SlideShare ist ein Scribd-Unternehmen logo
1 von 33
27th ICAS at Nice on 22th September
Session : Supersonic Aircraft Concepts

“Multidisciplinary Design Optimization of Supersonic Transport Wing
                      Using Surrogate Model”




                Naoto Seto (Tokyo Metropolitan University)
Outline

 Background
 Objectives
 Design Approaches
 Design Target and Design Variables
 Objective Functions and Constraints
 Results
 Conclusions
Background 1

 Short time travel is one of the biggest demands.
     SuperSonic Transport (SST) is expected to meet the demand above.

 Studies in several institutes all over the world




   SSBJ of AERION           Silent SST of JAXA              QSST of SAI

 Many problems to be solved
     Flight cost
     Environmental problems             Trade-off
     Aerodynamic performances

 How should be next generation SST designed with many problems ?
Background 2

 Multidisciplinary Design Optimization (MDO) is the key technique

                                                         Information
Technological interests                                     pool
   Aerodynamics
   Sonic boom
   Structure
   Materials
   Propulsions …etc
                                               Effects of variables
                              Trade-off        (Multi-validate analysis)
                              (*GA, *DoE)
                                                      Global trends
 MDO with global exploration will
                                                      (Data mining)
   help knowledge discovery

*GA : Genetic Algorithm
*DoE : Design of Experiment
Objectives
 Development of
  efficient MDO tool for SST wing in conceptual design


 Features about proposed MDO
1. Low CFD calculation cost
    Full potential equation with panel method
    Kriging model


2. Construction of global design information pool
     Trade-off                            :Multi-Objective Genetic Algorithm
     Effects of design variables          :ANalysis Of VAriance
     Global trends about design variables :Parallel Coordinate Plot
Design Approaches
Design Approaches (design procedure)

                               Initial sampling based on LHS*

                                Surrogate model construction
                                      (Kriging model)

                            Exploration of non-dominated solutions
Additional samplings           on Kriging model using MOGA


                       No
                                       Convergence ?

                                                 Yes
                             Constructing design information pool
                                       (ANOVA, PCP)
*Latin Hypercube Sampling
Design Approaches (exploration of non-dominated solutions)

   Multi Objective Genetic Algorithm (MOGA)
       One of evolutionary algorithm
       Searching global non-dominated solutions with multi-point explorations
        →Many evaluations are required.



           CFD
Kriging model
One of surrogate model
Interpolating and searching local extremes



  ˆ (x i )     (x i )
  y

  Global model         Localized deviation
                       from the global model
Design Approaches (exploration of non-dominated solutions)
 Kriging model includes uncertainty at the predicted points.
 Expected Improvement (EI) considers the balance between optimist and the error.
    EI is expressed below (for maximization problem)

  E I x  
                     z
                        ( f max  z ) dz                              ,
                              n                                               :standard distribution,
                                                                            normal density
                                                                          s :standard error
                       f      ˆ 
                                y         f max  ˆ 
                                                   y
   ( f max    y
                ˆ )   max         s            
                           s                 s    

       : Kriging model                 : Maximum values from sampling

 The larger EI value has the larger possibility to be optimum solutions
  →Additional samplings are based on EIs’ maximization



                                                    Jones, D. R., “Efficient Global Optimization of
                                                    Expensive Black-Box Functions,” J. Glob.
                                                    Opt., Vol. 13, pp.455-492 1998.
Design Approaches (design information)
 Analysis of Variance (ANOVA)
 One of multi-validate analysis for quantitative information




                                                                       Integrate
The main effect of design variable xi:

 i ( xi )     y( x1 ,....., xn )dx1 ,..., dxi 1 , dxi 1 ,.., dxn  
                   ˆ
                                                                                             variance
 where:
      y( x1 ,....., xn )dx1 ,....., dxn
           ˆ

 Total proportion to the total variance:


  pi                        
                                     2
                                                                                    p2

            y(x1,....,xn ) dx1...dxn
                                                                                   35%
                  ˆ
                                                                                          p1
where, ε is the variance due to design variable xi.                                      65%

                                                                                    Main effect
Design Approaches (design information)
 Parallel Coordinate Plot (PCP)
 One of statistical visualization techniques from high-dimensional data into
  two dimensional data.
 Design variables and objective functions are set parallel in the normalized axis.
 PCP shows global trends of design variables.
  1.0
  0.8
  0.6
  0.4
  0.2
  0.0


        Upper bound of ith design variables
                           and objective functions                   Normalization
        Lower bound of ith design variables                         x(dvi ) - min(dvi )
                                                              P
                                                              i
                           and objective functions                 max(dvi ) - min(dvi )
Design Target and Design Variables
Design Target

 Three-dimensional geometry of supersonic main wing

     Other components geometry fuselage, tail planform are same as
      2.5th Silent SuperSonic Technology Demonstrator (S3TD)




         Specifications
 Fuselage                 13.8m
 MTOW                 3500kg
 Sref                     21m2
 Cruse M                   1.6
 Cruse altitude           14km
                                              2.5th design by JAXA
Design Variables

 14 design variables                                        Table 1 Design space
                                                                                      Upper    Lower
                                                             Design variable
                                                                                      bound    bound
                                                       Sweepback angle at inboard
                                              dv1                                     57 (°)   69 (°)
                                                                section
                                                      Sweepback angle at outboard
                                              dv2                                     40 (°)   50 (°)
                                                                section
                                              dv3        Twist angle at wing root     0 (°)    2(°)

                                              dv4       Twist angle at wing kink      –1 (°)   0 (°)

                                              dv5        Twist angle at wing tip      –2 (°)   –1 (°)

                                              dv6    Maximum thickness at wing root    3%c      5%c
Root & kink airfoil     NACA 64series        dv7    Maximum thickness at wing kink    3%c      5%c
Tip airfoil             bi-convex
                                              dv8    Maximum thickness at wing tip     3%c      5%c

                                              dv9             Aspect ratio              2        3
 Tip airfoil
                               Supersonic-    dv10     Wing root camber at 25%c       –1%c      2%c
      linearly-interpolation
                               leading edge   dv11     Wing root camber at 75%c       –2%c      1%c

 Kink airfoil                                 dv12     Wing kink camber at 25%c       –1%c      2%c

      spline-interpolation     Subsonic-      dv13     Wing kink camber at 25%c       –2%c      1%c
                               leading edge   dv14      Wing tip camber at 25%c       –2%c      2%c
 Root airfoil
Objective Functions and Constraints
Objective Functions

 Three objective functions in this study

maximize         L/ D
minimize         ΔP       (On boom carpet)




                                                       ΔP
minimize        Wwing
   subject to Design C L = 0.105
                                                                       Time[ms]
 maximize
                                                                   K-means method
                                ˆ - L / Dmax
                                y                    ˆ - L / Dmax
                                                     y
 • EIL / D = ( ˆ - L / Dmax )Φ(
               y                             ) + sφ(               ) Additional sampling points
                                      s                    s
 maximize
                                                                                       clusters
                            ΔP - ˆ  y        ΔP - ˆ   y



                                                            EI1
 • EIΔP = ( ΔP - y
                 min
                      ˆ )Φ( min ) + sφ( min )
                                s                 s
 maximize
                               Wwingmin ˆy          Wwingmin - ˆ
                                                               y                     EI2
 • EIWwing = (Wwingmin - ˆ )Φ(
                         y                 ) + sφ(               )
                                     s                   s
Evaluations of L/D and ΔP

 CAPAS* developed in JAXA
 Aerodynamic performance                                              Sonic-boom intensity
    Compressible potential equation                                      Correction of shock wave
      with panel method (PANAIR)                                            by Whitham’s theory

              2          2          2                                                            PANAIR data
     2                                                                   F ( x)             CP
  ( M  1)        2
                              2
                                           2
                                                0                                   2
             x           y           z
                                                                        x  
                                                                                   1      r F x 
       : Velocity potential
                                                                                    2   3



                                                                                    Thomas’s waveform parameter
                                                                                    method
                                                                                                    M 2-1
                                                     pressure[psf]

                                                                                                    1.4
Computational               CP distributions                                                      r : propagation distance
geometry

                                                                            Time[ms]
                                                                     *CAPAS (CAD-based Automatic Panel Analysis System)
Evaluation of wing weight
 Inboard wing (multi-frame structure)
     Aluminum material
     Minimum thickness of skin & frame (0<thickness<20mm, every0.1mm)
 Outboard wing (full-depth honeycomb sandwich structure)
     Composite material
     Stack sequence
         Fiber angle θ ; [0/ θ/- θ/90] ns, θ=15, 30, 45, 60, 70deg
         Number of laminations n  n  N  25
 Solver is MSC NASTRAN 2005R (FEM model)
     Strength requirements
         Aluminum material:Mises stress < 200MPa at all FEM nodes
         Composite material: Destruction criteria < 1 at all FEM nodes on each laminate
     Computational conditions
         Symmetrical maneuver +6G, Safety rate: 1.25                 PANAIR data
     Estimated load on the main wing
       (symmetrical maneuver) × (safety rate) × (aerodynamics load)
Constraint

 Trim balance
                                                         C. G.
    C.P. is identical to C.G. at target CL




                                              C.P.
   →12 evaluations are required to decide
     the angle of horizontal tail.
    Realistic cruise condition                          Angle of horizontal tail




 Blue area (main wing and horizontal tail)
  were changed in this study.




                                               Cl
                                                         target CL
                                                                       Cd




                                                     x
Results
Results (samplings)

 75 points were sampled for constructing a initial Kriging model.

 Additional samplings were carried out three times.
     32 additional samples
     Total number of samplings is 107.

 Calculation time for one sample
    One hour for the CAPAS evaluations
    15 minutes for the NASTRAN evaluations

 Calculation environment
     General work station : 1CPU (Xeon 2.66MHz)
Results (solution space about objective functions)
                                                                                        Wwing
  24 non-dominated solutions from                                 L/D    ΔP[psf]                  AoA
                                                                                        [kg]
   final data                          Design A                    7.02    1.19          612        2.5
  Most of additional samplings formed Design B                    6.08    0.97          502        2.7
   non-dominated solutions             Design C                    5.60    1.53          276        2.6
                                                    Design D       6.77    1.09          691        2.6
                              Design A (best L/D)         Design B (best ΔP)       Design C (best Wwing)
               Design D (compromised)




                                                       Wwing[kg]
ΔP[psf]




                                             Optimum direction



                             L/D                                                  ΔP[psf]
Results (configuration comparison)
 Each champion sample is compared to the compromised.
     Design A                         Design B


                                         Larger sweep back


     Thinner root airfoil


                                 *Red dot line is the compromised (Design D)
     Design C
                                Thinner root airfoil of Design A
                                    Advantage of the reducing wave drag
Flap tail angle
                                Larger inboard sweep back angle of Design B
                                    Ideal equivalence area distribution

                                Flap tail angle of Design C
                                    Reducing aerodynamics load on the main wing
Evaluation of wing weight evaluations
 Inboard wing (multi-frame structure)
     Aluminum material
     Minimum thickness of skin & frame (0<thickness<20mm, every0.1mm)
 Outboard wing (full-depth honeycomb sandwich structure)
     Composite material
     Stack sequence
         Fiber angle θ ; [0/ θ/- θ/90] ns, θ=15, 30, 45, 60, 70deg
         Number of laminations n  n  N  25
 Solver is MSC NASTRAN 2005R (FEM model)
     Strength requirements
         Aluminum material:Mises stress < 200MPa at all FEM nodes
         Composite material: Destruction criteria < 1 at all FEM nodes on each laminate
     Computational conditions
         Symmetrical maneuver +6G, Safety rate: 1.25                 PANAIR data
     Estimated load on the main wing
      (symmetrical maneuver) × (safety rate) × (aerodynamics load)
Results (waveform on the ground)

  Each champion sample is compared to the compromised.
                                         *Red dot line is the compromised (Design D)
                                              Less different
Design A




                                               among Design A, B, and D

                                              Large different
                                               between Design C and D
                                                           L/D     ΔP[psf]     Wwing[kg]
Design B




                                              Design A    7.02       1.19        612
                                              Design B    6.08       0.97        502
                                              Design C    5.60       1.53        276
                                              Design D    6.77       1.09        691
Design C




                                                        Severe trade-off
                                                      between ΔP & Wwing
Results (Overview about ANOVA)
             70%                      45%
      *a1                       *a2               *a3     73%




dv1   inboard sweep    dv8 tip t/c
dv2   outboard sweep   dv9 aspect ratio
dv3   root twist       dv10 root camber(25%c)
                                                Proper range in
dv4   kink twist       dv11 root camber(75%c)    design space?
dv5   tip twist        dv12 kink camber(25%c)
dv6   root t/c         dv13 kink camber(75%c)
dv7   kink t/c         dv14 tip camber(25%c)
Results (Overview about PCP)
                               Best 5 samples
                                 about L/D
Extracting useful data about each objective
 function for the better visualization             *p1




                                  Best 5 samples   *p2
                                    about ΔP


24 non-dominated solutions data

                               Best 5 samples
                                about Wwing        *p3
Results (design information of better L/D)
*PCP was carried out from best five samples about L/D
 Root camber(dv10, 11) & kink camber(dv12, 13)
     ANOVA
                                                                 Design A
                                                        upper
 Kink twist(dv4) & root t/c(dv6)
     PCP                                               lower


→Small drag around root & sufficient lift around kink



                                                                        *a1




                                                           *p1
Results (design information of better ΔP)
*PCP was carried out from best 5 samples about ΔP
 Inboard sweep(dv1) & root camber(dv10) & kink camber(dv14)
     ANOVA

                                                                  Design B
 Kink twist(dv4) & root t/c(dv6) & kink t/c(dv7)
     PCP                                           upper

                                                    lower
→Ideal equivalence area (Ae) distribution




                                                                             *a2
                                                            *p2
Comparisons about equivalence area distribution
              2.5

              2.0
Equivalence area




              1.5

              1.0                                             Design A
                                                              Design B

              0.5                                             Design C
                                                              Design D
                                                              Darden
              0.0
                     0      2      4     6      8      10     12     x(m)
Results (design information of better Wwing)
*PCP was carried out from best 5 samples about Wwing
 Root t/c(dv6) & AR(dv9) & root camber(dv10) & kink camber(dv12, 13)
     ANOVA
                                                                Design C
 Inboard sweep(dv1) & tip twist(dv5) & kink t/c(dv6)upper
     PCP
                                                        lower
→Low aerodynamic load on the wing




                                                        *a3




                                                       *p3
Conclusions
 Efficient MDO tool for conceptual design
    MOGA with Kriging model
        MOGA with Kriging model took about 10 days                   for the total task
        MOGA without Kriging model would take about 160 days         in this study

    Trade-off among each objective function
       →Severe trade-off between ΔP and wing weight

    ANOVA
       ANOVA found the design variables which have effects on each objective functions.
    PCP
      PCP showed the global trend of design variables.
          Better L/D               → root & kink camber
          Better ΔP                → inboard sweep back angle
          Better wing weight       → aspect ratio & root t/c
     Efficient exploration
     Useful design information pool
Acknowledgement

• I wish to thank Dr. Yoshikazu Makino, and Dr. Takeshi
  Takatoya, researchers in Aviation Program Group/Japan
  Aerospace Exploration Agency, for providing their CAE
  program and large support. I would like to thank my paper
  adviser, Prof. Masahiro Kanazaki, for his guidance, and
  support.

• My presentation is supported by the grant from JSASS (Japan
  Society of Aeronautics and Space Science).

Weitere ähnliche Inhalte

Was ist angesagt?

Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...Masahiro Kanazaki
 
Multi-Stage Hybrid Rocket Design for Micro-Satellites Launch using Genetic Al...
Multi-Stage Hybrid Rocket Design for Micro-Satellites Launch using Genetic Al...Multi-Stage Hybrid Rocket Design for Micro-Satellites Launch using Genetic Al...
Multi-Stage Hybrid Rocket Design for Micro-Satellites Launch using Genetic Al...Masahiro Kanazaki
 
Lambert Roadef 2008
Lambert Roadef 2008Lambert Roadef 2008
Lambert Roadef 2008lamberttony
 
Tchebichef image watermarking along the edge using YCoCg-R color space for co...
Tchebichef image watermarking along the edge using YCoCg-R color space for co...Tchebichef image watermarking along the edge using YCoCg-R color space for co...
Tchebichef image watermarking along the edge using YCoCg-R color space for co...IJECEIAES
 
EFFICIENT STEREO VIDEO ENCODING FOR MOBILE APPLICATIONS USING THE 3D+F CODEC
EFFICIENT STEREO VIDEO ENCODING FOR MOBILE APPLICATIONS USING THE 3D+F CODECEFFICIENT STEREO VIDEO ENCODING FOR MOBILE APPLICATIONS USING THE 3D+F CODEC
EFFICIENT STEREO VIDEO ENCODING FOR MOBILE APPLICATIONS USING THE 3D+F CODECSwisscom
 
LIAO TSEN YUNG Cover Letter
LIAO TSEN YUNG Cover LetterLIAO TSEN YUNG Cover Letter
LIAO TSEN YUNG Cover LetterTsen Yung Liao
 
化工概論: 製程分析模擬最適化與控制_陳奇中教授演講投影片
化工概論: 製程分析模擬最適化與控制_陳奇中教授演講投影片化工概論: 製程分析模擬最適化與控制_陳奇中教授演講投影片
化工概論: 製程分析模擬最適化與控制_陳奇中教授演講投影片Chyi-Tsong Chen
 
Star Ccm604 Features Final
Star Ccm604 Features FinalStar Ccm604 Features Final
Star Ccm604 Features FinalEd Erb
 
Modification on Energy Efficient Design of DVB-T2 Constellation De-mapper
Modification on Energy Efficient Design of DVB-T2 Constellation De-mapperModification on Energy Efficient Design of DVB-T2 Constellation De-mapper
Modification on Energy Efficient Design of DVB-T2 Constellation De-mapperIJERA Editor
 
ITS World Congress :: Vienna, Oct 2012
ITS World Congress :: Vienna, Oct 2012ITS World Congress :: Vienna, Oct 2012
ITS World Congress :: Vienna, Oct 2012László Nádai
 
Active layer thaw depth
Active layer thaw depthActive layer thaw depth
Active layer thaw depthMaura Lousada
 
Chap5 - ADSP 21K Manual
Chap5 - ADSP 21K ManualChap5 - ADSP 21K Manual
Chap5 - ADSP 21K ManualSethCopeland
 
A New In-Camera Imaging Model For Color Computer Vision And Its Application
A New In-Camera Imaging Model For Color Computer Vision And Its ApplicationA New In-Camera Imaging Model For Color Computer Vision And Its Application
A New In-Camera Imaging Model For Color Computer Vision And Its ApplicationIPALab
 
Capacity-Constrained Point Distributions
Capacity-Constrained Point DistributionsCapacity-Constrained Point Distributions
Capacity-Constrained Point DistributionsMichel Alves
 

Was ist angesagt? (18)

Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
 
Multi-Stage Hybrid Rocket Design for Micro-Satellites Launch using Genetic Al...
Multi-Stage Hybrid Rocket Design for Micro-Satellites Launch using Genetic Al...Multi-Stage Hybrid Rocket Design for Micro-Satellites Launch using Genetic Al...
Multi-Stage Hybrid Rocket Design for Micro-Satellites Launch using Genetic Al...
 
Lambert Roadef 2008
Lambert Roadef 2008Lambert Roadef 2008
Lambert Roadef 2008
 
Fulltext
FulltextFulltext
Fulltext
 
Tchebichef image watermarking along the edge using YCoCg-R color space for co...
Tchebichef image watermarking along the edge using YCoCg-R color space for co...Tchebichef image watermarking along the edge using YCoCg-R color space for co...
Tchebichef image watermarking along the edge using YCoCg-R color space for co...
 
EFFICIENT STEREO VIDEO ENCODING FOR MOBILE APPLICATIONS USING THE 3D+F CODEC
EFFICIENT STEREO VIDEO ENCODING FOR MOBILE APPLICATIONS USING THE 3D+F CODECEFFICIENT STEREO VIDEO ENCODING FOR MOBILE APPLICATIONS USING THE 3D+F CODEC
EFFICIENT STEREO VIDEO ENCODING FOR MOBILE APPLICATIONS USING THE 3D+F CODEC
 
C g.2010 supply
C g.2010 supplyC g.2010 supply
C g.2010 supply
 
LIAO TSEN YUNG Cover Letter
LIAO TSEN YUNG Cover LetterLIAO TSEN YUNG Cover Letter
LIAO TSEN YUNG Cover Letter
 
化工概論: 製程分析模擬最適化與控制_陳奇中教授演講投影片
化工概論: 製程分析模擬最適化與控制_陳奇中教授演講投影片化工概論: 製程分析模擬最適化與控制_陳奇中教授演講投影片
化工概論: 製程分析模擬最適化與控制_陳奇中教授演講投影片
 
ICRA Nathan Piasco
ICRA Nathan PiascoICRA Nathan Piasco
ICRA Nathan Piasco
 
Lesson 24
Lesson 24Lesson 24
Lesson 24
 
Star Ccm604 Features Final
Star Ccm604 Features FinalStar Ccm604 Features Final
Star Ccm604 Features Final
 
Modification on Energy Efficient Design of DVB-T2 Constellation De-mapper
Modification on Energy Efficient Design of DVB-T2 Constellation De-mapperModification on Energy Efficient Design of DVB-T2 Constellation De-mapper
Modification on Energy Efficient Design of DVB-T2 Constellation De-mapper
 
ITS World Congress :: Vienna, Oct 2012
ITS World Congress :: Vienna, Oct 2012ITS World Congress :: Vienna, Oct 2012
ITS World Congress :: Vienna, Oct 2012
 
Active layer thaw depth
Active layer thaw depthActive layer thaw depth
Active layer thaw depth
 
Chap5 - ADSP 21K Manual
Chap5 - ADSP 21K ManualChap5 - ADSP 21K Manual
Chap5 - ADSP 21K Manual
 
A New In-Camera Imaging Model For Color Computer Vision And Its Application
A New In-Camera Imaging Model For Color Computer Vision And Its ApplicationA New In-Camera Imaging Model For Color Computer Vision And Its Application
A New In-Camera Imaging Model For Color Computer Vision And Its Application
 
Capacity-Constrained Point Distributions
Capacity-Constrained Point DistributionsCapacity-Constrained Point Distributions
Capacity-Constrained Point Distributions
 

Ähnlich wie MDO of Supersonic Transport Wing

Principal Component Analysis For Novelty Detection
Principal Component Analysis For Novelty DetectionPrincipal Component Analysis For Novelty Detection
Principal Component Analysis For Novelty DetectionJordan McBain
 
Easy edd phd talks 28 oct 2008
Easy edd phd talks 28 oct 2008Easy edd phd talks 28 oct 2008
Easy edd phd talks 28 oct 2008Taha Sochi
 
Software tookits for machine learning and graphical models
Software tookits for machine learning and graphical modelsSoftware tookits for machine learning and graphical models
Software tookits for machine learning and graphical modelsbutest
 
PF_MAO_2010_Souam
PF_MAO_2010_SouamPF_MAO_2010_Souam
PF_MAO_2010_SouamMDO_Lab
 
Simulated Binary Crossover
Simulated Binary CrossoverSimulated Binary Crossover
Simulated Binary Crossoverpaskorn
 
Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...
Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...
Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...Pirouz Nourian
 
Neo4j MeetUp - Graph Exploration with MetaExp
Neo4j MeetUp - Graph Exploration with MetaExpNeo4j MeetUp - Graph Exploration with MetaExp
Neo4j MeetUp - Graph Exploration with MetaExpAdrian Ziegler
 
new optimization algorithm for topology optimization
new optimization algorithm for topology optimizationnew optimization algorithm for topology optimization
new optimization algorithm for topology optimizationSeonho Park
 
Convex optmization in communications
Convex optmization in communicationsConvex optmization in communications
Convex optmization in communicationsDeepshika Reddy
 
Negation for Document Re-ranking in Ad-hoc Retrieval
Negation for Document Re-ranking in Ad-hoc RetrievalNegation for Document Re-ranking in Ad-hoc Retrieval
Negation for Document Re-ranking in Ad-hoc RetrievalAnnalina Caputo
 
Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...
Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...
Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...Masahiro Kanazaki
 
Condition Monitoring Of Unsteadily Operating Equipment
Condition Monitoring Of Unsteadily Operating EquipmentCondition Monitoring Of Unsteadily Operating Equipment
Condition Monitoring Of Unsteadily Operating EquipmentJordan McBain
 
Intro to threp
Intro to threpIntro to threp
Intro to threpHong Wu
 
Academy Software Foundation on MaterialX | SIGGRAPH 2021
Academy Software Foundation on MaterialX | SIGGRAPH 2021 Academy Software Foundation on MaterialX | SIGGRAPH 2021
Academy Software Foundation on MaterialX | SIGGRAPH 2021 Alejandro Franceschi
 
Comparison of the optimal design
Comparison of the optimal designComparison of the optimal design
Comparison of the optimal designAlexander Decker
 
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...Masahiro Kanazaki
 
Exemplar: Designing Sensor-based interactions by demonstration... (a CHI2007 ...
Exemplar: Designing Sensor-based interactions by demonstration... (a CHI2007 ...Exemplar: Designing Sensor-based interactions by demonstration... (a CHI2007 ...
Exemplar: Designing Sensor-based interactions by demonstration... (a CHI2007 ...bjoern611
 

Ähnlich wie MDO of Supersonic Transport Wing (20)

Principal Component Analysis For Novelty Detection
Principal Component Analysis For Novelty DetectionPrincipal Component Analysis For Novelty Detection
Principal Component Analysis For Novelty Detection
 
Easy edd phd talks 28 oct 2008
Easy edd phd talks 28 oct 2008Easy edd phd talks 28 oct 2008
Easy edd phd talks 28 oct 2008
 
Software tookits for machine learning and graphical models
Software tookits for machine learning and graphical modelsSoftware tookits for machine learning and graphical models
Software tookits for machine learning and graphical models
 
PF_MAO_2010_Souam
PF_MAO_2010_SouamPF_MAO_2010_Souam
PF_MAO_2010_Souam
 
Clipping
ClippingClipping
Clipping
 
Simulated Binary Crossover
Simulated Binary CrossoverSimulated Binary Crossover
Simulated Binary Crossover
 
Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...
Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...
Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...
 
Neo4j MeetUp - Graph Exploration with MetaExp
Neo4j MeetUp - Graph Exploration with MetaExpNeo4j MeetUp - Graph Exploration with MetaExp
Neo4j MeetUp - Graph Exploration with MetaExp
 
talk_NASPDE.pdf
talk_NASPDE.pdftalk_NASPDE.pdf
talk_NASPDE.pdf
 
new optimization algorithm for topology optimization
new optimization algorithm for topology optimizationnew optimization algorithm for topology optimization
new optimization algorithm for topology optimization
 
Convex optmization in communications
Convex optmization in communicationsConvex optmization in communications
Convex optmization in communications
 
Negation for Document Re-ranking in Ad-hoc Retrieval
Negation for Document Re-ranking in Ad-hoc RetrievalNegation for Document Re-ranking in Ad-hoc Retrieval
Negation for Document Re-ranking in Ad-hoc Retrieval
 
Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...
Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...
Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...
 
Condition Monitoring Of Unsteadily Operating Equipment
Condition Monitoring Of Unsteadily Operating EquipmentCondition Monitoring Of Unsteadily Operating Equipment
Condition Monitoring Of Unsteadily Operating Equipment
 
Intro to threp
Intro to threpIntro to threp
Intro to threp
 
Gsdi10
Gsdi10Gsdi10
Gsdi10
 
Academy Software Foundation on MaterialX | SIGGRAPH 2021
Academy Software Foundation on MaterialX | SIGGRAPH 2021 Academy Software Foundation on MaterialX | SIGGRAPH 2021
Academy Software Foundation on MaterialX | SIGGRAPH 2021
 
Comparison of the optimal design
Comparison of the optimal designComparison of the optimal design
Comparison of the optimal design
 
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...
 
Exemplar: Designing Sensor-based interactions by demonstration... (a CHI2007 ...
Exemplar: Designing Sensor-based interactions by demonstration... (a CHI2007 ...Exemplar: Designing Sensor-based interactions by demonstration... (a CHI2007 ...
Exemplar: Designing Sensor-based interactions by demonstration... (a CHI2007 ...
 

Mehr von Masahiro Kanazaki

火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】
火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】
火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】Masahiro Kanazaki
 
17 0203金崎研究室紹介
17 0203金崎研究室紹介17 0203金崎研究室紹介
17 0203金崎研究室紹介Masahiro Kanazaki
 
15 0302 fastarフォーラム2016
15 0302 fastarフォーラム201615 0302 fastarフォーラム2016
15 0302 fastarフォーラム2016Masahiro Kanazaki
 
Aerodynamic design of Aircraft”
Aerodynamic design of Aircraft”Aerodynamic design of Aircraft”
Aerodynamic design of Aircraft”Masahiro Kanazaki
 
遺伝的アルゴリズムによる多数回燃焼を行う ハイブリッドロケットの性能評価
遺伝的アルゴリズムによる多数回燃焼を行うハイブリッドロケットの性能評価遺伝的アルゴリズムによる多数回燃焼を行うハイブリッドロケットの性能評価
遺伝的アルゴリズムによる多数回燃焼を行う ハイブリッドロケットの性能評価Masahiro Kanazaki
 
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014Masahiro Kanazaki
 
Design of Novel Wing Body Considering Intake/Exhaust Effect
Design of Novel Wing Body Considering Intake/Exhaust EffectDesign of Novel Wing Body Considering Intake/Exhaust Effect
Design of Novel Wing Body Considering Intake/Exhaust EffectMasahiro Kanazaki
 
Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...
Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...
Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...Masahiro Kanazaki
 
2014/6/3 特別講義御案内
2014/6/3 特別講義御案内2014/6/3 特別講義御案内
2014/6/3 特別講義御案内Masahiro Kanazaki
 
13 1015科学技術週間募集掲示
13 1015科学技術週間募集掲示13 1015科学技術週間募集掲示
13 1015科学技術週間募集掲示Masahiro Kanazaki
 
13 1002 sdフォーラムポスター
13 1002 sdフォーラムポスター13 1002 sdフォーラムポスター
13 1002 sdフォーラムポスターMasahiro Kanazaki
 
第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)
第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)
第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)Masahiro Kanazaki
 
東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生
東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生
東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生Masahiro Kanazaki
 
トリムを考慮した小型翼胴融合型旅客機の翼型空力設計
トリムを考慮した小型翼胴融合型旅客機の翼型空力設計トリムを考慮した小型翼胴融合型旅客機の翼型空力設計
トリムを考慮した小型翼胴融合型旅客機の翼型空力設計Masahiro Kanazaki
 
進化計算法を用いたハイブリッドロケットエンジン最適設計の試み
進化計算法を用いたハイブリッドロケットエンジン最適設計の試み進化計算法を用いたハイブリッドロケットエンジン最適設計の試み
進化計算法を用いたハイブリッドロケットエンジン最適設計の試みMasahiro Kanazaki
 
12 1215進化計算シンポ ポスター
12 1215進化計算シンポ ポスター12 1215進化計算シンポ ポスター
12 1215進化計算シンポ ポスターMasahiro Kanazaki
 
12 1215進化計算シンポ ポスター
12 1215進化計算シンポ ポスター12 1215進化計算シンポ ポスター
12 1215進化計算シンポ ポスターMasahiro Kanazaki
 

Mehr von Masahiro Kanazaki (20)

火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】
火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】
火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】
 
17 0203金崎研究室紹介
17 0203金崎研究室紹介17 0203金崎研究室紹介
17 0203金崎研究室紹介
 
15 0302 fastarフォーラム2016
15 0302 fastarフォーラム201615 0302 fastarフォーラム2016
15 0302 fastarフォーラム2016
 
Aerodynamic design of Aircraft”
Aerodynamic design of Aircraft”Aerodynamic design of Aircraft”
Aerodynamic design of Aircraft”
 
遺伝的アルゴリズムによる多数回燃焼を行う ハイブリッドロケットの性能評価
遺伝的アルゴリズムによる多数回燃焼を行うハイブリッドロケットの性能評価遺伝的アルゴリズムによる多数回燃焼を行うハイブリッドロケットの性能評価
遺伝的アルゴリズムによる多数回燃焼を行う ハイブリッドロケットの性能評価
 
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
 
Design of Novel Wing Body Considering Intake/Exhaust Effect
Design of Novel Wing Body Considering Intake/Exhaust EffectDesign of Novel Wing Body Considering Intake/Exhaust Effect
Design of Novel Wing Body Considering Intake/Exhaust Effect
 
Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...
Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...
Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...
 
2014/6/3 特別講義御案内
2014/6/3 特別講義御案内2014/6/3 特別講義御案内
2014/6/3 特別講義御案内
 
13 1015科学技術週間募集掲示
13 1015科学技術週間募集掲示13 1015科学技術週間募集掲示
13 1015科学技術週間募集掲示
 
13 1002 sdフォーラムポスター
13 1002 sdフォーラムポスター13 1002 sdフォーラムポスター
13 1002 sdフォーラムポスター
 
finland_japan_joint_seminor
finland_japan_joint_seminorfinland_japan_joint_seminor
finland_japan_joint_seminor
 
第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)
第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)
第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)
 
東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生
東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生
東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生
 
トリムを考慮した小型翼胴融合型旅客機の翼型空力設計
トリムを考慮した小型翼胴融合型旅客機の翼型空力設計トリムを考慮した小型翼胴融合型旅客機の翼型空力設計
トリムを考慮した小型翼胴融合型旅客機の翼型空力設計
 
進化計算法を用いたハイブリッドロケットエンジン最適設計の試み
進化計算法を用いたハイブリッドロケットエンジン最適設計の試み進化計算法を用いたハイブリッドロケットエンジン最適設計の試み
進化計算法を用いたハイブリッドロケットエンジン最適設計の試み
 
13 0117 isas
13 0117 isas13 0117 isas
13 0117 isas
 
12 1215進化計算シンポ ポスター
12 1215進化計算シンポ ポスター12 1215進化計算シンポ ポスター
12 1215進化計算シンポ ポスター
 
1 5-kanazaki
1 5-kanazaki1 5-kanazaki
1 5-kanazaki
 
12 1215進化計算シンポ ポスター
12 1215進化計算シンポ ポスター12 1215進化計算シンポ ポスター
12 1215進化計算シンポ ポスター
 

Kürzlich hochgeladen

Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPathCommunity
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfNeo4j
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfpanagenda
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Strongerpanagenda
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch TuesdayIvanti
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesThousandEyes
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality AssuranceInflectra
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Farhan Tariq
 

Kürzlich hochgeladen (20)

Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to Hero
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdf
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch Tuesday
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...
 

MDO of Supersonic Transport Wing

  • 1. 27th ICAS at Nice on 22th September Session : Supersonic Aircraft Concepts “Multidisciplinary Design Optimization of Supersonic Transport Wing Using Surrogate Model” Naoto Seto (Tokyo Metropolitan University)
  • 2. Outline  Background  Objectives  Design Approaches  Design Target and Design Variables  Objective Functions and Constraints  Results  Conclusions
  • 3. Background 1  Short time travel is one of the biggest demands.  SuperSonic Transport (SST) is expected to meet the demand above.  Studies in several institutes all over the world SSBJ of AERION Silent SST of JAXA QSST of SAI  Many problems to be solved  Flight cost  Environmental problems Trade-off  Aerodynamic performances  How should be next generation SST designed with many problems ?
  • 4. Background 2  Multidisciplinary Design Optimization (MDO) is the key technique Information Technological interests pool Aerodynamics Sonic boom Structure Materials Propulsions …etc Effects of variables Trade-off (Multi-validate analysis) (*GA, *DoE) Global trends MDO with global exploration will (Data mining) help knowledge discovery *GA : Genetic Algorithm *DoE : Design of Experiment
  • 5. Objectives  Development of efficient MDO tool for SST wing in conceptual design  Features about proposed MDO 1. Low CFD calculation cost  Full potential equation with panel method  Kriging model 2. Construction of global design information pool  Trade-off :Multi-Objective Genetic Algorithm  Effects of design variables :ANalysis Of VAriance  Global trends about design variables :Parallel Coordinate Plot
  • 7. Design Approaches (design procedure) Initial sampling based on LHS* Surrogate model construction (Kriging model) Exploration of non-dominated solutions Additional samplings on Kriging model using MOGA No Convergence ? Yes Constructing design information pool (ANOVA, PCP) *Latin Hypercube Sampling
  • 8. Design Approaches (exploration of non-dominated solutions)  Multi Objective Genetic Algorithm (MOGA)  One of evolutionary algorithm  Searching global non-dominated solutions with multi-point explorations →Many evaluations are required. CFD Kriging model One of surrogate model Interpolating and searching local extremes ˆ (x i )     (x i ) y Global model Localized deviation from the global model
  • 9. Design Approaches (exploration of non-dominated solutions)  Kriging model includes uncertainty at the predicted points.  Expected Improvement (EI) considers the balance between optimist and the error.  EI is expressed below (for maximization problem) E I x   z  ( f max  z ) dz , n :standard distribution,  normal density s :standard error  f  ˆ  y  f max  ˆ  y  ( f max  y ˆ )   max   s    s   s  : Kriging model : Maximum values from sampling  The larger EI value has the larger possibility to be optimum solutions →Additional samplings are based on EIs’ maximization Jones, D. R., “Efficient Global Optimization of Expensive Black-Box Functions,” J. Glob. Opt., Vol. 13, pp.455-492 1998.
  • 10. Design Approaches (design information)  Analysis of Variance (ANOVA)  One of multi-validate analysis for quantitative information Integrate The main effect of design variable xi: i ( xi )     y( x1 ,....., xn )dx1 ,..., dxi 1 , dxi 1 ,.., dxn   ˆ variance where:      y( x1 ,....., xn )dx1 ,....., dxn ˆ Total proportion to the total variance: pi   2 p2  y(x1,....,xn ) dx1...dxn 35% ˆ p1 where, ε is the variance due to design variable xi. 65% Main effect
  • 11. Design Approaches (design information)  Parallel Coordinate Plot (PCP)  One of statistical visualization techniques from high-dimensional data into two dimensional data.  Design variables and objective functions are set parallel in the normalized axis.  PCP shows global trends of design variables. 1.0 0.8 0.6 0.4 0.2 0.0 Upper bound of ith design variables and objective functions Normalization Lower bound of ith design variables x(dvi ) - min(dvi ) P i and objective functions max(dvi ) - min(dvi )
  • 12. Design Target and Design Variables
  • 13. Design Target  Three-dimensional geometry of supersonic main wing  Other components geometry fuselage, tail planform are same as 2.5th Silent SuperSonic Technology Demonstrator (S3TD) Specifications Fuselage 13.8m MTOW 3500kg Sref 21m2 Cruse M 1.6 Cruse altitude 14km 2.5th design by JAXA
  • 14. Design Variables  14 design variables Table 1 Design space Upper Lower Design variable bound bound Sweepback angle at inboard dv1 57 (°) 69 (°) section Sweepback angle at outboard dv2 40 (°) 50 (°) section dv3 Twist angle at wing root 0 (°) 2(°) dv4 Twist angle at wing kink –1 (°) 0 (°) dv5 Twist angle at wing tip –2 (°) –1 (°) dv6 Maximum thickness at wing root 3%c 5%c Root & kink airfoil NACA 64series dv7 Maximum thickness at wing kink 3%c 5%c Tip airfoil bi-convex dv8 Maximum thickness at wing tip 3%c 5%c dv9 Aspect ratio 2 3 Tip airfoil Supersonic- dv10 Wing root camber at 25%c –1%c 2%c linearly-interpolation leading edge dv11 Wing root camber at 75%c –2%c 1%c Kink airfoil dv12 Wing kink camber at 25%c –1%c 2%c spline-interpolation Subsonic- dv13 Wing kink camber at 25%c –2%c 1%c leading edge dv14 Wing tip camber at 25%c –2%c 2%c Root airfoil
  • 15. Objective Functions and Constraints
  • 16. Objective Functions  Three objective functions in this study maximize L/ D minimize ΔP (On boom carpet) ΔP minimize Wwing subject to Design C L = 0.105 Time[ms] maximize K-means method ˆ - L / Dmax y ˆ - L / Dmax y • EIL / D = ( ˆ - L / Dmax )Φ( y ) + sφ( ) Additional sampling points s s maximize clusters ΔP - ˆ y ΔP - ˆ y EI1 • EIΔP = ( ΔP - y min ˆ )Φ( min ) + sφ( min ) s s maximize Wwingmin ˆy Wwingmin - ˆ y EI2 • EIWwing = (Wwingmin - ˆ )Φ( y ) + sφ( ) s s
  • 17. Evaluations of L/D and ΔP  CAPAS* developed in JAXA  Aerodynamic performance  Sonic-boom intensity  Compressible potential equation  Correction of shock wave with panel method (PANAIR) by Whitham’s theory  2  2  2  PANAIR data 2 F ( x)  CP ( M  1) 2  2  2 0 2 x y z x     1 r F x   : Velocity potential 2 3 Thomas’s waveform parameter method   M 2-1 pressure[psf]   1.4 Computational CP distributions r : propagation distance geometry Time[ms] *CAPAS (CAD-based Automatic Panel Analysis System)
  • 18. Evaluation of wing weight  Inboard wing (multi-frame structure)  Aluminum material  Minimum thickness of skin & frame (0<thickness<20mm, every0.1mm)  Outboard wing (full-depth honeycomb sandwich structure)  Composite material  Stack sequence  Fiber angle θ ; [0/ θ/- θ/90] ns, θ=15, 30, 45, 60, 70deg  Number of laminations n  n  N  25  Solver is MSC NASTRAN 2005R (FEM model)  Strength requirements  Aluminum material:Mises stress < 200MPa at all FEM nodes  Composite material: Destruction criteria < 1 at all FEM nodes on each laminate  Computational conditions  Symmetrical maneuver +6G, Safety rate: 1.25 PANAIR data  Estimated load on the main wing (symmetrical maneuver) × (safety rate) × (aerodynamics load)
  • 19. Constraint  Trim balance C. G.  C.P. is identical to C.G. at target CL C.P. →12 evaluations are required to decide the angle of horizontal tail.  Realistic cruise condition Angle of horizontal tail  Blue area (main wing and horizontal tail) were changed in this study. Cl target CL Cd x
  • 21. Results (samplings)  75 points were sampled for constructing a initial Kriging model.  Additional samplings were carried out three times.  32 additional samples  Total number of samplings is 107.  Calculation time for one sample  One hour for the CAPAS evaluations  15 minutes for the NASTRAN evaluations  Calculation environment  General work station : 1CPU (Xeon 2.66MHz)
  • 22. Results (solution space about objective functions) Wwing  24 non-dominated solutions from L/D ΔP[psf] AoA [kg] final data Design A 7.02 1.19 612 2.5  Most of additional samplings formed Design B 6.08 0.97 502 2.7 non-dominated solutions Design C 5.60 1.53 276 2.6 Design D 6.77 1.09 691 2.6 Design A (best L/D) Design B (best ΔP) Design C (best Wwing) Design D (compromised) Wwing[kg] ΔP[psf] Optimum direction L/D ΔP[psf]
  • 23. Results (configuration comparison)  Each champion sample is compared to the compromised. Design A Design B Larger sweep back Thinner root airfoil *Red dot line is the compromised (Design D) Design C Thinner root airfoil of Design A Advantage of the reducing wave drag Flap tail angle Larger inboard sweep back angle of Design B Ideal equivalence area distribution Flap tail angle of Design C Reducing aerodynamics load on the main wing
  • 24. Evaluation of wing weight evaluations  Inboard wing (multi-frame structure)  Aluminum material  Minimum thickness of skin & frame (0<thickness<20mm, every0.1mm)  Outboard wing (full-depth honeycomb sandwich structure)  Composite material  Stack sequence  Fiber angle θ ; [0/ θ/- θ/90] ns, θ=15, 30, 45, 60, 70deg  Number of laminations n  n  N  25  Solver is MSC NASTRAN 2005R (FEM model)  Strength requirements  Aluminum material:Mises stress < 200MPa at all FEM nodes  Composite material: Destruction criteria < 1 at all FEM nodes on each laminate  Computational conditions  Symmetrical maneuver +6G, Safety rate: 1.25 PANAIR data  Estimated load on the main wing (symmetrical maneuver) × (safety rate) × (aerodynamics load)
  • 25. Results (waveform on the ground)  Each champion sample is compared to the compromised. *Red dot line is the compromised (Design D) Less different Design A among Design A, B, and D Large different between Design C and D L/D ΔP[psf] Wwing[kg] Design B Design A 7.02 1.19 612 Design B 6.08 0.97 502 Design C 5.60 1.53 276 Design D 6.77 1.09 691 Design C Severe trade-off between ΔP & Wwing
  • 26. Results (Overview about ANOVA) 70% 45% *a1 *a2 *a3 73% dv1 inboard sweep dv8 tip t/c dv2 outboard sweep dv9 aspect ratio dv3 root twist dv10 root camber(25%c) Proper range in dv4 kink twist dv11 root camber(75%c) design space? dv5 tip twist dv12 kink camber(25%c) dv6 root t/c dv13 kink camber(75%c) dv7 kink t/c dv14 tip camber(25%c)
  • 27. Results (Overview about PCP) Best 5 samples about L/D Extracting useful data about each objective function for the better visualization *p1 Best 5 samples *p2 about ΔP 24 non-dominated solutions data Best 5 samples about Wwing *p3
  • 28. Results (design information of better L/D) *PCP was carried out from best five samples about L/D  Root camber(dv10, 11) & kink camber(dv12, 13)  ANOVA Design A upper  Kink twist(dv4) & root t/c(dv6)  PCP lower →Small drag around root & sufficient lift around kink *a1 *p1
  • 29. Results (design information of better ΔP) *PCP was carried out from best 5 samples about ΔP  Inboard sweep(dv1) & root camber(dv10) & kink camber(dv14)  ANOVA Design B  Kink twist(dv4) & root t/c(dv6) & kink t/c(dv7)  PCP upper lower →Ideal equivalence area (Ae) distribution *a2 *p2
  • 30. Comparisons about equivalence area distribution 2.5 2.0 Equivalence area 1.5 1.0 Design A Design B 0.5 Design C Design D Darden 0.0 0 2 4 6 8 10 12 x(m)
  • 31. Results (design information of better Wwing) *PCP was carried out from best 5 samples about Wwing  Root t/c(dv6) & AR(dv9) & root camber(dv10) & kink camber(dv12, 13)  ANOVA Design C  Inboard sweep(dv1) & tip twist(dv5) & kink t/c(dv6)upper  PCP lower →Low aerodynamic load on the wing *a3 *p3
  • 32. Conclusions  Efficient MDO tool for conceptual design  MOGA with Kriging model  MOGA with Kriging model took about 10 days for the total task  MOGA without Kriging model would take about 160 days in this study  Trade-off among each objective function →Severe trade-off between ΔP and wing weight  ANOVA ANOVA found the design variables which have effects on each objective functions.  PCP PCP showed the global trend of design variables.  Better L/D → root & kink camber  Better ΔP → inboard sweep back angle  Better wing weight → aspect ratio & root t/c Efficient exploration Useful design information pool
  • 33. Acknowledgement • I wish to thank Dr. Yoshikazu Makino, and Dr. Takeshi Takatoya, researchers in Aviation Program Group/Japan Aerospace Exploration Agency, for providing their CAE program and large support. I would like to thank my paper adviser, Prof. Masahiro Kanazaki, for his guidance, and support. • My presentation is supported by the grant from JSASS (Japan Society of Aeronautics and Space Science).