3, · · · , ID10}
  • 39. X = X(!) ⌦ ! ! X(!1) = 0 X(!2) = 0 X(!3) = 0 X(!4) = 0 X(!5) = 0 X(!6) = 0 X(!7) = 0 X(!8) = 0 X(!9) = 0 X(!10) = 100
  • 40. ! {! 2 ⌦ : X(!) 2 A} {X 2 A} X(!) X
  • 41. {! 2 ⌦ : X(!) 2 A} !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 A X(!) = 100Ac X(!) = 0 !5 or !9
  • 42. PX (A) = P(X 2 A) = P({! 2 ⌦ : X(!) 2 A}) ⌦ !5, !9 !5, !9 PX (A) = #({! 2 ⌦ : X(!) 2 A}) #( ) = #(!5, !9) #( ) = 2 10 = 0.2
  • 43. PX(⌦) = 1 A1, A2, · · · PX ([iAi) = X i PX (Ai) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 0  PX(A)  1
  • 44.
  • 45. X = X(!) ⌦ A A !1 !2 !3 !4 !5 !6 !7 !8 !11 !10 !9 !12 !13 !14 !15 !16 B C D X(!) = 0 X(!) = 0 #A = #{! 2 ⌦ : X(!) = 0} = 7 #B = #{! 2 ⌦ : X(!) = 1} = 2 #C = #{! 2 ⌦ : X(!) = 2} = 4 #D = #{! 2 ⌦ : X(!) = 3} = 3
  • 46. ⌦ A A !1 !2 !3 !4 !5 !6 !7 !8 !11 !10 !9 !12 !13 !14 !15 !16 B C DX(!) = 0 P(X = 0) = PX(A) = #{! 2 ⌦ : X(!) = 0} #⌦ = 7 16 P(X = 1) = PX (B) = #{! 2 ⌦ : X(!) = 1} #⌦ = 2 16 P(X = 2) = PX(C) = #{! 2 ⌦ : X(!) = 2} #⌦ = 4 16 P(X = 3) = PX(D) = #{! 2 ⌦ : X(!) = 3} #⌦ = 3 16
  • 47. {x1, x2, · · · , xk} P(X = xi) = f(xi) F(x) = P(X  x)
  • 48. P(x < X  x + x) x + xx x x ! 0 f(x) = lim x!0 P(x < X  x + x) x
  • 49. x + xx f(x) F(x) = P(X  x) = Z x 1 f(u)du f(a < x < b) = Z b a f(x)dx
  • 51.
  • 52. P(X = x) = px (1 p)1 x (x = 0, 1)
  • 53. # # p = 0.7 trial_size = 10000 set.seed(71) # data <- rbern(trial_size, p) # dens <- data.frame(y=c((1-p),p)*trial_size, x=c(0, 1)) # ggplot() + layer(data=data.frame(x=data), mapping=aes(x=x), geom="bar", stat="bin", bandwidth=0.1 ) + layer(data=dens, mapping=aes(x=x, y=y), geom="bar", stat="identity", width=0.05, fill="#777799", alpha=0.7)
  • 54.
  • 55. (x = 0, 1, · · · , n)
  • 56.
  • 57. # p = 0.7 trial_size = 10000 sample_size = 30 set.seed(71) # gen_binom_var <- function() { return(sum(rbern(sample_size, p))) } result <- rdply(trial_size, gen_binom_var()) # dens <- data.frame(y=dbinom(seq(sample_size), sample_size, 0.7))*trial_size # ggplot() + layer(data=resuylt, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=1, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(sample_size)+.5, y=y), geom="line", stat="identity", position="identity",colour="red" ) + ggtitle("Bernoulli to Binomial.")
  • 58.
  • 59.
  • 60. P(X = x) = e x x!
  • 61.
  • 62. trial_size = 5000; width <- 1; # p = 0.7; n = 10; np <- p*n # n!∞ p!0 np= n = 100000; p <- np/n # gen_binom_var <- function() { return(sum(rbern(n, p))) } result <- rdply(trial_size, gen_binom_var()) # dens <- data.frame(y=dpois(seq(20), np))*trial_size # ggplot() + layer(data=result, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(20)+.5, y=y), geom="line", stat="identity", position="identity", colour="red" ) + ggtitle("Bernoulli to Poisson.")
  • 63.
  • 64. f(x) = 1 p 2⇡ 2 exp ⇢ 1 2 (x µ)2 2 ( 1 < x < 1)
  • 65.
  • 66.
  • 67. # n <- 10000; p <- 0.7; trial_size = 10000 width=10 # gen_binom_var <- function() { return(sum(rbern(n, p))) } result <- rdply(trial_size, gen_binom_var()) # dens <- data.frame(y=dnorm(seq(6800,7200), mean=n*p, sd=sqrt(n*p*(1-p)))*trial_size*width) # ggplot() + layer(data=result, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(6800,7200), y=y), geom="line", stat="identity", position="identity", colour="red") + ggtitle("Bernoulli to Normal.")
  • 68.
  • 69. ( 1 < x < 1) f(x) = 1 p 2⇡ exp ⇢ 1 2 x2
  • 70.
  • 71. # n <- 10000; p <- 0.7 trial_size = 30000 width=0.18 # gen_binom_var <- function() { return(sum(rbern(n, p))) } result <- rdply(trial_size, gen_binom_var()) m <- mean(result$V1); sd <- sd(result$V1); result <- (result - m)/sd # dens <- data.frame(y=dnorm(seq(-4,4,0.05), mean=0, sd=1)*trial_size*width) # ggplot() + layer(data=result, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(-4,4,0.05), y=y), geom="line", stat="identity", position=“identity", colour="red" ) + ggtitle("Bernoulli to Standard Normal.")
  • 72.
  • 73. f(x, k) = (1/2)k/2 (k/2) xk/2 1 e x/2 (0  x) Xi Z = X2 1 + · · · + X2 k
  • 74.
  • 75. # p <- 0.7; n <- 1000; trial_size <- 100000; width <- 0.3; df <- 3 # (3 ) gen_binom_var <- function() { return(sum(rbern(n, p))) } gen_chisq_var <- function() { result <- rdply(trial_size, gen_binom_var()) return(((result$V1 - mean(result$V1))/sd(result$V1))**2) } # df result <- rlply(df, gen_chisq_var(),.progress = "text") res <- data.frame(x=result[[1]] + result[[2]] + result[[3]]) # ( =3) xx <- seq(0,20,0.1) dens <- data.frame(y=dchisq(x=xx, df=df)*trial_size*width) # ggplot() + layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=xx, y=y), geom="line", stat="identity", position="identity", colour="blue" ) + ggtitle("Bernoulli to Chisquare")
  • 76.
  • 77.
  • 78. f(x, ) = ⇢ e x (x 0) 0 (x < 0)
  • 79.
  • 80. trial_size = 7000; width <- .01; # p = 0.7; n = 10; np <- p*n; # n!∞ p!0 np= n = 10000; p <- np/n # gen_exp_var <- function() { cnt <- 0 while (TRUE) { cnt <- cnt + 1 if (rbern(1, p)==1){ return(cnt) # 1 } } } data <- data.frame(x=rdply(trial_size, gen_exp_var())/n) names(data) <- c("n", "x") # dens <- data.frame(y=dexp(seq(0, 1.5, 0.1), np)*trial_size*width) ggplot() + layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(0, 1.5, 0.1), y=y), geom="line", stat="identity", position="identity", colour="red" ) + ggtitle("Bernoulli to Exponential.")
  • 81.
  • 82. f(x, ↵, ) = ↵ (↵) x↵ 1 exp( x) (0  x < 1) ↵X i=1 Xi ⇠ (↵, )Xi ⇠ Exp( )
  • 83.
  • 84. trial_size = 7000; width <- .035; # p = 0.7; n = 10; np <- p*n; # n!∞ p!0 np= n = 10000; p <- np/n; alpha <- 5 # get_interval <- function(){ cnt <- 0 while (TRUE) { cnt <- cnt + 1 if (rbern(1, p)==1){ return(cnt) } } } gen_exp_var <- function() { data <- data.frame(x=rdply(trial_size, get_interval())/n) names(data) <- c("n", "x") return(data) } result <- rlply(alpha, gen_exp_var()) data <- data.frame(x=result[[1]]$x + result[[2]]$x + result[[3]]$x + result[[4]]$x + result[[5]]$x) # dens <- data.frame(y=dgamma(seq(0, 3,.01), shape=alpha, rate=np)*trial_size*width) ggplot() + layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(0,3,.01), y=y), geom="line", stat="identity", position="identity", colour="red" ) + ggtitle("Bernoulli to Gamma")
  • 85.
  • 86. f(x, ↵, ) = ↵ (↵) x (↵+1) exp ✓ x ◆ (0  x < 1) Xi ⇠ Exp( ) Z = ↵X i=1 Xi ⇠ (↵, ) 1/Z ⇠ IG(↵, )
  • 87.
  • 88. trial_size = 7000; width <- .; # p = 0.7; n = 10; np <- p*n; # n!∞ p!0 np= n = 10000; p <- np/n; alpha <- 5 # get_interval <- function(){ cnt <- 0 while (TRUE) { cnt <- cnt + 1 if (rbern(1, p)==1){ return(cnt) } } } gen_exp_var <- function() { data <- data.frame(x=rdply(trial_size, get_interval())/n) names(data) <- c("n", "x") return(data) } result <- rlply(alpha, gen_exp_var()) data <- data.frame(x=1/(result[[1]]$x + result[[2]]$x + result[[3]]$x + result[[4]]$x + result[[5]]$x)) # dens <- data.frame(y=dinvgamma(seq(0, 23,.01), shape=5, rate=1/np)*trial_size*width) ggplot() + layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(0,3,.01), y=y), geom="line", stat="identity", position="identity", colour="red" ) + ggtitle("Bernoulli to Inversegamma")
  • 89.
  • 90. f(x) = ⇢ 1 (0  x  1) 0 (otherwise)
  • 91. Z = x1(1/2)1 + x2(1/2)2 + · · · + xq(1/2)q
  • 92. width <- 0.02 p <- 0.5; sample_size <- 1000 trial_size <- 100000 gen_unif_rand <- function() { # sample_size 2 # return (sum(rbern(sample_size, p) * (rep(1/2, sample_size) ** seq(sample_size)))) } gen_rand <- function(){ return( rdply(trial_size, gen_unif_rand()) ) } system.time(res <- gen_rand()) ggplot() + layer(data=res, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + ggtitle("Bernoulli to Standard Uniform")
  • 93.
  • 94. f(x, a, b) = ⇢ (b a) 1 (a  x  b) 0 (otherwise)
  • 95.
  • 96. a <- 5 b <- 8; width <- 0.05 p <- 0.5 sample_size <- 1000 trial_size <- 500000 gen_unif_rand <- function() { # sample_size 2 # return (sum(rbern(sample_size, p) * (rep(1/2, sample_size) ** seq(sample_size)))) } gen_rand <- function(){ return( rdply(trial_size, gen_unif_rand()) ) } system.time(res <- gen_rand()) res$V1 <- res$V1 * (b-a) + a ggplot() + layer(data=res, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + ggtitle("Bernoulli to Uniform") + xlim(4,9)
  • 97.
  • 98. f(x, ↵, ) = 1 B(↵, ) x↵ 1 (1 x) 1 (0 < x < 1) Xi ⇠ U(0, 1)iid (i = 1, 2, · · · , ↵ + 1)
  • 99.
  • 100. width <- 0.03; p <- 0.5 digits_length <- 30; set_size <- 3 trial_size <- 30000 gen_unif_rand <- function() { # digits_length 2 # return (sum(rbern(digits_length, p) * (rep(1/2, digits_length) ** seq(digits_length)))) } gen_rand <- function(){ return( rdply(set_size, gen_unif_rand())$V1 ) } unif_dataset <- rlply(trial_size, gen_rand, .progress='text') p <- ceiling(set_size * 0.5); q <- set_size - p + 1 get_nth_data <- function(a){ return(a[order(a)][p]) } disp_data <- data.frame(lapply(unif_dataset, get_nth_data)) names(disp_data) <- seq(length(disp_data)); disp_data <- data.frame(t(disp_data)) names(disp_data) <- "V1" x_range <- seq(0, 1, 0.001) dens <- data.frame(y=dbeta(x_range, p, q)*trial_size*width) ggplot() + layer(data=disp_data, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=x_range, y=y), geom="line", stat="identity", position="identity", colour="red" ) + ggtitle("Bernoulli to Beta")
  • 101.
  • 102. E[X] = X( )P( ) + X( )P( ) = 0 ⇥ 0.8 + 1, 000, 000 ⇥ 0.2 = 200, 000 E[X] = X x xp(x) µ
  • 103. ✓ n x ◆ = n! (n x)!x! E[X] = nX x=0 xP(x) = nX x=0 x ✓ n x ◆ px (1 p)n x = nX x=0 x n! (n x)!x! px (1 p)n x = nX x=0 n (n 1)! (n x)!(x 1)! px (1 p)n x = np nX x=0 ✓ n 1 m 1 ◆ p(x 1) (1 p)(n 1) (x 1) = np = np nX x=1 ✓ n 1 m 1 ◆ p(x 1) (1 p)(n 1) (x 1) = np
  • 104. Var[X] = E[(X E[X])2 ] = X x (x E[x])2 P(x) = 2 µ
  • 105. Var[x] = E[(X E[X])2 ] = Z 1 1 (x E[x])2 f(x)dx = 2 E[X] = Z 1 1 xf(x)dx = µ
  • 106. E[g(X)] = Z 1 1 g(x)f(x)dx g(X) = (X E[X])2 E[ · ] = Z 1 1 · f(x)dx
  • 107. g(x) = xk E[g(X)] = E[Xk ] = Z 1 1 xk f(x)dx µ0 k
  • 108. g(x) = (x E[x])k E[g(X)] = E[(X E[X]])k ] = Z 1 1 (x E[x])k f(x)dx µk
  • 109. E[cX] = cE[X] * E[cX] = Z 1 1 cxf(x)dx = c Z 1 1 xf(x)dx = cE[X]
  • 110. Var[cX] = c2 Var[X] * Var[cX] = Z 1 1 (cx E[cx])2 f(x)dx = Z 1 1 (cx cµ)2 f(x)dx = Z 1 1 c2 (x µ)2 f(x)dx = c2 Z 1 1 (x µ)2 f(x)dx = c2 Var[X]
  • 111.
  • 112. P(x < X 5 x + x, y < Y 5 y + y) x, y ! 0 f(x, y) = lim x, y!0 P(x < X 5 x + x, y < Y 5 y + y) f(x, y)
  • 113. g(x) = Z 1 1 f(x, y)dy h(y) = Z 1 1 f(x, y)dx g(x) h(y)
  • 114. EX,Y [ g(X, Y )] = Z 1 1 Z 1 1 g(x, y)f(x, y)dxdy g(x, y) = x0.8 y0.8 (x, y) ⇠ N((4, 4), S) S =  1 0.5 0.4 1 EX,Y [ g(X, Y )] = 8.02
  • 115. g(X, Y ) = (X µX)(Y µY ) Cov[X, Y ] = E[(X µX)(Y µY )]
  • 116. g(X, Y ) = (X µX)(Y µY ) µX µX µX µX µY µY µY µY S1 = S2 = S3 = S4 =  1 0.8 0.8 1  1 0.8 0.8 1  1 0 0 1  1 0.999 0.999 1 Cov[X, Y ] = E[(X µX)(Y µY )] (x, y) ⇠ N((4, 4), S)
  • 117. f(x, y) f(x, y) = g(x)h(y)
  • 118. f(x, y) = g(x)h(y) = 0
  • 119. (x1, x2, · · · , xn) x1 f(x1) = Z · · · Z f(x1, · · · , xn)dx2 · · · dxn x1 f(x1, · · · , xn) = f(x1) · · · f(xn) x1 · · · xn
  • 120. x1 · · · xn g1(x1), · · · , gn(xn) x1 · · · xn E[ nY i=1 gi(xi)] = nY i=1 E[gi(xi)] E[g1(x1)] E[gn(xn)] E[ nY i=1 gi(xi)] = Z 1 1 · · · Z 1 1 g1(x1) · · · gn(xn)f(x1, · · · , xn)dx1 · · · dxn = Z 1 1 g1(x1)f(x1)dx1 · · · Z 1 1 gn(xn)f(xn)dxn = nY i=1 E[gi(xi)] f(x1) · · · f(xn)
  • 121. x1 · · · xn xi µi 2 i i = 1, 2, · · · , n c = (c1, · · · , cn) c1x1 + · · · + cnxn c1µ1 + · · · + cnµn c2 1 2 1 + · · · + c2 n 2 n
  • 122. E[c1x1 + · · · + cnxn] = Z 1 1 · · · Z 1 1 (c1x1 + · · · + cnxn)f(x1 · · · , xn)dx1 · · · dxn = c1 Z 1 1 · · · Z 1 1 x1f(x1 · · · , xn)dx1 · · · dxn · · · cn Z 1 1 · · · Z 1 1 xnf(x1 · · · , xn)dx1 · · · dxn =c1 Z 1 1 x1dx1 · · · cn Z 1 1 xndxn =c1µ1 + · · · + cnµn f(x1) · · · f(xn) f(x1) · · · f(xn) µ1 µn =c1 Z 1 1 x1dx1 · · · cn Z 1 1 xndxn =c1µ1 + · · · + cnµn
  • 123. Var[c1x1 + · · · + cnxn] = E[{(c1x1 + · · · + cnxn) E[c1x1 + · · · + cnxn]}2 ] = E[{c1(x1 µ1) + · · · + c1(x1 µ1)}2 ] = E[ nX i=1 c2 i (xi µi)2 + X i6=j cicj(xi µj)(xi µj)] = nX i=1 c2 i E[(xi µi)2 ] + X i6=j cicjE[(xi µj)(xi µj)] = c2 1 2 1 + · · · + c2 n 2 n c1µ1 + · · · + cnµn = E[xi µi]E[xj µj] = 0= 2 i
  • 124.
  • 125. x1 · · · xn x1 · · · xn xi µ 2 (µ, 2 )
  • 126. x1 · · · xn T = x1 + · · · + xn E[T] = E[x1 + · · · + xn] = E[x1] + · · · + E[xn] = nµ Var[T] = Var[x1 + · · · + xn] = Var[x1] + · · · + Var[xn] = n 2 2 1 = · · · = 2 n c1 = · · · = cn = 1 Var[c1x1 + · · · + cnxn] = c2 1 2 1 + · · · + c2 n 2 n
  • 127. ¯x = 1 n nX i=1 xi = 1 n T E[¯x] = 1 n E[T] = n · 1 n µ = µ Var[¯x] = Var[ 1 n T] = 1 n2 Var[T] = 2 n µ 2
  • 130.
  • 131. µ 2 P(|x µ| > ) 5 1 2 µ 2 1/ 2 = 1 ) P(|x µ| > ) 5 1 = 2 ) P(|x µ| > ) 5 1/4 = 3 ) P(|x µ| > ) 5 1/9
  • 132. 2 = Z 1 1 (x µ)2 f(x)dx = Z I1 (x µ)2 f(x)dx + Z I2 (x µ)2 f(x)dx + Z I3 (x µ)2 f(x)dx 2 = Z I1 (x µ)2 f(x)dx + Z I3 (x µ)2 f(x)dx = Z I1 2 2 f(x)dx + Z I3 2 2 f(x)dx = 2 2 [P(x 2 I1) + P(x 2 I3)] I1 = ( 1, µ ), I2 = [µ , µ + ], I3 = (µ + , 1) = P(|x µ| > ) P(|x µ| > ) 5 1 2 )
  • 133. x1 · · · xn µ 2 " > 0 lim n!1 P{|¯xn µ| = "} = 0 ¯xn = 1 n nX i=1 xi ¯xn µ ¯xn ! µ in P
  • 134. " > 0 P(|¯xn µ| > ") = P(|¯xn µ| > " p n p n ) 5 2 "2n = 2 ¯x= = 1 2
  • 135.
  • 136.
  • 137. f(x) = 1 p 2⇡ 2 exp ✓ (x µ)2 2 2 ◆ f(x) = 1 p 2⇡ exp ✓ x2 2 ◆ 1 < x < 1 1 < x < 1
  • 139. f(x) = x2 f(y) = y2
  • 140. f(y) = exp( y2 )
  • 141. z = p 2y f(z) = exp ✓ 1 2 z2 ◆
  • 142. Z 1 1 e y2 dy = p ⇡ Z 1 1 exp ✓ z2 2 ◆ dz = p 2⇡ Z 1 1 1 p 2⇡ exp ✓ z2 2 ◆ dz = 1 dz = p 2dy
  • 144. z = x µ dz dx = 1 f(x) = Z 1 1 1 p 2⇡ 2 exp ✓ (x µ)2 2 2 ◆ dx 1/
  • 145.
  • 146. D = (x1, · · · , xn) µ 2 ¯x µ / p n , n ! 1 N(0, 1) = 0.1, µ = 1 = 10, 2 = 1 2 = 100 ¯x = p n = r 1 2n = r 1 0.01 ⇥ 10000 = r 1 100 = 1 10
  • 147. g(x) = ext E[ext ] = Z 1 1 ext f(x)dx Mx(t) = E[ext ] Mx(t) My(t) x t = 0 y
  • 148. g(x) = ext ext = 1 + xt + t2 2! x2 + · · · + tk k! xk + · · · Mx(t) = E[ext ] = E[1 + xt + t2 2! x2 + · · · + tk k! xk + · · · ] = 1 + tE[x] + t2 2! E[x2 ] + · · · + tk k! E[xk ] + · · · = 1 + xµ0 1 + t2 2! µ0 2 + · · · + tk k! µ0 k + · · ·
  • 149. Mx(t) d dtk Mx(t) = E[xk ext ] t = 0 d dtk Mx(0) = E[xk ] = µ0 k
  • 150. x ⇠ N(µ, ) Mx(t) = E[ext ] = Z 1 1 ext 1 p 2⇡ 2 exp ✓ 1 2 (x µ)2 2 ◆ dx z = x µ x = µ + z dx = dz
  • 151. Mx(t) = Z 1 1 e(µ+ z)t 1 p 2⇡ 2 exp ✓ 1 2 z2 ◆ dz = eµt Z 1 1 1 p 2⇡ exp ✓ tz 1 2 z2 ◆ dz = eµt Z 1 1 1 p 2⇡ exp ✓ 1 2 [z2 2 tz 2 t2 + 2 t2 ] ◆ dz = eµt Z 1 1 1 p 2⇡ e 2t2 2 exp ✓ 1 2 (z t)2 ◆ dz = eµt e 2t2 2 Z 1 1 1 p 2⇡ exp ✓ 1 2 (z t)2 ◆ dz z t = w dz = dw Mx(t) = eµt e 2t2 2 Z 1 1 1 p 2⇡ exp ✓ w2 2 ◆ dw = eµt+ 2t2 2
  • 152. (f · g)0 = f0 · g + f · g0 (f g)0 (x) = f0 (g(x))g0 (x) M0 x(t) = (µ + 2 t)eµt+ 2t2 2 M00 x (t) = (µ + 2 t)2 ⇣ eµt+ 2t2 2 ⌘ + 2 ⇣ eµt+ 2t2 2 ⌘ = ⇣ eµt+ 2t2 2 ⌘ {(µ + 2 t)2 + 2 }
  • 153. Var[x] = E[x2 ] (E[x])2 = (µ2 + 2 ) (µ)2 = 2 Var[x] = E[(x E[x])2 ] = E[x2 2E[x]x + E[x]2 ) = E[x2 ] 2E[x]2 + E[x]2 = E[x2 ] E[x]2 t = 0 E[x] = M0 x(0) = (µ + 2 · 0)eµ·0+ 2·02 2 = µ E[x2 ] = M00 x (0) = ⇣ eµ·0+ 2·02 2 ⌘ {(µ + 2 · 0)2 + 2 } = µ2 + 2
  • 154. D = (x1, · · · , xn) µ 2 ¯x µ / p n , n ! 1 N(0, 1) T = x1 + · · · + xn T nµ p n 2T0 = T nµ p n = ¯x µ 1/ p n
  • 155. Mx(t) My(t) x t = 0 y T T0 = T nµ p n N(0, 2 )
  • 156. Mxi (t) = 1 + µ0 1t + µ0 2 t2 2! + µ0 3 t3 3! + · · · Mxi µ(t) = 1 + µ1t + µ2 t2 2! + µ3 t3 3! + · · · = 1 + 0 + 2 t2 2! + µ3 t3 3! + · · ·
  • 157. xi µ p n xi µ p n Mxi µ p n (t) = E[e xi µ p n t ] = 1 + 2 t2 2!n + µ3 t3 3!n3/2 + · · · + µk tk k!nk/2 + · · · = 1 + 2 t2 2n + n 2n = 1 2n n n ! 0 n ! 0 = 1 + 2 t2 + n 2n
  • 158. T0 = x1 µ p n + x2 nµ p n + · · · + xn µ p n = nX i=1 xi µ p n MT 0 (t) = MPn i=1 ⇣ xi µ p n ⌘(t) = E[e Pn i=1 ⇣ xi µ p n ⌘ t ] = nY i=0 E[e ⇣ xi µ p n ⌘ t ] = ✓ 1 + 1 n 2 t2 + n 2 ◆n er ⌘ lim n!1 ⇣ 1 + r n ⌘n r r = lim n!1 ⇣ 1 + r n ⌘n
  • 159. n ! 1 lim n!1 MT 0 = lim n!1 ✓ 1 + 1 n 2 t2 + n 2 ◆n = e 2t2 2 lim n!1 n = 0 N(0, 2 ) T0 = T nµ p n 2
  • 160. n = 100000 sample_size = 1000 rvs_list = [] m_list = [] for i in range(n): unif_rvs = st.uniform.rvs(4.5, size=sample_size) # 5 beta_rvs = st.beta.rvs(a=3, b=3, size=sample_size) # 0.5 β gamma_rvs = st.gamma.rvs(a=3, size=sample_size) # 3 chi2_rvs = st.chi2.rvs(df=5, size=sample_size) # exp_rvs = st.expon.rvs(loc=0, size=sample_size) # 1 rvs = np.array([unif_rvs, beta_rvs, gamma_rvs, chi2_rvs, exp_rvs]).flatten() m_list.append(np.mean(rvs)) rvs_list.append(rvs)
  • 161. # n = 10000 sample_size = 1000 rvs_list = [] m_list = [] m_unif = st.uniform.rvs(4, 2, size=sample_size) m_beta_a = st.uniform.rvs(4, 2, size=sample_size) m_beta_b = st.uniform.rvs(4, 2, size=sample_size) m_gamma = rd.randint(2,5,size=sample_size) m_chi2_df = rd.randint(3,6,size=sample_size) m_exp = st.uniform.rvs(4, 2, size=sample_size) def gen_random_state(): return int(dt.now().timestamp() * 10**6) - 1492914610000000 + rd.randint(0, 1000000) def create_rvs(n): #rd.seed = int(dt.now().timestamp() * 10**6) - 1492914610000000 + rd.randint(0, 1000000) print("[START]") for _ in range(n): unif_rvs = [st.uniform.rvs(m, size=1, random_state=gen_random_state()) for m in m_unif] # 5 beta_rvs = [st.beta.rvs(a=a, b=b, size=1, random_state=gen_random_state()) for a, b in zip(m_beta_a, m_beta_b)]# 0.5 β gamma_rvs = [st.gamma.rvs(a=a, size=1, random_state=gen_random_state()) for a in m_gamma] # 3 chi2_rvs = [st.chi2.rvs(df=d, size=1, random_state=gen_random_state()) for d in m_chi2_df] # exp_rvs = [st.expon.rvs(loc=l, size=1, random_state=gen_random_state()) for l in m_exp] # 1 rvs = np.array([unif_rvs, beta_rvs, gamma_rvs, chi2_rvs, exp_rvs]).flatten() l_mean.append(np.mean(rvs)) l_rvs.append(rvs) print("[END]")
  • 162. n_jobs = 20 n_each = int(n/n_jobs) jobs = [Process(target=create_rvs, args=(n_each,)) for _ in range(n_jobs)] manager = Manager() l_rvs = manager.list(range(len(jobs))) l_mean = manager.list(range(len(jobs))) start_time = time.time() for j in jobs: j.start() time.sleep(0.2) for j in jobs: j.join() finish_time = time.time() print(finish_time - start_time) m_list = l_mean[n_jobs:] rvs_list = np.array(l_rvs[n_jobs:]) print(rvs_list.shape)
  • 163.
  • 164. D = (x1, · · · , xn)
  • 165. ✓0 = ˆ✓(X1, · · · , Xn) ˆ✓lower(X1, · · · , Xn) 5 ✓0 5 ˆ✓upper(X1, · · · , Xn)
  • 168. E[(ˆ✓(X) ✓)2 ] = E[{(E[ˆ✓(X)] ✓) + (ˆ✓(X) E[ˆ✓(X)])}2 ] = E[(E[ˆ✓(X)] ✓)2 + 2(E[ˆ✓(X)] ✓)(ˆ✓(X) E[ˆ✓(X)]) + (ˆ✓(X) E[ˆ✓(X)])2 ] = (E[ˆ✓(X)] ✓)2 + Var[ˆ✓(X)] E[ˆ✓(X)] ✓ E[(ˆ✓(X) ✓)2 ] = Var[ˆ✓(X)]
  • 169. E[¯x] = 1 n E[T] = n · 1 n µ = µ ¯x s2 = 1 n 1 nX i=1 (xi ¯x)2
  • 170.
  • 171. lim n!1 P{|¯xn µ| = "} = 0 ¯xn ! µ in P ˆ✓n(X) n ! 1 ˆ✓n(X) ! ✓ in P ˆ✓n(X) ¯xn µ
  • 173.
  • 174.
  • 175. D = (x1, · · · , xn) xi f(xi) nY i=1 f(xi) nY i=1 f(xi|✓) xi `(✓|x1, x2, · · · , xn) = nY i=1 f(xi|✓)
  • 176. x1, x2, · · · , x10 f(x1, x2, · · · , x10|µ, 2 ) = 10Y i=1 1 p 2⇡ 2 exp ✓ 1 2 (xi µ)2 2 ◆
  • 177. `(µ, 2 |x1, x2, · · · , x10) = 10Y i=1 1 p 2⇡ 2 exp ✓ 1 2 (xi µ)2 2 ◆
  • 178.
  • 179. ✓⇤ = arg max ✓ `(✓|x1, x2, · · · , xn) log `(✓|x1, · · · , xn) ⌘ L(✓|x1, · · · , xn) `
  • 180.
  • 181. µ, 2 L(µ, 2 |x1, x2, · · · , x10) = n 2 (2⇡) n 2 log 2 1 2 2 nX i=1 (xi µ)2 @L @µ = 1 2 2 nX i=1 (xi µ)2 ) nX i=1 xi = nµ ) µ⇤ = 1 n nX i=1 xi `(µ, 2 |x1, x2, · · · , xn) = nY i=1 1 p 2⇡ 2 exp ✓ 1 2 (xi µ)2 2 ◆
  • 182. @L @ 2 = n 2 1 2 + 1 2( 2)2 nX i=1 (xi µ)2 = 0 ) 1 2( 2)2 nX i=1 (xi µ)2 = n 2 2 ) 2⇤ = 1 n nX i=1 (xi µ)2 2⇤
  • 183.
  • 184. D = (x1, · · · , xn)µ 2 µ
  • 185. u ⇠ N(0, 1) t = u p v/m v ⇠ 2 (m) f(t) = m+1 2 p m⇡ m 2 ✓ t2 m + 1 ◆ m+1 2
  • 186. u ⇠ N(0, 1) v ⇠ 2 (m) v > 01 < u < +1 f(u, v) = 1 p 2⇡ exp ✓ u2 2 ◆ (1/2)n/2 (n/2) vn/2 1 e v/2 t = u p v/m x = v f(t) = m+1 2 p m⇡ m 2 ✓ t2 m + 1 ◆ m+1 2 (z) = Z 1 0 tz 1 e t dt
  • 187. µ D = (x1, · · · , xn) xi ⇠ N(µ, 2 ) ¯x ⇠ N(µ, 2 /n)¯x 1 2 nX i=1 (xi ¯x)2 ⇠ 2 n 1
  • 188. u = ¯x µ / p n ⇠ N(0, 1) v = 1 2 nX i=1 (xi ¯x)2 ⇠ 2 n 1 t = u p v/(n 1) = ¯x µ / p n · " 1 2 1 (n 1) nX i=1 (xi ¯x)2 # 1/2 = ¯x µ 1/ p n · 1 p s2 = ¯x µ s/ p n ⇠ tn 1 s2 = 1 n 1 nX i=1 (xi ¯x)2 s2
  • 189. P ✓ tn 1;↵/2 5 ¯x µ s/ p n 5 tn 1;↵/2 ◆ = 1 ↵ tn 1;↵/2 tn 1;↵/2 ↵/2 ↵/2 1 ↵ 1 ↵ 1 ↵ P ✓ ¯x tn 1;↵/2 s p n 5 µ 5 ¯x + tn 1;↵/2 s p n ◆ = 1 ↵ [ tn 1;↵/2, tn 1;↵/2] µ 1 ↵
  • 190. P ✓ tn 1;↵/2 5 ¯x µ s/ p n 5 tn 1;↵/2 ◆ = 1 ↵ tn 1;↵/2 tn 1;↵/2 ↵/2 ↵/2 1 ↵ 1 ↵ 1 ↵ P ✓ ¯x tn 1;↵/2 s p n 5 µ 5 ¯x + tn 1;↵/2 s p n ◆ = 1 ↵ [ tn 1;↵/2, tn 1;↵/2] µ 1 ↵
  • 191.
  • 192.
  • 193. = 1 µ = 0 H0 : µ0 = 0 H1 : µ 6= µ0
  • 194. ¯x = / p n / p 10 ; /3.16
  • 195. ↵/2 ↵/2 H0 : µ0 = 0
  • 196.
  • 197.
  • 198.
  • 199.
  • 200.
  • 201.
  • 202. H1 : µ = 1
  • 203. H1 : µ = 0.5
  • 204. H1 : µ = 3 µ0H1 : µ = 3 H0 : µ0 = 0
  • 205.
  • 206. e↵ect size : = µ µ0
  • 207.
  • 208.
  • 209.
  • 210.
  • 211.
  • 213.
  • 214.
  • 215.
  • 216.
  • 217.
  • 218.
  • 219.
  • 220.
  • 221. r = 1 n Pn i=1(xi ¯x)(yi ¯y) q 1 n Pn i=1(xi ¯x)2 q 1 n Pn i=1(yi ¯y)2
  • 222. r = 1 n Pn i=1(xi ¯x)(yi ¯y) q 1 n Pn i=1(xi ¯x)2 q 1 n Pn i=1(yi ¯y)2
  • 223. r = 1 n Pn i=1(xi ¯x)(yi ¯y) q 1 n Pn i=1(xi ¯x)2 q 1 n Pn i=1(yi ¯y)2
  • 224. r = 1 n Pn i=1(xi ¯x)(yi ¯y) q 1 n Pn i=1(xi ¯x)2 q 1 n Pn i=1(yi ¯y)2