SlideShare ist ein Scribd-Unternehmen logo
1 von 46
Downloaden Sie, um offline zu lesen
ideal  grid  for  all
Synchrophasor	
  Applications
Facilitating	
  Interactions	
  between	
  Transmission	
  and	
  
Distribution	
  Operations
Luigi	
  Vanfretti
Associate	
  Professor,	
  Docent
KTH	
  Royal	
  Institute	
  of	
  Technology,	
  Stockholm,	
   Sweden
https://www.kth.se/profile/luigiv
Thursday	
  February	
  9th 2017
ideal  grid  for  all
Acknowledgements
• The	
  work	
  in	
  this	
  presentation	
  is	
  result	
  of	
  the	
  research	
  carried	
  
@KTH	
  SmarTS_Lab	
  in	
  the	
  FP7	
  IDE4L	
  project	
  (2014-­‐2016)	
  and	
  
other	
  projects	
  form	
  2011-­‐2016.
• Special	
  thanks	
  to	
  Dr.	
  Hossein	
  Hooshyar,	
  who	
  undertook	
  the	
  
day-­‐to-­‐day	
  project	
  management	
  	
  of	
  this	
  project	
  at	
  KTH	
  SmarTS	
  
Lab.	
  with	
  great	
  dedication.
• All	
  of	
  the	
  following	
  students	
  contributed	
  to	
  this	
  presentation	
  
with	
  their	
  hard	
  work!
29/11/2016 WWW.IDE4L.EUSLIDE  2
Hossein Reza AliFarhan Ravi Narender Maxime Jan
ideal  grid  for  all
Outline
• Introduction:	
  PMUs	
  in	
  distribution	
  networks?
• PMU	
  Application	
  Use	
  Case	
  Definition	
  using	
  SGAM
• Methodology	
  and	
  Experimental	
  Lab	
  Testing
• Development,	
  Implementation	
  and	
  Testing	
  
using	
  RT-­‐HIL	
  Simulation
• The	
  Reference	
  Distribution	
  Grid	
  Model
• Handling	
  PMU	
  Data:
• Getting	
  the	
  data:	
  The	
  Khorjin Gateway	
  and	
  The	
  S3DK	
  Toolkit
• Cleaning	
  the	
  data:	
  PMU	
  Data	
  Feature	
  Extraction
• Using	
  the	
  Data:	
  Applications
• Steady	
  State	
  Model	
  Synthesis	
  
• Dynamic	
  Line	
  Rating	
  for	
  Distribution	
  Feeders
• Small-­‐Signal	
  Dynamic	
  Analysis
• Conclusions
29/11/2016 WWW.IDE4L.EUSLIDE  3
ideal  grid  for  all
Introduction	
  (1/2)
• It	
  is	
  becoming	
  necessary	
  to	
  increase	
  observability	
  between	
  T&D	
  
grids,	
  emerging	
  dynamics	
  active	
  distribution	
  networks	
  due	
  to	
  
renewables	
  will	
  lead	
  to
• Fast	
  changing	
  conditions	
  in	
  the	
  network
• Fast	
  behavior	
  of	
  components
• Traditional	
  monitoring	
  technology	
  not	
  capable	
  of	
  satisfying	
  the	
  technical	
  
requirements	
  to	
  meet	
  these	
  conditions:types	
  of	
  signals,	
  time-­‐
synchonization and	
  speed	
  of	
  data	
  acquisition
• There	
  is	
  great	
  potential	
  of	
  utilizing	
  real-­‐time	
  Synchrophasor	
  data	
  
from	
  PMUs	
  (Phasor	
  Measurement	
  Unit(s))	
  
• From	
  different	
  actors,	
  voltage	
  levels and	
  across	
  conventional	
  operation	
  
boundaries.
• to	
  extract key	
  information related	
  to	
  fast changing	
  conditions	
  &	
  dynamic
behavior,
• To	
  use	
  such	
  information	
  adequately,	
  a	
  properly	
  designed	
  and	
  
implemented	
  architecture	
  needs	
  to	
  be	
  considered.
SLIDE	
  4 29/11/2016 WWW.IDE4L.EU
ideal  grid  for  all
Introduction	
  (2/2)
• The	
  IDE4L	
  architecture	
  is	
  built	
  upon	
  the	
  5-­‐layer	
  Smart	
  Grid	
  
Architecture	
  Model	
  (SGAM)	
  framework.
• The	
  main	
  inputs	
  to	
  the	
  architecture	
  
design	
  are	
  the	
  use	
  cases.
• The	
  IDE4L	
  use	
  case,	
  including
the	
  PMU-­‐based	
  functions	
  for
dynamic	
  information
extraction	
  and	
  exchange,	
  
is	
  presented	
  in	
  
this	
  presentation.	
  
SLIDE	
  5 29/11/2016 WWW.IDE4L.EU
ideal  grid  for  all
DistributionTrans.
ProcessFieldStationOperationEnterprise
PMU
(distributed)
Transducer
(PS/SS/distributed)
Electrical
conversion
(PS/SS/distributed)
Synchrophasor
calculation
(distributed)
Synchrophasor
Calculation
(PS/SS)
PMU
(PS/SS)
Measurement	
  
acquisition
(PS/SS)
Communication	
  
interface	
  
(PS/SS)
Data	
  
concentration
(PS/SS)
PDC
(PS/SS)	
  
DMS
at
DSO
Data	
  curation	
  
and	
  extraction	
  
of	
  components
Partial	
  
derivation	
  of	
  
key	
  information
Data	
  transfer
TSO
Computation	
  unit
(PS/SS)
Measurement	
  
acquisition
Communication	
  
interface
Data	
  curation	
  
and	
  extraction	
  
of	
  components
Derivation	
  of	
  
key	
  information
Data	
  export
Gen. DER Cost.
Prem.
• Data	
  flows from	
  PMUs	
  =>	
  PDC	
  =>	
  Super	
  
PDC	
  =>	
  DMS	
  computers	
  (where	
  dynamic	
  
information	
  is	
  extracted)	
  and	
  exchanged	
  
with	
  the	
  TSO	
  (possible	
  also	
  w.	
  DSOs).
• Data	
  processing	
  and	
  information	
  
extraction	
  can	
  occur	
  at	
  both	
  the	
  station	
  
(partially)	
  and	
  the	
  operation	
  (i.e.	
  DMS	
  
computers)	
  zones.
• Actors:	
  Instrumentations,	
  PMU,	
  PDC,	
  
communication	
  interface,	
  DMS,	
  and	
  TSO
• Functions: electrical	
  conversion,	
  
synchrophasor	
  calculation,	
  data	
  
acquisition,	
  data	
  concentration	
  and	
  time-­‐
alignment,	
  data	
  exporting,	
  data	
  curation,	
  
and	
  derivation	
  of	
  key	
  information	
  out	
  of	
  
the	
  data	
  (aka	
  PMU	
  applications).
SLIDE	
  6 29/11/2016 WWW.IDE4L.EU
Use	
  Case	
  Definition
ideal  grid  for  all
• The	
  development	
  of	
  the	
  
applications	
  has	
  been	
  carried	
  
out	
  using	
  real-­‐time	
  hardware-­‐
in-­‐the-­‐loop	
  simulation	
  
consisting	
  of:
• A	
  real-­‐time	
  simulation	
  model	
  of	
  
active	
  distribution	
  networks.
• The	
  real-­‐time	
  simulation	
  model	
  is	
  
interfaced	
  with	
  PMUs	
  in	
  HIL.
• PMU	
  data	
  is	
  streamed	
  into	
  a	
  
computer	
  workstation	
  through	
  
PDC.
SLIDE	
  7 29/11/2016 WWW.IDE4L.EU
Development,	
  Implementation	
  and	
  Testing	
  using
RT-­‐HIL	
  Simulation
• The	
  computer	
  makes	
  available	
  to	
  specialized	
  software	
  
development	
  tools	
  within	
  the	
  LabVIEW	
  environment.
• All	
  data	
  acquisition	
  chain	
  is	
  carried	
  out	
  using	
  the	
  corresponding	
  
PMU	
  standards.
ideal  grid  for  all
SLIDE  8 29/11/2016 WWW.IDE4L.EU
The	
  Reference	
  Distribution	
  
Grid	
  Model	
  (1/2)
101
100
102 103
104
105
106 800 802
806 808
810
812
814 850 816
818
820
822
824 826
828
830 854
856
852
832
858
864
834
842
844
846
848
860 836 840
862
838
888
890/799
701
+
-
+
-
702 713 704
714
718 725
706
720
707
722
724
705
712
742
703
727744
728
729
730
709 731708732
775
733
734
736
710
735 737
738 711 741
740
0.4kV
220 kV
36 kV
36kV
36kV
6.6 kV
6.6 kV
6.6kV
Electric power system
ZIP load
Motor load
Voltage regulator
Wind farm
PV farm
Residential PV system
Battery storage
+
-
Capacitor bank
Circuit breaker
Overcurrent protection
Recloser
Legend
Component Number of units
1 three-phase unit
11 three-phase units, 56 single-phase
units
2 three-phase units, 3 single-phase units
3 sets each consisting of 3 single-phase
units
3 three-phase units
2 three-phase units
3 single-phase units
2 three-phase units
11 single-phase units
1 three-phase units
1 set consisting of 3 phase relays and 1
ground relay
1 three-phase unit, 2 sets each consisting
of 3 single-phase units
Rated Voltage Number of branches
220 kV 7 three-phase
36 kV 28 three-phase, 8 single-phase
6.6 kV 39 three-phase
HV
MV
LV
0.4 kV 1 three-phaseRLV
No. of buses
6
34
37
2
Roy Billinton
Transmission
Test System IEEE 34
bus test
feeder
IEEE 37
bus test
feeder
RLV DG
and Load
Steam	
  
turbine
Governor
ωm
PSS
Excitation	
  
System
V
dω
System	
  
load	
  
Output	
  
feeder
ideal  grid  for  all
The	
  Reference	
  Distribution	
  
Grid	
  Model	
  (2/2)
• Runs	
  on	
  4	
  cores	
  using	
  the	
  
State-­‐Space-­‐Nodal	
  (SSN)	
  solver	
  
with	
  time-­‐step	
  of	
  100μs.
• The	
  two	
  different	
  
implementations	
  of	
  the	
  grid	
  
model	
  can	
  be	
  downloaded	
  
from	
  the	
  KTH	
  SmarTS	
  Lab	
  
GitHub	
  repository	
  at	
  
• The	
  SSN	
  implementation	
  is	
  also	
  
available	
  in	
  the	
  ARTEMiS 7.0.5	
  
demo	
  section	
  of	
  Opal-­‐RT.
SLIDE	
  9 29/11/2016 WWW.IDE4L.EU
https://github.com/SmarTS-­‐
Lab/FP7-­‐IDE4L-­‐KTHSmarTSLab-­‐
ADN-­‐RTModel
ideal  grid  for  all
Outline
• Introduction:	
  PMUs	
  in	
  distribution	
  networks?
• PMU	
  Application	
  Use	
  Case	
  Definition	
  using	
  SGAM
• Methodology	
  and	
  Experimental	
  Lab	
  Testing
• Development,	
  Implementation	
  and	
  Testing	
  using	
  RT-­‐HIL	
  
Simulation
• The	
  Reference	
  Distribution	
  Grid	
  Model
• Handling	
  PMU	
  Data:
• Getting	
  the	
  data:	
  The	
  Khorjin Gateway	
  and	
  The	
  S3DK	
  Toolkit
• Cleaning	
  the	
  data:	
  PMU	
  Data	
  Feature	
  Extraction
• Using	
  the	
  Data:	
  Applications
• Steady	
  State	
  Model	
  Synthesis	
  
• Dynamic	
  Line	
  Rating	
  for	
  Distribution	
  Feeders
• Small-­‐Signal	
  Dynamic	
  Analysis
• Conclusions
29/11/2016 WWW.IDE4L.EUSLIDE  10
ideal  grid  for  all
IEEE	
  Std
C37.118.2
Today’s
Architecture
Deployment	
  Time
Guesstimate:	
  ~15-­‐20	
  Years
Transition
Likely	
  Future	
  Scenario
Ø Security
Not	
  Addressed
IEEE	
  Std
C37.118.2
Application
System
PDC
PMU	
  
1
PMU	
  
2
PMU	
  
n
PDC PDC PDC
Communication
Network
PMU	
  
1
PMU	
  
2
PMU	
  
n
PDC PDC PDC
IEC	
  61850-­‐90-­‐5
Application
System
PDC
Ø Fulfills	
  the	
  Gaps
Not	
  addressed	
  in	
  the	
  
IEEE	
  Std C37.118
e.g.	
  Security	
  Enhancement
Ø Harmonization	
  
with	
  IEC	
  61850
Ø Security
Not	
  Addressed
v Two	
  Segregated	
  Systems	
  	
  ßà Two	
  Protocols	
  (Even	
  in	
  the	
  same	
  substation)
v It	
  will	
  be	
  a	
  huge	
  CHALLENGE to	
  adopt	
  IEC	
  61850-­‐90-­‐5	
  Standard
v Need	
  of	
  Interfaces	
  
v @PMUs,	
  @PDCs,	
  @App	
  Sys,…	
  à How	
  to	
  maintain	
  this	
  ?
Getting	
  the	
  Data… in	
  the	
  Advent	
  of	
  
IEC	
  TR	
  61850-­‐90-­‐5	
  Standard	
  Specification
Application
System
PDC
PMU	
  
1
PMU	
  
2
PMU	
  
n
PDC PDC PDC
Communication
Network
ideal  grid  for  all One	
  possible	
  approach	
  and	
  our	
  contribution:
Khorjin
• A	
  Gateway:
• Can	
  act	
  as	
  the	
  IEEE	
  C37.118.2	
  
to	
  IEC	
  61850-­‐90-­‐5	
  protocol	
  
converter.
• Providing	
   future	
  compatibility	
  
for	
  legacy devices	
  already	
  in	
  
the	
  field
• Capable	
  of	
  being	
  used	
  at	
  
various	
  levels:
• @PMU	
  Level
• @PDC	
  Level
• @Application	
  Level
• …
• Gateway	
  Application	
  and	
  
Implementation	
  Test:
Wide-­‐Area	
  
Controller
Application
System
Application
System
PDC
PMU	
  
PDC
Communication
Network
IEEE	
  C37.118.2
Compatible	
  IEDs
and	
  APPs
IEC	
  61850-­‐90-­‐5
Gateway
ideal  grid  for  all
Seyed	
  Reza	
  Firouzi srfi@kth.se
Receiver
Gateway
National  Instrument
CompactRIO  à PMU
Wireshark  captures
IEC  61850-­90-­5
R-­SV  /  R-­GOOSE
Khorjin
Gateway Testing
• Test	
  of	
  the	
  gateway	
  implementation	
  was	
  tested	
  using	
  real-­‐time	
  HIL	
  simulation
• Data	
  is	
  transformed	
  from	
  IEEE	
  C37.118.2	
  from	
  actual	
  PMUs,	
  and	
  published	
  using	
  the	
  IEC	
  
61850-­‐90-­‐5	
  protocol
ideal  grid  for  all Khorjin
Gateway Architecture
• The	
  Gateway	
  functionality	
  of	
  “Khorjin”	
  
library	
  is	
  getting	
  use	
  of	
  its	
  modular	
  
architecture:
à Easier	
  for	
  future	
  development
• The	
  Khorjin Gateway	
  is	
  designed	
  and	
  
implemented	
  in	
  three	
  main	
  
components	
  of:
1)	
  IEEE	
  C37.118.2	
  Module,
2)	
  IEC	
  61850	
  Mapping	
  Module,	
  and
3)	
  IEC	
  61850-­‐90-­‐5	
  R-­‐SV	
  /	
  R-­‐GOOSE	
  
Publisher	
  Module.
14
• In	
  order	
  to	
  be	
  platform-­‐independent:
à A	
  Platform	
  Abstraction	
  Layer	
  is	
  Implemented.
à Depending	
  on	
  the	
  platform,	
  the	
  relevant
platform-­‐dependent	
  functions	
  are	
  utilized
(i.e.	
  Socket,	
  Thread,	
  Time	
  and	
  …).
• The	
  Khorjin Gateway	
  is	
  designed	
  and	
  
implemented	
  in	
  three	
  main	
  
components	
  of:
1)	
  IEEE	
  C37.118.2	
  Module,
2)	
  IEC	
  61850	
  Mapping	
  Module,	
  and
3)	
  IEC	
  61850-­‐90-­‐5	
  R-­‐SV	
  /	
  R-­‐GOOSE	
  Publisher	
  
Module.
ideal  grid  for  all
• The	
  Khorjin library	
  is	
  an	
  Open	
  Source	
  code	
  
providing	
  following	
  functionalities:
à IEEE	
  C37.118.2	
  Traffic	
  Parser
à IEEE	
  C37.118.2	
  to	
  IEC	
  61850-­‐90-­‐5	
  Protocol	
  
Converter
à IEC	
  61850-­‐90-­‐5	
  Traffic	
  Generation
à Routed-­‐Sampled	
  Value
à Routed-­‐GOOSE
à IEC	
  61850-­‐90-­‐5	
  Traffic	
  Parser
à Routed-­‐Sampled	
  Value
à Routed-­‐GOOSE
• The	
  Khorjin library	
  supports	
  different	
  
platforms.
à Will	
  be	
  publicly	
  available	
  sometime	
  in	
  2017,	
  
keep	
  an	
  eye	
  on	
  our	
  Github repo:	
  
https://github.com/SmarTS-­‐Lab-­‐Parapluie
Khorjin
Windows
Linux
Mac
NI	
  cRIO
Raspberry	
  Pi
15 Khorjin
Functionalities – it’s more than a	
  gateway!
ideal  grid  for  all
• PMU	
  SW	
  Apps	
  require	
  real-­‐time	
  data	
  acquisition.
• PMU	
  data	
  is	
  sent	
  to	
  these	
  SW	
  Apps	
  using	
  many	
  different	
  comm.	
  protocols.
• For	
  fast	
  software	
  prototyping	
  and	
  testing,	
  communication	
  protocol	
  parsing
is	
  required.
• Low	
  level	
  data	
  management	
  routines	
  (windowing,	
  etc.)	
  do	
  not	
  need	
  to	
  be	
  
reinvented	
  N times.
• A	
  tool-­‐set	
  is	
  needed	
  to	
  assist	
  students	
  and	
  researchers	
  with	
  a	
  background	
  
in	
  power	
  systems,	
  but	
  lackingproficient	
  software	
  development	
  and	
  
programming	
  skills.	
  
PMU	
  1
PMU	
  2
PMU	
  n
PDCCommunication
Network
Infrastructure
Data	
   in	
  IEEE	
  C37.118	
  Protocol
Real-­‐time	
  data	
  locked	
  
into	
  vendor	
  specific	
  
software	
  system
Historical	
   Data	
  in	
  
Proprietary	
   Database
Interfaces
using	
  standard	
  
protocols	
  and	
  a	
  
flexible	
  
development	
  
environment	
  	
  are	
  
needed
Last	
  Mile	
  in	
  PMU	
  
App	
  Development
16
The	
  next	
  step…
Now	
  you	
  got	
  the	
  data…	
  how	
  do	
  you	
  implement	
  an	
  application?
ideal  grid  for  all S3DK
Smart	
  grid	
  Synchrophasor	
  Software	
  Development	
  tool-­‐Kit	
  (SDK)
• Infrastructure	
  (external).
• Software	
  Development	
   Kit	
  (SDK):	
  a	
  set	
  of	
  
different	
   computer	
  software	
  that	
  allows	
  a	
  
user	
  to	
  develop	
  other	
  derived	
  software	
  
applications.
• Our	
  SDK	
  is	
  composed	
  by	
  two	
  main	
  pieces:
• Real-­‐Time	
  Data	
  Mediator	
  (DLL)
• PMU	
  Recorder	
  Light	
  (PRL)
Computer/Server
S3DK
Real-­‐Time	
  
Data	
  
Mediator	
  
(RTDM)
“DLL”
LabView
PMU	
  Recorder	
  Light
(PRL)
PMU	
  1
PMU	
  2
PMU	
  n
PDCCommunication
Network
Infrastructure
Data	
   in	
  IEEE	
  C37.118	
  Protocol
ideal  grid  for  all S3DK’s
Real-­‐Time	
  Data	
  Mediator	
  a.k.a.	
  the	
  “DLL”
• A	
  library	
  in	
  C++	
  was	
  implemented	
  with	
  the	
  following	
  architecture	
  design	
  in	
  
mind
Client	
  Applications
(PRL)
Synchronization	
  Layer
IEEE	
  C37.118
Server
IEC	
  61850
Server
Other	
  protocols
Only	
  prepared,	
  not	
  fully	
  
implemented.
Future	
  Support	
  /	
  
Integration
IEEE	
  C37.118
Client
IEC	
  61850
Client
Other	
  protocols
Console
Test	
  Tool
PMU	
  or	
  PDC	
  1 PMU	
  or	
  PDC	
  n
Interface
Implemented	
  and	
  Tested
Other	
  Protocol	
  
Servers
Clients
Servers
IEEE	
  C37.118
DLL
ideal  grid  for  all 19
GUI
Many blocks	
  to	
  
access	
  and	
  handle
RT	
  data!
Graphical	
  User	
  Interfaces	
  
Communication	
  Configuration
Development Tooling
S3DK	
  – LabView API,	
  UI	
  and	
  Tools
ideal  grid  for  all
S3DK’s	
  LabVIEW
Function Library/Toolbox/Pallete (aka PRL)
ideal  grid  for  allRepositories Currently Available at	
  GitHub!
• Main	
  repo:	
  https://github.com/SmarTS-­‐Lab-­‐Parapluie/
• S3DK:	
  https://github.com/SmarTS-­‐Lab-­‐Parapluie/S3DK
• BabelFish:	
  https://github.com/SmarTS-­‐Lab-­‐Parapluie/BabelFish
• Khorjin:	
  Will	
  be	
  available at	
  GitHub sometime in	
  2017.
L.	
  Vanfretti,	
  V.	
  H.	
  Aarstrand,	
  M.	
  S.	
  Almas,	
  V.	
  S.	
  Perić and	
  J.	
  O.	
  Gjerde,	
  "A	
  software	
  development	
  toolkit	
  for	
  real-­‐time	
  synchrophasor
applications," PowerTech (POWERTECH),	
  2013	
  IEEE	
  Grenoble,	
  Grenoble,	
  2013,	
  pp.	
  1-­‐6.
doi:	
  10.1109/PTC.2013.6652191	
  
L.	
  Vanfretti,	
  I.	
  A.	
  Khatib and	
  M.	
  S.	
  Almas,	
  "Real-­‐time	
  data	
  mediation	
  for	
  synchrophasor application	
  development	
  compliant	
  with	
  IEEE	
  
C37.118.2," Innovative	
  Smart	
  Grid	
  Technologies	
  Conference	
  (ISGT),	
  2015	
  IEEE	
  Power	
  &	
  Energy	
  Society,	
  Washington,	
  DC,	
  2015,	
  pp.	
  1-­‐5.
doi:	
  10.1109/ISGT.2015.7131910
L.	
  Vanfretti,	
  M.S.	
  Almas	
  and	
  M.	
  Baudette,	
  “BabelFish– Tools	
  for	
  IEEE	
  C37.118.2-­‐compliant	
  Real-­‐Time	
  Synchrophasor Data	
  Mediation,”	
  
SoftwareX,	
  submitted,	
  June	
  2016.
S.R.	
  Firouzi,	
  L.	
  Vanfretti,	
  A.	
  Ruiz-­‐Alvarez,	
  F.	
  Mahmood,	
  H.	
  Hooshyar,	
  I.	
  Cairo,	
  “An	
  IEC	
  61850-­‐90-­‐5	
  Gateway	
  for	
  IEEE	
  C37.118.2	
  
Synchrophasor Data	
  Transfer,”	
  IEEE	
  PES	
  General	
  Meeting	
  2016,	
  Boston,	
  MA,	
  USA.	
  Pre-­‐print:	
  link.
S.R.	
  Firouzi,	
  L.	
  Vanfretti,	
  A.	
  Ruiz-­‐Alvarez,	
  H.	
  Hooshyar and	
  F.	
  Mahmood,	
  “Interpreting	
  and	
  Implementing	
  IEC	
  61850-­‐90-­‐5	
  Routed-­‐Sampled	
  
Value	
  and	
  Routed-­‐GOOSE	
  Protocols	
  for	
  IEEE	
  C37.118.2	
  Compliant	
  Wide-­‐Area	
  Synchrophasor	
  Data	
  Transfer,”	
  Electric	
  Power	
  Systems	
  
Research,	
  2017.
G.M.	
  Jonsdottir,	
  E.	
  Rebello,	
  S.R.	
  Firouzi,	
  M.S.	
  Almas,	
  M.	
  Baudette	
  and	
  L.	
  Vanfretti,	
  “Audur – Templates	
  for	
  Custom	
  Synchrophasor-­‐Based	
  
Wide-­‐Area	
  Control	
  System	
  Implementations,”	
  SoftwareX,	
  in	
  preparation,	
  2016.
ideal  grid  for  all SLIDE	
  22 29/11/2016 WWW.IDE4L.EU
Cleaning	
  the	
  Data!
PMU	
  Data	
  Curation,	
  Extraction	
  of	
  Different	
  
Time-­‐Scale	
  Components
ideal  grid  for  all
PMU	
  Data	
  
Processing	
  (1/3)
• PMU	
  measurements	
  are	
  normally	
  
polluted	
  with
• Undesirable	
  noise
• Outliers
• Missing	
  data	
  
• Measurements	
  obtained	
  from	
  PMUs	
  during	
  different	
  events	
  in	
  
power	
  systems	
  contain	
  different	
  signal	
  features	
  at	
  different	
  time	
  
scales,	
  i.e.	
  features	
  of	
  different	
  types	
  of	
  power	
  system	
  dynamics.
• So	
  before	
  being	
  fed	
  to	
  the	
  applications:
• PMU	
  measurements	
  should	
  be	
  curated.
• Signals	
  required	
  for	
  each	
  application	
  should	
  be	
  extracted	
  from	
  the	
  PMU	
  
measurements.
SLIDE	
  23 29/11/2016 WWW.IDE4L.EU
ideal  grid  for  all
PMU	
  Data	
  Processing	
  (2/3)
• An	
  enhanced	
  Kalman filtering	
  technique	
  has	
  been	
  utilized	
  for	
  both	
  bad	
  
data	
  removal,	
  i.e.	
  data	
  curation,	
  and	
  to	
  extract	
  different	
  time-­‐scale	
  
dynamics	
  from	
  the	
  PMU	
  data	
  (ie used	
  as	
  a	
  real-­‐time	
  filter)
• R and	
  Q (the	
  measurement	
  and	
  process	
  noise	
  covariance	
  matrices),	
  can	
  be	
  
updated	
  in	
  real-­‐time	
  to	
  perform	
  the	
  data	
  processing.
SLIDE	
  24 29/11/2016 WWW.IDE4L.EU
Step Equation Significance
1 Prediction 𝑥" 𝑘
−
= 𝐴𝑥" 𝑘−1
−
+ 𝐵𝑢 𝑘 Project the state ahead.
2 𝑃𝑘
−
= 𝐴𝑃𝑘−1 𝐴 𝑇
+ 𝑄 Project the error covariance ahead.
3 Correction 𝐾𝑘 = 𝑃𝑘
−
𝐻 𝑇( 𝐻𝑃𝑘
−
𝐻 𝑇
+ 𝑅)−1
Compute the Kalman gain.
4 𝑥" 𝑘 = 𝑥" 𝑘
−
+ 𝐾𝑘(𝑧 𝑘 − 𝐻𝑥" 𝑘
−
) Update estimate with measurement zk.
5 𝑃𝑘 = ( 𝐼 − 𝐾𝑘 𝐻) 𝑃𝑘
−
Update the error covariance.
ideal  grid  for  all
PMU	
  Data	
  Processing	
  (3/3)
• Sample	
  results.
SLIDE	
  25 29/11/2016 WWW.IDE4L.EU
0 20 40 60 80 100 120 140 160
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
Time (sec)
Vmag(p.u.)
Raw data
Curated data
Steady state component
Dynamics
0 20 40 60 80 100 120 140 160
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
Time (sec)
Vang(rad.)
Raw data
Curated data
Steady state component
Dynamics
voltage	
  magnitude	
   (per	
  unit) voltage	
  angle	
  (radian)
ideal  grid  for  all
Outline
• Introduction:	
  PMUs	
  in	
  distribution	
  networks?
• PMU	
  Application	
  Use	
  Case	
  Definition	
  using	
  SGAM
• Methodology	
  and	
  Experimental	
  Lab	
  Testing
• Development,	
  Implementation	
  and	
  Testing	
  using	
  RT-­‐HIL	
  
Simulation
• The	
  Reference	
  Distribution	
  Grid	
  Model
• Handling	
  PMU	
  Data:
• Getting	
  the	
  data:	
  The	
  Khorjin Gateway	
  and	
  The	
  S3DK	
  Toolkit
• Cleaning	
  the	
  data:	
  PMU	
  Data	
  Feature	
  Extraction
• Using	
  the	
  Data:	
  Applications
• Steady	
  State	
  Model	
  Synthesis	
  
• Dynamic	
  Line	
  Rating	
  for	
  Distribution	
  Feeders
• Small-­‐Signal	
  Dynamic	
  Analysis
• Conclusions
29/11/2016 WWW.IDE4L.EUSLIDE  26
ideal  grid  for  all
Real-­‐Time	
  Steady	
  State	
  Model	
  
Synthesis	
  of	
  
Active	
  Distribution	
  Networks
SLIDE	
  27 29/11/2016 WWW.IDE4L.EU
ideal  grid  for  all
Background
• Currently,	
  TSOs	
  maintain	
  reduced	
  models	
  of	
  
portions	
  of	
  the	
  distribution	
  networks,	
  
however:
• The	
  models	
  covers	
  limited	
  portions	
  of	
  the	
  
distribution	
  network	
  due	
  to	
  the	
  lack	
  of	
  network	
  
“observability”	
  (measurement	
  points)	
  and	
  
computational	
  burden	
  associated	
  with	
  simulating	
  
large	
  joint	
  T&D	
  models.
• The	
  models	
  are	
  not	
  updated	
  frequently.
• The	
  reduction	
  methods,	
  used	
  by	
  TSOs,	
  often	
  make	
  
assumptions	
  that	
  are	
  no	
  longer	
  valid	
  for	
  active	
  
distribution	
  networks.
SLIDE	
  28 29/11/2016 WWW.IDE4L.EU
ideal  grid  for  all SLIDE	
  29 29/11/2016 WWW.IDE4L.EU
Methodology	
  and	
  Application
V1
abc
<δ1
abc
PMU1
	
  
I1
abc
<φ1
abc
Any feeder
configuration with an
arbitrary combination
of load and DG
PMU2
V1
a
<δ1
a
I1
a
<φ1
a
I2
a
<φ2
a
V2
a
<δ2
a
R a
X a
R a
X a
Ra
Xa
E a
<δ a
V0
a
<δ0
a
I0
a
<φ0
a
The reduced steady state
equivalent model for
phase ‘a’
3
3
3 ... V3
abc
<δ3
abc
I3
abc
<φ3
abc
3
PMU3
..
.
PMU N
VT
abc
<δT
abc
PMU at
Transmission
Level
IT
abc
<φT
abc
Any feeder
configuration with an
arbitrary combination
of load and DG
3
3
3
V1
abc
<δ1
abc
I1
abc
<φ1
abc
3
PMU at
Distribution Level
VT
a
<δT
a
IT
a
<φT
a
I1
a
<φ1
a
V1
a
<δ1
aR a
X a
R a
X a
V0
a
<δ0
a
E a
<δ a
Ra
XaI0
a
<φ0
a
The reduced steady
state equivalent
model for phase ’a’
2R a
2X a
The reduced steady state equivalent
model for phase ’a’
E a
<δ a
I2=0
Open-circuited
VT
a
<δT
a
IT
a
<φT
a
With	
  N available	
  PMUs With	
  1 available	
  PMU
• Model	
  parameters	
  are	
  obtained	
  by	
  writing	
  KVL	
  equations	
  
across	
  the	
  model	
  branches	
  and	
  equate	
  Vi’s	
  and	
  Ii’s to	
  PMU	
  
measurements.
Event1
Event2
0 80 1600 80 160
Event1
Event2
Event1
Event2
Event1
Event2
R(p.u.)X(p.u.)
Ea
(p.u.)δa
(rad)
Estimated	
  parameters	
  of	
  equivalent	
  model
LabVIEW	
  Application
ideal  grid  for  all SLIDE	
  30 29/11/2016 WWW.IDE4L.EU
Illustration	
  Example	
  (1/2)
• Steady	
  state	
  model	
  of	
  a	
  portion	
  of	
  the	
  reference	
  grid	
  is	
  
estimated	
  during	
  wind	
  curtailment	
  at	
  different	
  dispatch	
  
levels.
R
X
E
δ
E<δ
R X
ideal  grid  for  all SLIDE	
  31 29/11/2016 WWW.IDE4L.EU
Illustration	
  Example	
  (2/2)
• True	
  and	
  reproduced	
  current	
  and	
  voltage	
  phasors	
  are	
  
compared	
  using	
  TVE.
• The	
  mean	
  TVE	
  is	
  less	
  than	
  2.5%.
1.5 1.55 1.6 1.65 1.7 1.75 1.8
0
5
10
15
20
25
30
35
40
TVE for V2 (%)
Probabilitydistribution
TVE for Voltage Phasor at PMU2
empirical
generalized pareto
generalized extreme value
inversegaussian
birnbaumsaunders
1 1.5 2 2.5 3 3.5 4 4.5
0
0.5
1
1.5
2
2.5
3
3.5
4
TVE for I1 (%)
Probabilitydistribution
TVE for Current Phasor at PMU1
empirical
generalized pareto
generalized extreme value
inversegaussian
birnbaumsaunders
1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7
0
5
10
15
20
25
30
35
40
TVE for I2 (%)
Probabilitydistribution
TVE for Current Phasor at PMU2
empirical
generalized extreme value
generalized pareto
inversegaussian
birnbaumsaunders
0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18
0
10
20
30
40
50
60
70
80
90
TVE for V1 (%)
Probabilitydistribution
TVE for Voltage Phasor at PMU1
empirical
generalized pareto
generalized extreme value
beta
gamma
Variables	
  with	
  hat	
  are	
  reproduced	
  ones.
ideal  grid  for  all
Dynamic	
  Line	
  Rating	
  for	
  
Aerial	
  Distribution	
  Feeders
SLIDE	
  32 29/11/2016 WWW.IDE4L.EU
ideal  grid  for  all SLIDE	
  33 29/11/2016 WWW.IDE4L.EU
Background
• Dynamic	
  line	
  rating	
  (DLR)	
  is	
  a	
  way	
  to	
  optimize	
  
the	
  ampacity	
  of	
  transmission	
  and	
  distribution	
  
lines	
  by	
  measuring	
  the	
  effects	
  of	
  weather	
  and	
  
actual	
  line	
  current.
• The	
  inputs	
  needed	
  for	
  the	
  method:
• Weather	
  data	
  => provided	
  by	
  a	
  close-­‐by	
  weather	
  
station.
• Line	
  loading	
  => provided	
  by	
  PMU!
• Real-­‐time	
  sag	
  => provided	
  by	
  a	
  GPS-­‐based	
  
measurement	
  device.	
  
ideal  grid  for  all SLIDE	
  34 29/11/2016 WWW.IDE4L.EU
Methodology	
  and	
  Application
LabVIEW	
  Application
ideal  grid  for  all SLIDE	
  35 29/11/2016 WWW.IDE4L.EU
• Results	
  are	
  obtained	
  by	
  
applying	
  the	
  method	
  on	
  data	
  
from	
  a	
  real	
  feeder.
• Output	
  shows	
  accurate	
  
correlation	
  with	
  different	
  
inputs.	
  
Sample	
  Results
ideal  grid  for  all
Small	
  Signal	
  Dynamic	
  Analysis	
  of	
  
Active	
  Distribution	
  Networks
SLIDE	
  36 29/11/2016 WWW.IDE4L.EU
ideal  grid  for  all SLIDE	
  37 29/11/2016 WWW.IDE4L.EU
Background
• For	
  reliable	
  operation	
  of	
  the	
  power	
  system,	
  
oscillations	
  are	
  required	
  to	
  decay.
• Accurate	
  and	
  real-­‐time	
  estimates	
  of	
  active	
  
distribution	
  networks	
  oscillatory	
  modes	
  has	
  
become	
  ever	
  so	
  important.
• Timely	
  extraction	
  of	
  these	
  modes	
  and	
  related	
  
parameters	
  from	
  network	
  measurements	
  has	
  
considerable	
  potential	
  for	
  near	
  real-­‐time	
  
dynamic	
  security	
  assessment.
ideal  grid  for  all
Extracting	
  and	
  Exchanging	
  Small	
  Signal	
  Stability	
  Information
38
Data	
  curation,	
  fusion	
  and	
  
extraction	
  of	
  steady	
  state	
  
component	
  
• Ambient	
  Data	
  Analysis	
  
(for	
  stochastic	
  
variations)
• Ringdown	
  Data	
  Analysis	
  
(for	
  transients)	
  
TSO
Calculation	
  of	
  
stability	
  indices
Data	
  process
and	
  analysis
Data	
  process
and	
  analysis
Data	
  process
and	
  analysis
Centralized	
  
Architecture
Decentralized	
  
Architecture
ideal  grid  for  all SLIDE	
  39 29/11/2016 WWW.IDE4L.EU
Implementation	
  Architectures
Centralized	
  
Decentralized	
  
ideal  grid  for  all SLIDE	
  40 29/11/2016 WWW.IDE4L.EU
	
  
PMU	
  data	
  collection	
  
and	
  transmission	
  
Dynamic	
  component	
  extraction	
  by	
  
Kalman	
  filter	
  
Data	
  pre-­‐processing	
  (detrending	
  
and	
  downsampling)	
  
Ringdown	
  
detected?	
  
Ambient	
  analysis	
  
(ARMA)	
  
Ringdown	
  
analysis	
  (ERA)	
  Modal	
  parameters	
  
Modal	
  parameters	
  
LabVIEW	
  Application
Methodology	
  and	
  Application
ideal  grid  for  all SLIDE	
  41 29/11/2016 WWW.IDE4L.EU
Illustration	
  Example	
  (1/2)
• 4	
  PMUs	
  were	
  deployed	
  in	
  the	
  
reference	
  grid	
  to	
  be	
  
used	
  for	
  mode	
  
estimation	
  under	
  
two	
  different
architectures
of	
  centralized
and
decentralized
ideal  grid  for  all SLIDE	
  42 29/11/2016 WWW.IDE4L.EU
Illustration	
  Example	
  (2/2)
Centralized	
  Decentralized	
  
Inter-­‐area	
  oscillatory	
  mode	
  between	
  HV	
  
section	
  and	
  rest	
  of	
  the	
  grid
Forced	
  local	
  oscillatory	
  mode	
  detectable	
  in	
  
decentralized	
  architecture
ideal  grid  for  all
References	
  and	
  Resources
of	
  work	
  presented	
  and	
  related	
  to	
  this	
  presentation
• Github Repositories	
  (Open	
  Source	
  Software	
  Resources)
• https://github.com/SmarTS-­‐Lab/
• https://github.com/SmarTS-­‐Lab-­‐Parapluie
(PMU	
  applications	
  and	
  software	
  tools)
• Under	
  Review:
• N.	
  Singh,	
  H.	
  Hooshyar and	
  L.	
  Vanfretti,	
  “Feeder	
  Dynamic	
  Rating	
  Application	
  for	
  
Active	
  Distribution	
  Networks	
  using	
  Synchrophasors,”	
  Sustainable	
  Energy,	
  Grids	
  and	
  
Networks.	
  (under	
  third	
  review)
• F.	
  Mahmood,	
  H.	
  Hooshyar,	
  and	
  L.	
  Vanfretti,	
  “Sensitivity	
  Analysis	
  of	
  a	
  PMU-­‐Based	
  
Steady	
  State	
  Model	
  Synthesis	
  Method,”	
  IEEE	
  PES	
  GM	
  2017.
• R.S.	
  Singh,	
  H.	
  Hooshyar,	
  and	
  L.	
  Vanfretti,	
  “Real-­‐Time	
  Testing	
  of	
  a	
  Decentralized	
  
PMU	
  Data-­‐Based	
  Power	
  System	
  Mode	
  Estimator,”	
  IEEE	
  PES	
  GM	
  2017.
29/11/2016 WWW.IDE4L.EUSLIDE  43
ideal  grid  for  all
References	
  and	
  Resources
of	
  work	
  presented	
  and	
  related	
  to	
  this	
  presentation
• Published/Accepted	
   for	
  Publication:
• S.R.	
  Firouzi,	
  L.	
  Vanfretti,	
  A.	
  Ruiz-­‐Alvarez,	
  H.	
  Hooshyar and	
  F.	
  Mahmood,	
  “Interpretation	
  and	
  Implementation	
  of	
  IEC	
  61850-­‐90-­‐5	
  Routed-­‐
Sampled	
  Value	
  and	
  Routed-­‐GOOSE	
  Protocols	
  for	
  IEEE	
  C37.118.2	
  Compliant	
  Wide-­‐Area	
  Synchrophasor	
  Data	
  Transfer,”	
  Electric	
  Power	
  
Systems	
  Research,	
  2017.
• F.	
  Mahmood,	
  H.	
  Hooshyar,	
  J.	
  Lavenius,	
  P.	
  Lund	
  and	
  L.	
  Vanfretti,	
  “Real-­‐Time	
  Reduced	
  Steady	
  State	
  Model	
  Synthesis	
  of	
  Active	
  Distribution	
  
Networks	
  using	
  PMU	
  Measurements,”	
  IEEE	
  Transactions	
  on	
  Power	
  Delivery,	
  2017.	
  http://dx.doi.org/10.1109/TPWRD.2016.2602302
• F.	
  Mahmood,	
  H.	
  Hooshyar and	
  L.	
  Vanfretti,	
  "Extracting	
  Steady	
  State	
  Components	
  from	
  Synchrophasor	
  Data	
  Using	
  Kalman Filters,"	
  
Energies,	
  vol.	
  9,	
  2016.
• H.	
  Hooshyar,	
  F.	
  Mahmood,	
  L.	
  Vanfretti,	
  and	
  M.	
  Baudette	
  “Specification,	
  Implementation	
  and	
  Hardware-­‐in-­‐the-­‐Loop	
  Real-­‐Time	
  Simulation	
  
of	
  an	
  Active	
  Distribution	
  Grid,”	
  Sustainable	
  Energy,	
  Grids	
  and	
  Networks	
  (SEGAN),	
  Elsevier,	
  vol.	
  3,	
  Sept.	
  2015,	
  pp.	
  36-­‐51.	
  Available	
  in	
  open-­‐
access:	
  https://dx.doi.org/doi:10.1016/j.segan.2015.06.002
• H.	
  Hooshyar,	
  L.	
  Vanfretti	
  and	
  C.	
  Dufour,	
  “Delay-­‐Free	
  Parallelization	
  for	
  Real-­‐Time	
  Simulation	
  of	
  a	
  Large	
  Active	
  Distribution	
  Grid	
  Model,”	
  
IEEE	
  IECON	
  2016,	
  Firenze,	
  October	
  2016.
• R.S.	
  Singh,	
  M.	
  Baudette,	
  H.	
  Hooshyar,	
  M.S.	
  Almas,	
  Stig Løvlund,	
  L.	
  Vanfretti,	
  “‘In	
  Silico’	
  Testing	
  of	
  a	
  Decentralized	
  PMU	
  Data-­‐Based	
  Power	
  
Systems	
  Mode	
  Estimator,”	
  IEEE	
  PES	
  General	
  Meeting	
  2016,	
  Boston,	
  MA,	
  USA.	
  
• A.	
  Bidadfar,	
  H.	
  Hooshyar,	
  M.	
  Monadi,	
  L.	
  Vanfretti,	
  Decoupled	
  Voltage	
  Stability	
  Assessment	
  of	
  Distribution	
  Networks	
  using	
  
Synchrophasors,”	
  IEEE	
  PES	
  General	
  Meeting	
  2016,	
  Boston,	
  MA,	
  USA.
• S.R.	
  Firouzi,	
  L.	
  Vanfretti,	
  A.	
  Ruiz-­‐Alvarez,	
  F.	
  Mahmood,	
  H.	
  Hooshyar,	
  I.	
  Cairo,	
  “An	
  IEC	
  61850-­‐90-­‐5	
  Gateway	
  for	
  IEEE	
  C37.118.2	
  
Synchrophasor	
  Data	
  Transfer,”	
  IEEE	
  PES	
  General	
  Meeting	
  2016,	
  Boston,	
  MA,	
  USA.
• R.S.	
  Singh,	
  H.	
  Hooshyar and	
  L.	
  Vanfretti,	
  “Laboratory	
  Test	
  Set-­‐Up	
  for	
  the	
  Assessment	
  of	
  PMU	
  Time	
  Synchronization	
  Requirements,”	
  IEEE	
  
PowerTech 2015,	
  The	
  Netherlands,	
  2015.
• R.S.	
  Singh,	
  H.	
  Hooshyar and	
  L.	
  Vanfretti,	
  “Assessment	
  of	
  Time	
  Synchronization	
  Requirements	
  for	
  Phasor	
  Measurement	
  Units,”	
  IEEE	
  PES	
  
PowerTech 2015,	
  The	
  Netherlands,	
  2015.
• H.	
  Hooshyar,	
  F.	
  Mahmood,	
  and	
  L.	
  Vanfretti,	
  “HIL	
  Simulation	
  of	
  a	
  Distribution	
  System	
  Reference	
  Model,”	
  NORDAC	
  2014.
• H.	
  Hooshyar and	
  L.	
  Vanfretti,	
  “Specification	
  and	
  Implementation	
  of	
  a	
  Reference	
  Grid	
  for	
  Distribution	
  Network	
  Dynamics	
  Studies,”	
  IEEE	
  
PES	
  General	
  Meeting,	
  2014,	
  National	
  Harbor,	
  MD	
  (Washington,	
  DC	
  Metro	
  Area).
• L.	
  Vanfretti,	
  V.	
  H.	
  Aarstrand,	
  M.	
  Shoaib Almas,	
  V.	
  Peric,	
  and	
  J.	
  O.	
  Gjerde,	
  ”A	
  software	
  development	
  toolkit	
  for	
  real-­‐time	
  synchrophasor	
  
applications”,	
  2013	
  IEEE	
  Grenoble	
  Conference	
  PowerTech,	
  POWERTECH	
  2013;	
  Grenoble,	
  France,	
  16-­‐20	
  June	
  2013.
29/11/2016 WWW.IDE4L.EUSLIDE  44
ideal  grid  for  all
Conclusions
• The	
  increase	
  of	
  intermittent	
  renewable	
  sources	
  at	
  the	
  distribution	
  network	
  
bring	
  technical	
  challenges into	
  DSO	
  operations.
• Synchrophasor	
  measurements	
  have	
  a	
  great	
  potential	
  to	
  support	
  the	
  technical	
  
operation	
  of	
  distribution	
  networks
• Applications	
  can	
  play	
  an	
  important	
  role	
  of	
  extracting	
  key	
  information	
   about	
  the	
  
operation	
  of	
  the	
  grid
• TSOs-­‐to-­‐DSOs	
  interaction	
  in	
  operations	
  through	
  PMU	
  Apps.
• DSOs	
  can	
  enhance	
  the	
  way	
  they	
  operate	
  by	
  having	
  better	
  knowledge	
   of	
  the	
  
system’s	
  performance	
  in	
  near	
  real-­‐time
• TSOs	
  can	
  gain	
  visibility	
  of	
  the	
  phenomena	
   at	
  lower	
  voltage	
  levels, and	
  device	
  
actions
• Real-­‐time	
  automatic	
  control	
  and	
  protection	
  is	
  the	
  next	
  big	
  step
• Existing	
  architecture,	
  automation	
  and	
  system	
  level	
  technology	
  not	
  up	
  to	
  the	
  task
• Interoperability	
  and	
  Standardization:
• Too	
  slow	
  and	
  maybe	
  even	
  useless	
  without	
  Open	
  Source	
  Software	
  and	
  Hardware
platforms	
  and	
  building	
  blocks
• Need	
  to	
  develop	
  and	
  support	
  a	
  truly	
  open	
  market	
  of	
  products	
  and	
  services
29/11/2016 WWW.IDE4L.EUSLIDE  45
ideal  grid  for  all
Thank	
  you!
www.ide4l.eu
https://www.kth.se/profile/luigiv
luigiv@kth.se

Weitere ähnliche Inhalte

Was ist angesagt?

Wide Area Monitoring, Protection and Control (WAMPAC) Application in Transmis...
Wide Area Monitoring, Protection and Control (WAMPAC) Application in Transmis...Wide Area Monitoring, Protection and Control (WAMPAC) Application in Transmis...
Wide Area Monitoring, Protection and Control (WAMPAC) Application in Transmis...IRJET Journal
 
A overview on WAMS/PMU.
A overview on WAMS/PMU.A overview on WAMS/PMU.
A overview on WAMS/PMU.Rahul Singh
 
OPAL-RT Smart transmission grid applications for real-time monitoring
OPAL-RT Smart transmission grid applications for real-time monitoringOPAL-RT Smart transmission grid applications for real-time monitoring
OPAL-RT Smart transmission grid applications for real-time monitoringOPAL-RT TECHNOLOGIES
 
WIDE AREA PROTECTION IN POWER SYSTEMS
WIDE AREA PROTECTION IN POWER SYSTEMSWIDE AREA PROTECTION IN POWER SYSTEMS
WIDE AREA PROTECTION IN POWER SYSTEMSmanogna gwen
 
Application for phasor measurement unit
Application for phasor measurement unitApplication for phasor measurement unit
Application for phasor measurement unitPower System Operation
 
Wide Area Monitoring System WAMS & Applications
Wide Area Monitoring System WAMS & ApplicationsWide Area Monitoring System WAMS & Applications
Wide Area Monitoring System WAMS & ApplicationsPower System Operation
 
IEEE International Conference Presentation
IEEE International Conference PresentationIEEE International Conference Presentation
IEEE International Conference PresentationAnmol Dwivedi
 
An Expert System For Power Plants Paper Presentation
An Expert System For Power Plants Paper PresentationAn Expert System For Power Plants Paper Presentation
An Expert System For Power Plants Paper Presentationguestac67362
 
Technical paper 6_2
Technical paper 6_2Technical paper 6_2
Technical paper 6_2Alaa Eladl
 
Introduction of wide area mesurement syatem
Introduction of wide area mesurement syatemIntroduction of wide area mesurement syatem
Introduction of wide area mesurement syatemPanditNitesh
 
Redundant secure timing sources and timing distribution to digital power prot...
Redundant secure timing sources and timing distribution to digital power prot...Redundant secure timing sources and timing distribution to digital power prot...
Redundant secure timing sources and timing distribution to digital power prot...Power System Operation
 
Energy conservation in wireless sensor networks
Energy conservation in wireless sensor networksEnergy conservation in wireless sensor networks
Energy conservation in wireless sensor networksahmad abdelhafeez
 
WIDE AREA MANAGEMENT SYSTEM
WIDE AREA MANAGEMENT SYSTEMWIDE AREA MANAGEMENT SYSTEM
WIDE AREA MANAGEMENT SYSTEMDivya Yennam
 
Phasor measurement unit
Phasor measurement unitPhasor measurement unit
Phasor measurement unitSathriGiridhar
 
Wide area measurements (synchrophasor measurements) in Power Systems
Wide area measurements (synchrophasor measurements) in Power SystemsWide area measurements (synchrophasor measurements) in Power Systems
Wide area measurements (synchrophasor measurements) in Power SystemsNaila Syed
 

Was ist angesagt? (20)

Wide Area Monitoring, Protection and Control (WAMPAC) Application in Transmis...
Wide Area Monitoring, Protection and Control (WAMPAC) Application in Transmis...Wide Area Monitoring, Protection and Control (WAMPAC) Application in Transmis...
Wide Area Monitoring, Protection and Control (WAMPAC) Application in Transmis...
 
A overview on WAMS/PMU.
A overview on WAMS/PMU.A overview on WAMS/PMU.
A overview on WAMS/PMU.
 
Smart Grid & WAMS
Smart Grid & WAMSSmart Grid & WAMS
Smart Grid & WAMS
 
OPAL-RT Smart transmission grid applications for real-time monitoring
OPAL-RT Smart transmission grid applications for real-time monitoringOPAL-RT Smart transmission grid applications for real-time monitoring
OPAL-RT Smart transmission grid applications for real-time monitoring
 
WIDE AREA PROTECTION IN POWER SYSTEMS
WIDE AREA PROTECTION IN POWER SYSTEMSWIDE AREA PROTECTION IN POWER SYSTEMS
WIDE AREA PROTECTION IN POWER SYSTEMS
 
Smart grid and wide area monitoring
Smart grid and wide area monitoringSmart grid and wide area monitoring
Smart grid and wide area monitoring
 
OPAL-RT Modern power systems
OPAL-RT Modern power systems OPAL-RT Modern power systems
OPAL-RT Modern power systems
 
Application for phasor measurement unit
Application for phasor measurement unitApplication for phasor measurement unit
Application for phasor measurement unit
 
Power Grid Cybersecurity
Power Grid CybersecurityPower Grid Cybersecurity
Power Grid Cybersecurity
 
Wide Area Monitoring System WAMS & Applications
Wide Area Monitoring System WAMS & ApplicationsWide Area Monitoring System WAMS & Applications
Wide Area Monitoring System WAMS & Applications
 
IEEE International Conference Presentation
IEEE International Conference PresentationIEEE International Conference Presentation
IEEE International Conference Presentation
 
An Expert System For Power Plants Paper Presentation
An Expert System For Power Plants Paper PresentationAn Expert System For Power Plants Paper Presentation
An Expert System For Power Plants Paper Presentation
 
Technical paper 6_2
Technical paper 6_2Technical paper 6_2
Technical paper 6_2
 
Introduction of wide area mesurement syatem
Introduction of wide area mesurement syatemIntroduction of wide area mesurement syatem
Introduction of wide area mesurement syatem
 
Redundant secure timing sources and timing distribution to digital power prot...
Redundant secure timing sources and timing distribution to digital power prot...Redundant secure timing sources and timing distribution to digital power prot...
Redundant secure timing sources and timing distribution to digital power prot...
 
PMU
PMUPMU
PMU
 
Energy conservation in wireless sensor networks
Energy conservation in wireless sensor networksEnergy conservation in wireless sensor networks
Energy conservation in wireless sensor networks
 
WIDE AREA MANAGEMENT SYSTEM
WIDE AREA MANAGEMENT SYSTEMWIDE AREA MANAGEMENT SYSTEM
WIDE AREA MANAGEMENT SYSTEM
 
Phasor measurement unit
Phasor measurement unitPhasor measurement unit
Phasor measurement unit
 
Wide area measurements (synchrophasor measurements) in Power Systems
Wide area measurements (synchrophasor measurements) in Power SystemsWide area measurements (synchrophasor measurements) in Power Systems
Wide area measurements (synchrophasor measurements) in Power Systems
 

Ähnlich wie Synchrophasor Applications Facilitating Interactions between Transmission and Distribution Operations

RECAP at ETSI Experiential Network Intelligence (ENI) Meeting
RECAP at ETSI Experiential Network Intelligence (ENI) MeetingRECAP at ETSI Experiential Network Intelligence (ENI) Meeting
RECAP at ETSI Experiential Network Intelligence (ENI) MeetingRECAP Project
 
2017 Atlanta Regional User Seminar Introduction
2017 Atlanta Regional User Seminar Introduction2017 Atlanta Regional User Seminar Introduction
2017 Atlanta Regional User Seminar IntroductionOPAL-RT TECHNOLOGIES
 
Horizon 2020 ICT and Advanced Materials & Manufacturing
Horizon 2020 ICT and Advanced Materials & ManufacturingHorizon 2020 ICT and Advanced Materials & Manufacturing
Horizon 2020 ICT and Advanced Materials & ManufacturingInvest Northern Ireland
 
CloudLightning and the OPM-based Use Case
CloudLightning and the OPM-based Use CaseCloudLightning and the OPM-based Use Case
CloudLightning and the OPM-based Use CaseCloudLightning
 
Virtual Human Brain Simulations with Abaqus in the Cloud
Virtual Human Brain Simulations with Abaqus in the CloudVirtual Human Brain Simulations with Abaqus in the Cloud
Virtual Human Brain Simulations with Abaqus in the CloudThe UberCloud
 
The Fraunhofer FOKUS 5G Playground Prototyping 5G-Ready Infrastructures and A...
The Fraunhofer FOKUS 5G Playground Prototyping 5G-Ready Infrastructures and A...The Fraunhofer FOKUS 5G Playground Prototyping 5G-Ready Infrastructures and A...
The Fraunhofer FOKUS 5G Playground Prototyping 5G-Ready Infrastructures and A...ITU
 
OGF Introductory Overview - OGF 44 at EGI Conference 2015
OGF Introductory Overview - OGF 44 at EGI Conference 2015OGF Introductory Overview - OGF 44 at EGI Conference 2015
OGF Introductory Overview - OGF 44 at EGI Conference 2015Alan Sill
 
NoC simulators presentation
NoC simulators presentationNoC simulators presentation
NoC simulators presentationHossam Hassan
 
Janet Network update and futures - by James Blessing
Janet Network update and futures - by James BlessingJanet Network update and futures - by James Blessing
Janet Network update and futures - by James BlessingJisc
 
Mass Scale Networking
Mass Scale NetworkingMass Scale Networking
Mass Scale NetworkingSteve Iatrou
 
FPGA Hardware Accelerator for Machine Learning
FPGA Hardware Accelerator for Machine Learning FPGA Hardware Accelerator for Machine Learning
FPGA Hardware Accelerator for Machine Learning Dr. Swaminathan Kathirvel
 
Advanced Automated Analytics Using OSS Tools, GA Tech FDA Conference 2016
Advanced Automated Analytics Using OSS Tools, GA Tech FDA Conference 2016Advanced Automated Analytics Using OSS Tools, GA Tech FDA Conference 2016
Advanced Automated Analytics Using OSS Tools, GA Tech FDA Conference 2016Grid Protection Alliance
 
RT15 Berkeley | ARTEMiS-SSN Features for Micro-grid / Renewable Energy Sourc...
RT15 Berkeley |  ARTEMiS-SSN Features for Micro-grid / Renewable Energy Sourc...RT15 Berkeley |  ARTEMiS-SSN Features for Micro-grid / Renewable Energy Sourc...
RT15 Berkeley | ARTEMiS-SSN Features for Micro-grid / Renewable Energy Sourc...OPAL-RT TECHNOLOGIES
 
siemens relays catalog - geetech group.pdf
siemens relays catalog - geetech group.pdfsiemens relays catalog - geetech group.pdf
siemens relays catalog - geetech group.pdfGeeTech Group
 
OIF on 400G for Next Gen Optical Networks Conference
OIF on 400G for Next Gen Optical Networks ConferenceOIF on 400G for Next Gen Optical Networks Conference
OIF on 400G for Next Gen Optical Networks ConferenceDeborah Porchivina
 
Real-Time Testing of a Decentralized PMU Data-Based Power Systems Mode Estim...
Real-Time Testing of a Decentralized PMU Data-Based  Power Systems Mode Estim...Real-Time Testing of a Decentralized PMU Data-Based  Power Systems Mode Estim...
Real-Time Testing of a Decentralized PMU Data-Based Power Systems Mode Estim...Luigi Vanfretti
 

Ähnlich wie Synchrophasor Applications Facilitating Interactions between Transmission and Distribution Operations (20)

RECAP at ETSI Experiential Network Intelligence (ENI) Meeting
RECAP at ETSI Experiential Network Intelligence (ENI) MeetingRECAP at ETSI Experiential Network Intelligence (ENI) Meeting
RECAP at ETSI Experiential Network Intelligence (ENI) Meeting
 
2017 Atlanta Regional User Seminar Introduction
2017 Atlanta Regional User Seminar Introduction2017 Atlanta Regional User Seminar Introduction
2017 Atlanta Regional User Seminar Introduction
 
Horizon 2020 ICT and Advanced Materials & Manufacturing
Horizon 2020 ICT and Advanced Materials & ManufacturingHorizon 2020 ICT and Advanced Materials & Manufacturing
Horizon 2020 ICT and Advanced Materials & Manufacturing
 
GPA Software Overview R3
GPA Software Overview R3GPA Software Overview R3
GPA Software Overview R3
 
CloudLightning and the OPM-based Use Case
CloudLightning and the OPM-based Use CaseCloudLightning and the OPM-based Use Case
CloudLightning and the OPM-based Use Case
 
Virtual Human Brain Simulations with Abaqus in the Cloud
Virtual Human Brain Simulations with Abaqus in the CloudVirtual Human Brain Simulations with Abaqus in the Cloud
Virtual Human Brain Simulations with Abaqus in the Cloud
 
The Fraunhofer FOKUS 5G Playground Prototyping 5G-Ready Infrastructures and A...
The Fraunhofer FOKUS 5G Playground Prototyping 5G-Ready Infrastructures and A...The Fraunhofer FOKUS 5G Playground Prototyping 5G-Ready Infrastructures and A...
The Fraunhofer FOKUS 5G Playground Prototyping 5G-Ready Infrastructures and A...
 
OGF Introductory Overview - OGF 44 at EGI Conference 2015
OGF Introductory Overview - OGF 44 at EGI Conference 2015OGF Introductory Overview - OGF 44 at EGI Conference 2015
OGF Introductory Overview - OGF 44 at EGI Conference 2015
 
Sip@iPLM 2016
Sip@iPLM 2016 Sip@iPLM 2016
Sip@iPLM 2016
 
NoC simulators presentation
NoC simulators presentationNoC simulators presentation
NoC simulators presentation
 
EPCC MSc industry projects
EPCC MSc industry projectsEPCC MSc industry projects
EPCC MSc industry projects
 
Janet Network update and futures - by James Blessing
Janet Network update and futures - by James BlessingJanet Network update and futures - by James Blessing
Janet Network update and futures - by James Blessing
 
A Web-­Based Simulator for a Discrete Manufacturing System
A Web-­Based Simulator for a Discrete  Manufacturing SystemA Web-­Based Simulator for a Discrete  Manufacturing System
A Web-­Based Simulator for a Discrete Manufacturing System
 
Mass Scale Networking
Mass Scale NetworkingMass Scale Networking
Mass Scale Networking
 
FPGA Hardware Accelerator for Machine Learning
FPGA Hardware Accelerator for Machine Learning FPGA Hardware Accelerator for Machine Learning
FPGA Hardware Accelerator for Machine Learning
 
Advanced Automated Analytics Using OSS Tools, GA Tech FDA Conference 2016
Advanced Automated Analytics Using OSS Tools, GA Tech FDA Conference 2016Advanced Automated Analytics Using OSS Tools, GA Tech FDA Conference 2016
Advanced Automated Analytics Using OSS Tools, GA Tech FDA Conference 2016
 
RT15 Berkeley | ARTEMiS-SSN Features for Micro-grid / Renewable Energy Sourc...
RT15 Berkeley |  ARTEMiS-SSN Features for Micro-grid / Renewable Energy Sourc...RT15 Berkeley |  ARTEMiS-SSN Features for Micro-grid / Renewable Energy Sourc...
RT15 Berkeley | ARTEMiS-SSN Features for Micro-grid / Renewable Energy Sourc...
 
siemens relays catalog - geetech group.pdf
siemens relays catalog - geetech group.pdfsiemens relays catalog - geetech group.pdf
siemens relays catalog - geetech group.pdf
 
OIF on 400G for Next Gen Optical Networks Conference
OIF on 400G for Next Gen Optical Networks ConferenceOIF on 400G for Next Gen Optical Networks Conference
OIF on 400G for Next Gen Optical Networks Conference
 
Real-Time Testing of a Decentralized PMU Data-Based Power Systems Mode Estim...
Real-Time Testing of a Decentralized PMU Data-Based  Power Systems Mode Estim...Real-Time Testing of a Decentralized PMU Data-Based  Power Systems Mode Estim...
Real-Time Testing of a Decentralized PMU Data-Based Power Systems Mode Estim...
 

Mehr von Luigi Vanfretti

Hopf Bifurcation Control of Power Systems Nonlinear Dynamics Via a Dynamic St...
Hopf Bifurcation Control of Power Systems Nonlinear Dynamics Via a Dynamic St...Hopf Bifurcation Control of Power Systems Nonlinear Dynamics Via a Dynamic St...
Hopf Bifurcation Control of Power Systems Nonlinear Dynamics Via a Dynamic St...Luigi Vanfretti
 
Hopf Bifurcation Control of Power System Nonlinear Dynamics via a Dynamic Sta...
Hopf Bifurcation Control of Power System Nonlinear Dynamics via a Dynamic Sta...Hopf Bifurcation Control of Power System Nonlinear Dynamics via a Dynamic Sta...
Hopf Bifurcation Control of Power System Nonlinear Dynamics via a Dynamic Sta...Luigi Vanfretti
 
Hands-on-OpenIPSL.org using OpenModelica!
Hands-on-OpenIPSL.org using OpenModelica!Hands-on-OpenIPSL.org using OpenModelica!
Hands-on-OpenIPSL.org using OpenModelica!Luigi Vanfretti
 
Phasor State Estimation Weighting Coefficients for AC and Hybrid Networks wit...
Phasor State Estimation Weighting Coefficients for AC and Hybrid Networks wit...Phasor State Estimation Weighting Coefficients for AC and Hybrid Networks wit...
Phasor State Estimation Weighting Coefficients for AC and Hybrid Networks wit...Luigi Vanfretti
 
A SGAM-Based Architecture for Synchrophasor Applications Facilitating TSO/DSO...
A SGAM-Based Architecture for Synchrophasor Applications Facilitating TSO/DSO...A SGAM-Based Architecture for Synchrophasor Applications Facilitating TSO/DSO...
A SGAM-Based Architecture for Synchrophasor Applications Facilitating TSO/DSO...Luigi Vanfretti
 
A Three-Phase VSC-HVDC Average Value Model Implementation using Modelica and ...
A Three-Phase VSC-HVDC Average Value Model Implementation using Modelica and ...A Three-Phase VSC-HVDC Average Value Model Implementation using Modelica and ...
A Three-Phase VSC-HVDC Average Value Model Implementation using Modelica and ...Luigi Vanfretti
 
Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...
Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...
Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...Luigi Vanfretti
 
Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...
Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...
Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...Luigi Vanfretti
 
Workshop on Synchrophasors and Control Applications for Power Systems
Workshop on  Synchrophasors and Control Applications for Power SystemsWorkshop on  Synchrophasors and Control Applications for Power Systems
Workshop on Synchrophasors and Control Applications for Power SystemsLuigi Vanfretti
 
Wanted!: Open M&S Standards and Technologies for the Smart Grid - Introducing...
Wanted!: Open M&S Standards and Technologies for the Smart Grid - Introducing...Wanted!: Open M&S Standards and Technologies for the Smart Grid - Introducing...
Wanted!: Open M&S Standards and Technologies for the Smart Grid - Introducing...Luigi Vanfretti
 
Binding CIM and Modelica for Consistent Power System Dynamic Model Exchange a...
Binding CIM and Modelica for Consistent Power System Dynamic Model Exchange a...Binding CIM and Modelica for Consistent Power System Dynamic Model Exchange a...
Binding CIM and Modelica for Consistent Power System Dynamic Model Exchange a...Luigi Vanfretti
 
Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...
Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...
Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...Luigi Vanfretti
 
PMU-Based Real-Time Damping Control System Software and Hardware Architecture...
PMU-Based Real-Time Damping Control System Software and Hardware Architecture...PMU-Based Real-Time Damping Control System Software and Hardware Architecture...
PMU-Based Real-Time Damping Control System Software and Hardware Architecture...Luigi Vanfretti
 
Towards Consistent Model Exchange and Simulation of VSC-HVDC Controls for EMT...
Towards Consistent Model Exchange and Simulation of VSC-HVDC Controls for EMT...Towards Consistent Model Exchange and Simulation of VSC-HVDC Controls for EMT...
Towards Consistent Model Exchange and Simulation of VSC-HVDC Controls for EMT...Luigi Vanfretti
 
Generic VSC-Based DC Grid EMT Modeling, Simulation and Validation on a Scaled...
Generic VSC-Based DC Grid EMT Modeling, Simulation and Validation on a Scaled...Generic VSC-Based DC Grid EMT Modeling, Simulation and Validation on a Scaled...
Generic VSC-Based DC Grid EMT Modeling, Simulation and Validation on a Scaled...Luigi Vanfretti
 
Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...
Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...
Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...Luigi Vanfretti
 
Power System Simulation: History, State of the Art, and Challenges
Power System Simulation: History, State of the Art, and ChallengesPower System Simulation: History, State of the Art, and Challenges
Power System Simulation: History, State of the Art, and ChallengesLuigi Vanfretti
 
The RaPId Toolbox for Parameter Identification and Model Validation: How Mode...
The RaPId Toolbox for Parameter Identification and Model Validation: How Mode...The RaPId Toolbox for Parameter Identification and Model Validation: How Mode...
The RaPId Toolbox for Parameter Identification and Model Validation: How Mode...Luigi Vanfretti
 
Quis custodiet ipsos custodes? - Enhancement of Supervision and Examination P...
Quis custodiet ipsos custodes? - Enhancement of Supervision and Examination P...Quis custodiet ipsos custodes? - Enhancement of Supervision and Examination P...
Quis custodiet ipsos custodes? - Enhancement of Supervision and Examination P...Luigi Vanfretti
 

Mehr von Luigi Vanfretti (20)

Hopf Bifurcation Control of Power Systems Nonlinear Dynamics Via a Dynamic St...
Hopf Bifurcation Control of Power Systems Nonlinear Dynamics Via a Dynamic St...Hopf Bifurcation Control of Power Systems Nonlinear Dynamics Via a Dynamic St...
Hopf Bifurcation Control of Power Systems Nonlinear Dynamics Via a Dynamic St...
 
Hopf Bifurcation Control of Power System Nonlinear Dynamics via a Dynamic Sta...
Hopf Bifurcation Control of Power System Nonlinear Dynamics via a Dynamic Sta...Hopf Bifurcation Control of Power System Nonlinear Dynamics via a Dynamic Sta...
Hopf Bifurcation Control of Power System Nonlinear Dynamics via a Dynamic Sta...
 
Hands-on-OpenIPSL.org using OpenModelica!
Hands-on-OpenIPSL.org using OpenModelica!Hands-on-OpenIPSL.org using OpenModelica!
Hands-on-OpenIPSL.org using OpenModelica!
 
Phasor State Estimation Weighting Coefficients for AC and Hybrid Networks wit...
Phasor State Estimation Weighting Coefficients for AC and Hybrid Networks wit...Phasor State Estimation Weighting Coefficients for AC and Hybrid Networks wit...
Phasor State Estimation Weighting Coefficients for AC and Hybrid Networks wit...
 
A SGAM-Based Architecture for Synchrophasor Applications Facilitating TSO/DSO...
A SGAM-Based Architecture for Synchrophasor Applications Facilitating TSO/DSO...A SGAM-Based Architecture for Synchrophasor Applications Facilitating TSO/DSO...
A SGAM-Based Architecture for Synchrophasor Applications Facilitating TSO/DSO...
 
A Three-Phase VSC-HVDC Average Value Model Implementation using Modelica and ...
A Three-Phase VSC-HVDC Average Value Model Implementation using Modelica and ...A Three-Phase VSC-HVDC Average Value Model Implementation using Modelica and ...
A Three-Phase VSC-HVDC Average Value Model Implementation using Modelica and ...
 
Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...
Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...
Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...
 
Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...
Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...
Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...
 
Workshop on Synchrophasors and Control Applications for Power Systems
Workshop on  Synchrophasors and Control Applications for Power SystemsWorkshop on  Synchrophasors and Control Applications for Power Systems
Workshop on Synchrophasors and Control Applications for Power Systems
 
Wanted!: Open M&S Standards and Technologies for the Smart Grid - Introducing...
Wanted!: Open M&S Standards and Technologies for the Smart Grid - Introducing...Wanted!: Open M&S Standards and Technologies for the Smart Grid - Introducing...
Wanted!: Open M&S Standards and Technologies for the Smart Grid - Introducing...
 
Binding CIM and Modelica for Consistent Power System Dynamic Model Exchange a...
Binding CIM and Modelica for Consistent Power System Dynamic Model Exchange a...Binding CIM and Modelica for Consistent Power System Dynamic Model Exchange a...
Binding CIM and Modelica for Consistent Power System Dynamic Model Exchange a...
 
Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...
Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...
Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...
 
PMU-Based Real-Time Damping Control System Software and Hardware Architecture...
PMU-Based Real-Time Damping Control System Software and Hardware Architecture...PMU-Based Real-Time Damping Control System Software and Hardware Architecture...
PMU-Based Real-Time Damping Control System Software and Hardware Architecture...
 
06 2015 pesgm_wllv_vsc
06 2015 pesgm_wllv_vsc06 2015 pesgm_wllv_vsc
06 2015 pesgm_wllv_vsc
 
Towards Consistent Model Exchange and Simulation of VSC-HVDC Controls for EMT...
Towards Consistent Model Exchange and Simulation of VSC-HVDC Controls for EMT...Towards Consistent Model Exchange and Simulation of VSC-HVDC Controls for EMT...
Towards Consistent Model Exchange and Simulation of VSC-HVDC Controls for EMT...
 
Generic VSC-Based DC Grid EMT Modeling, Simulation and Validation on a Scaled...
Generic VSC-Based DC Grid EMT Modeling, Simulation and Validation on a Scaled...Generic VSC-Based DC Grid EMT Modeling, Simulation and Validation on a Scaled...
Generic VSC-Based DC Grid EMT Modeling, Simulation and Validation on a Scaled...
 
Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...
Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...
Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...
 
Power System Simulation: History, State of the Art, and Challenges
Power System Simulation: History, State of the Art, and ChallengesPower System Simulation: History, State of the Art, and Challenges
Power System Simulation: History, State of the Art, and Challenges
 
The RaPId Toolbox for Parameter Identification and Model Validation: How Mode...
The RaPId Toolbox for Parameter Identification and Model Validation: How Mode...The RaPId Toolbox for Parameter Identification and Model Validation: How Mode...
The RaPId Toolbox for Parameter Identification and Model Validation: How Mode...
 
Quis custodiet ipsos custodes? - Enhancement of Supervision and Examination P...
Quis custodiet ipsos custodes? - Enhancement of Supervision and Examination P...Quis custodiet ipsos custodes? - Enhancement of Supervision and Examination P...
Quis custodiet ipsos custodes? - Enhancement of Supervision and Examination P...
 

Kürzlich hochgeladen

Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfDrew Moseley
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewsandhya757531
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingSystem Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingBootNeck1
 
Ch10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfCh10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfChristianCDAM
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork
 
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmComputer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmDeepika Walanjkar
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxStephen Sitton
 
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfPaper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfNainaShrivastava14
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communicationpanditadesh123
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSneha Padhiar
 
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESCME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESkarthi keyan
 
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdfDEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdfAkritiPradhan2
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating SystemRashmi Bhat
 
11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdf11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdfHafizMudaserAhmad
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Erbil Polytechnic University
 
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书rnrncn29
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxsiddharthjain2303
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptJohnWilliam111370
 

Kürzlich hochgeladen (20)

Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdf
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overview
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingSystem Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event Scheduling
 
Designing pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptxDesigning pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptx
 
Ch10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfCh10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdf
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
 
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmComputer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptx
 
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfPaper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communication
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
 
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESCME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
 
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdfDEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating System
 
11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdf11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdf
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
 
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptx
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
 

Synchrophasor Applications Facilitating Interactions between Transmission and Distribution Operations

  • 1. ideal  grid  for  all Synchrophasor  Applications Facilitating  Interactions  between  Transmission  and   Distribution  Operations Luigi  Vanfretti Associate  Professor,  Docent KTH  Royal  Institute  of  Technology,  Stockholm,   Sweden https://www.kth.se/profile/luigiv Thursday  February  9th 2017
  • 2. ideal  grid  for  all Acknowledgements • The  work  in  this  presentation  is  result  of  the  research  carried   @KTH  SmarTS_Lab  in  the  FP7  IDE4L  project  (2014-­‐2016)  and   other  projects  form  2011-­‐2016. • Special  thanks  to  Dr.  Hossein  Hooshyar,  who  undertook  the   day-­‐to-­‐day  project  management    of  this  project  at  KTH  SmarTS   Lab.  with  great  dedication. • All  of  the  following  students  contributed  to  this  presentation   with  their  hard  work! 29/11/2016 WWW.IDE4L.EUSLIDE  2 Hossein Reza AliFarhan Ravi Narender Maxime Jan
  • 3. ideal  grid  for  all Outline • Introduction:  PMUs  in  distribution  networks? • PMU  Application  Use  Case  Definition  using  SGAM • Methodology  and  Experimental  Lab  Testing • Development,  Implementation  and  Testing   using  RT-­‐HIL  Simulation • The  Reference  Distribution  Grid  Model • Handling  PMU  Data: • Getting  the  data:  The  Khorjin Gateway  and  The  S3DK  Toolkit • Cleaning  the  data:  PMU  Data  Feature  Extraction • Using  the  Data:  Applications • Steady  State  Model  Synthesis   • Dynamic  Line  Rating  for  Distribution  Feeders • Small-­‐Signal  Dynamic  Analysis • Conclusions 29/11/2016 WWW.IDE4L.EUSLIDE  3
  • 4. ideal  grid  for  all Introduction  (1/2) • It  is  becoming  necessary  to  increase  observability  between  T&D   grids,  emerging  dynamics  active  distribution  networks  due  to   renewables  will  lead  to • Fast  changing  conditions  in  the  network • Fast  behavior  of  components • Traditional  monitoring  technology  not  capable  of  satisfying  the  technical   requirements  to  meet  these  conditions:types  of  signals,  time-­‐ synchonization and  speed  of  data  acquisition • There  is  great  potential  of  utilizing  real-­‐time  Synchrophasor  data   from  PMUs  (Phasor  Measurement  Unit(s))   • From  different  actors,  voltage  levels and  across  conventional  operation   boundaries. • to  extract key  information related  to  fast changing  conditions  &  dynamic behavior, • To  use  such  information  adequately,  a  properly  designed  and   implemented  architecture  needs  to  be  considered. SLIDE  4 29/11/2016 WWW.IDE4L.EU
  • 5. ideal  grid  for  all Introduction  (2/2) • The  IDE4L  architecture  is  built  upon  the  5-­‐layer  Smart  Grid   Architecture  Model  (SGAM)  framework. • The  main  inputs  to  the  architecture   design  are  the  use  cases. • The  IDE4L  use  case,  including the  PMU-­‐based  functions  for dynamic  information extraction  and  exchange,   is  presented  in   this  presentation.   SLIDE  5 29/11/2016 WWW.IDE4L.EU
  • 6. ideal  grid  for  all DistributionTrans. ProcessFieldStationOperationEnterprise PMU (distributed) Transducer (PS/SS/distributed) Electrical conversion (PS/SS/distributed) Synchrophasor calculation (distributed) Synchrophasor Calculation (PS/SS) PMU (PS/SS) Measurement   acquisition (PS/SS) Communication   interface   (PS/SS) Data   concentration (PS/SS) PDC (PS/SS)   DMS at DSO Data  curation   and  extraction   of  components Partial   derivation  of   key  information Data  transfer TSO Computation  unit (PS/SS) Measurement   acquisition Communication   interface Data  curation   and  extraction   of  components Derivation  of   key  information Data  export Gen. DER Cost. Prem. • Data  flows from  PMUs  =>  PDC  =>  Super   PDC  =>  DMS  computers  (where  dynamic   information  is  extracted)  and  exchanged   with  the  TSO  (possible  also  w.  DSOs). • Data  processing  and  information   extraction  can  occur  at  both  the  station   (partially)  and  the  operation  (i.e.  DMS   computers)  zones. • Actors:  Instrumentations,  PMU,  PDC,   communication  interface,  DMS,  and  TSO • Functions: electrical  conversion,   synchrophasor  calculation,  data   acquisition,  data  concentration  and  time-­‐ alignment,  data  exporting,  data  curation,   and  derivation  of  key  information  out  of   the  data  (aka  PMU  applications). SLIDE  6 29/11/2016 WWW.IDE4L.EU Use  Case  Definition
  • 7. ideal  grid  for  all • The  development  of  the   applications  has  been  carried   out  using  real-­‐time  hardware-­‐ in-­‐the-­‐loop  simulation   consisting  of: • A  real-­‐time  simulation  model  of   active  distribution  networks. • The  real-­‐time  simulation  model  is   interfaced  with  PMUs  in  HIL. • PMU  data  is  streamed  into  a   computer  workstation  through   PDC. SLIDE  7 29/11/2016 WWW.IDE4L.EU Development,  Implementation  and  Testing  using RT-­‐HIL  Simulation • The  computer  makes  available  to  specialized  software   development  tools  within  the  LabVIEW  environment. • All  data  acquisition  chain  is  carried  out  using  the  corresponding   PMU  standards.
  • 8. ideal  grid  for  all SLIDE  8 29/11/2016 WWW.IDE4L.EU The  Reference  Distribution   Grid  Model  (1/2) 101 100 102 103 104 105 106 800 802 806 808 810 812 814 850 816 818 820 822 824 826 828 830 854 856 852 832 858 864 834 842 844 846 848 860 836 840 862 838 888 890/799 701 + - + - 702 713 704 714 718 725 706 720 707 722 724 705 712 742 703 727744 728 729 730 709 731708732 775 733 734 736 710 735 737 738 711 741 740 0.4kV 220 kV 36 kV 36kV 36kV 6.6 kV 6.6 kV 6.6kV Electric power system ZIP load Motor load Voltage regulator Wind farm PV farm Residential PV system Battery storage + - Capacitor bank Circuit breaker Overcurrent protection Recloser Legend Component Number of units 1 three-phase unit 11 three-phase units, 56 single-phase units 2 three-phase units, 3 single-phase units 3 sets each consisting of 3 single-phase units 3 three-phase units 2 three-phase units 3 single-phase units 2 three-phase units 11 single-phase units 1 three-phase units 1 set consisting of 3 phase relays and 1 ground relay 1 three-phase unit, 2 sets each consisting of 3 single-phase units Rated Voltage Number of branches 220 kV 7 three-phase 36 kV 28 three-phase, 8 single-phase 6.6 kV 39 three-phase HV MV LV 0.4 kV 1 three-phaseRLV No. of buses 6 34 37 2 Roy Billinton Transmission Test System IEEE 34 bus test feeder IEEE 37 bus test feeder RLV DG and Load Steam   turbine Governor ωm PSS Excitation   System V dω System   load   Output   feeder
  • 9. ideal  grid  for  all The  Reference  Distribution   Grid  Model  (2/2) • Runs  on  4  cores  using  the   State-­‐Space-­‐Nodal  (SSN)  solver   with  time-­‐step  of  100μs. • The  two  different   implementations  of  the  grid   model  can  be  downloaded   from  the  KTH  SmarTS  Lab   GitHub  repository  at   • The  SSN  implementation  is  also   available  in  the  ARTEMiS 7.0.5   demo  section  of  Opal-­‐RT. SLIDE  9 29/11/2016 WWW.IDE4L.EU https://github.com/SmarTS-­‐ Lab/FP7-­‐IDE4L-­‐KTHSmarTSLab-­‐ ADN-­‐RTModel
  • 10. ideal  grid  for  all Outline • Introduction:  PMUs  in  distribution  networks? • PMU  Application  Use  Case  Definition  using  SGAM • Methodology  and  Experimental  Lab  Testing • Development,  Implementation  and  Testing  using  RT-­‐HIL   Simulation • The  Reference  Distribution  Grid  Model • Handling  PMU  Data: • Getting  the  data:  The  Khorjin Gateway  and  The  S3DK  Toolkit • Cleaning  the  data:  PMU  Data  Feature  Extraction • Using  the  Data:  Applications • Steady  State  Model  Synthesis   • Dynamic  Line  Rating  for  Distribution  Feeders • Small-­‐Signal  Dynamic  Analysis • Conclusions 29/11/2016 WWW.IDE4L.EUSLIDE  10
  • 11. ideal  grid  for  all IEEE  Std C37.118.2 Today’s Architecture Deployment  Time Guesstimate:  ~15-­‐20  Years Transition Likely  Future  Scenario Ø Security Not  Addressed IEEE  Std C37.118.2 Application System PDC PMU   1 PMU   2 PMU   n PDC PDC PDC Communication Network PMU   1 PMU   2 PMU   n PDC PDC PDC IEC  61850-­‐90-­‐5 Application System PDC Ø Fulfills  the  Gaps Not  addressed  in  the   IEEE  Std C37.118 e.g.  Security  Enhancement Ø Harmonization   with  IEC  61850 Ø Security Not  Addressed v Two  Segregated  Systems    ßà Two  Protocols  (Even  in  the  same  substation) v It  will  be  a  huge  CHALLENGE to  adopt  IEC  61850-­‐90-­‐5  Standard v Need  of  Interfaces   v @PMUs,  @PDCs,  @App  Sys,…  à How  to  maintain  this  ? Getting  the  Data… in  the  Advent  of   IEC  TR  61850-­‐90-­‐5  Standard  Specification Application System PDC PMU   1 PMU   2 PMU   n PDC PDC PDC Communication Network
  • 12. ideal  grid  for  all One  possible  approach  and  our  contribution: Khorjin • A  Gateway: • Can  act  as  the  IEEE  C37.118.2   to  IEC  61850-­‐90-­‐5  protocol   converter. • Providing   future  compatibility   for  legacy devices  already  in   the  field • Capable  of  being  used  at   various  levels: • @PMU  Level • @PDC  Level • @Application  Level • … • Gateway  Application  and   Implementation  Test: Wide-­‐Area   Controller Application System Application System PDC PMU   PDC Communication Network IEEE  C37.118.2 Compatible  IEDs and  APPs IEC  61850-­‐90-­‐5 Gateway
  • 13. ideal  grid  for  all Seyed  Reza  Firouzi srfi@kth.se Receiver Gateway National  Instrument CompactRIO  à PMU Wireshark  captures IEC  61850-­90-­5 R-­SV  /  R-­GOOSE Khorjin Gateway Testing • Test  of  the  gateway  implementation  was  tested  using  real-­‐time  HIL  simulation • Data  is  transformed  from  IEEE  C37.118.2  from  actual  PMUs,  and  published  using  the  IEC   61850-­‐90-­‐5  protocol
  • 14. ideal  grid  for  all Khorjin Gateway Architecture • The  Gateway  functionality  of  “Khorjin”   library  is  getting  use  of  its  modular   architecture: à Easier  for  future  development • The  Khorjin Gateway  is  designed  and   implemented  in  three  main   components  of: 1)  IEEE  C37.118.2  Module, 2)  IEC  61850  Mapping  Module,  and 3)  IEC  61850-­‐90-­‐5  R-­‐SV  /  R-­‐GOOSE   Publisher  Module. 14 • In  order  to  be  platform-­‐independent: à A  Platform  Abstraction  Layer  is  Implemented. à Depending  on  the  platform,  the  relevant platform-­‐dependent  functions  are  utilized (i.e.  Socket,  Thread,  Time  and  …). • The  Khorjin Gateway  is  designed  and   implemented  in  three  main   components  of: 1)  IEEE  C37.118.2  Module, 2)  IEC  61850  Mapping  Module,  and 3)  IEC  61850-­‐90-­‐5  R-­‐SV  /  R-­‐GOOSE  Publisher   Module.
  • 15. ideal  grid  for  all • The  Khorjin library  is  an  Open  Source  code   providing  following  functionalities: à IEEE  C37.118.2  Traffic  Parser à IEEE  C37.118.2  to  IEC  61850-­‐90-­‐5  Protocol   Converter à IEC  61850-­‐90-­‐5  Traffic  Generation à Routed-­‐Sampled  Value à Routed-­‐GOOSE à IEC  61850-­‐90-­‐5  Traffic  Parser à Routed-­‐Sampled  Value à Routed-­‐GOOSE • The  Khorjin library  supports  different   platforms. à Will  be  publicly  available  sometime  in  2017,   keep  an  eye  on  our  Github repo:   https://github.com/SmarTS-­‐Lab-­‐Parapluie Khorjin Windows Linux Mac NI  cRIO Raspberry  Pi 15 Khorjin Functionalities – it’s more than a  gateway!
  • 16. ideal  grid  for  all • PMU  SW  Apps  require  real-­‐time  data  acquisition. • PMU  data  is  sent  to  these  SW  Apps  using  many  different  comm.  protocols. • For  fast  software  prototyping  and  testing,  communication  protocol  parsing is  required. • Low  level  data  management  routines  (windowing,  etc.)  do  not  need  to  be   reinvented  N times. • A  tool-­‐set  is  needed  to  assist  students  and  researchers  with  a  background   in  power  systems,  but  lackingproficient  software  development  and   programming  skills.   PMU  1 PMU  2 PMU  n PDCCommunication Network Infrastructure Data   in  IEEE  C37.118  Protocol Real-­‐time  data  locked   into  vendor  specific   software  system Historical   Data  in   Proprietary   Database Interfaces using  standard   protocols  and  a   flexible   development   environment    are   needed Last  Mile  in  PMU   App  Development 16 The  next  step… Now  you  got  the  data…  how  do  you  implement  an  application?
  • 17. ideal  grid  for  all S3DK Smart  grid  Synchrophasor  Software  Development  tool-­‐Kit  (SDK) • Infrastructure  (external). • Software  Development   Kit  (SDK):  a  set  of   different   computer  software  that  allows  a   user  to  develop  other  derived  software   applications. • Our  SDK  is  composed  by  two  main  pieces: • Real-­‐Time  Data  Mediator  (DLL) • PMU  Recorder  Light  (PRL) Computer/Server S3DK Real-­‐Time   Data   Mediator   (RTDM) “DLL” LabView PMU  Recorder  Light (PRL) PMU  1 PMU  2 PMU  n PDCCommunication Network Infrastructure Data   in  IEEE  C37.118  Protocol
  • 18. ideal  grid  for  all S3DK’s Real-­‐Time  Data  Mediator  a.k.a.  the  “DLL” • A  library  in  C++  was  implemented  with  the  following  architecture  design  in   mind Client  Applications (PRL) Synchronization  Layer IEEE  C37.118 Server IEC  61850 Server Other  protocols Only  prepared,  not  fully   implemented. Future  Support  /   Integration IEEE  C37.118 Client IEC  61850 Client Other  protocols Console Test  Tool PMU  or  PDC  1 PMU  or  PDC  n Interface Implemented  and  Tested Other  Protocol   Servers Clients Servers IEEE  C37.118 DLL
  • 19. ideal  grid  for  all 19 GUI Many blocks  to   access  and  handle RT  data! Graphical  User  Interfaces   Communication  Configuration Development Tooling S3DK  – LabView API,  UI  and  Tools
  • 20. ideal  grid  for  all S3DK’s  LabVIEW Function Library/Toolbox/Pallete (aka PRL)
  • 21. ideal  grid  for  allRepositories Currently Available at  GitHub! • Main  repo:  https://github.com/SmarTS-­‐Lab-­‐Parapluie/ • S3DK:  https://github.com/SmarTS-­‐Lab-­‐Parapluie/S3DK • BabelFish:  https://github.com/SmarTS-­‐Lab-­‐Parapluie/BabelFish • Khorjin:  Will  be  available at  GitHub sometime in  2017. L.  Vanfretti,  V.  H.  Aarstrand,  M.  S.  Almas,  V.  S.  Perić and  J.  O.  Gjerde,  "A  software  development  toolkit  for  real-­‐time  synchrophasor applications," PowerTech (POWERTECH),  2013  IEEE  Grenoble,  Grenoble,  2013,  pp.  1-­‐6. doi:  10.1109/PTC.2013.6652191   L.  Vanfretti,  I.  A.  Khatib and  M.  S.  Almas,  "Real-­‐time  data  mediation  for  synchrophasor application  development  compliant  with  IEEE   C37.118.2," Innovative  Smart  Grid  Technologies  Conference  (ISGT),  2015  IEEE  Power  &  Energy  Society,  Washington,  DC,  2015,  pp.  1-­‐5. doi:  10.1109/ISGT.2015.7131910 L.  Vanfretti,  M.S.  Almas  and  M.  Baudette,  “BabelFish– Tools  for  IEEE  C37.118.2-­‐compliant  Real-­‐Time  Synchrophasor Data  Mediation,”   SoftwareX,  submitted,  June  2016. S.R.  Firouzi,  L.  Vanfretti,  A.  Ruiz-­‐Alvarez,  F.  Mahmood,  H.  Hooshyar,  I.  Cairo,  “An  IEC  61850-­‐90-­‐5  Gateway  for  IEEE  C37.118.2   Synchrophasor Data  Transfer,”  IEEE  PES  General  Meeting  2016,  Boston,  MA,  USA.  Pre-­‐print:  link. S.R.  Firouzi,  L.  Vanfretti,  A.  Ruiz-­‐Alvarez,  H.  Hooshyar and  F.  Mahmood,  “Interpreting  and  Implementing  IEC  61850-­‐90-­‐5  Routed-­‐Sampled   Value  and  Routed-­‐GOOSE  Protocols  for  IEEE  C37.118.2  Compliant  Wide-­‐Area  Synchrophasor  Data  Transfer,”  Electric  Power  Systems   Research,  2017. G.M.  Jonsdottir,  E.  Rebello,  S.R.  Firouzi,  M.S.  Almas,  M.  Baudette  and  L.  Vanfretti,  “Audur – Templates  for  Custom  Synchrophasor-­‐Based   Wide-­‐Area  Control  System  Implementations,”  SoftwareX,  in  preparation,  2016.
  • 22. ideal  grid  for  all SLIDE  22 29/11/2016 WWW.IDE4L.EU Cleaning  the  Data! PMU  Data  Curation,  Extraction  of  Different   Time-­‐Scale  Components
  • 23. ideal  grid  for  all PMU  Data   Processing  (1/3) • PMU  measurements  are  normally   polluted  with • Undesirable  noise • Outliers • Missing  data   • Measurements  obtained  from  PMUs  during  different  events  in   power  systems  contain  different  signal  features  at  different  time   scales,  i.e.  features  of  different  types  of  power  system  dynamics. • So  before  being  fed  to  the  applications: • PMU  measurements  should  be  curated. • Signals  required  for  each  application  should  be  extracted  from  the  PMU   measurements. SLIDE  23 29/11/2016 WWW.IDE4L.EU
  • 24. ideal  grid  for  all PMU  Data  Processing  (2/3) • An  enhanced  Kalman filtering  technique  has  been  utilized  for  both  bad   data  removal,  i.e.  data  curation,  and  to  extract  different  time-­‐scale   dynamics  from  the  PMU  data  (ie used  as  a  real-­‐time  filter) • R and  Q (the  measurement  and  process  noise  covariance  matrices),  can  be   updated  in  real-­‐time  to  perform  the  data  processing. SLIDE  24 29/11/2016 WWW.IDE4L.EU Step Equation Significance 1 Prediction 𝑥" 𝑘 − = 𝐴𝑥" 𝑘−1 − + 𝐵𝑢 𝑘 Project the state ahead. 2 𝑃𝑘 − = 𝐴𝑃𝑘−1 𝐴 𝑇 + 𝑄 Project the error covariance ahead. 3 Correction 𝐾𝑘 = 𝑃𝑘 − 𝐻 𝑇( 𝐻𝑃𝑘 − 𝐻 𝑇 + 𝑅)−1 Compute the Kalman gain. 4 𝑥" 𝑘 = 𝑥" 𝑘 − + 𝐾𝑘(𝑧 𝑘 − 𝐻𝑥" 𝑘 − ) Update estimate with measurement zk. 5 𝑃𝑘 = ( 𝐼 − 𝐾𝑘 𝐻) 𝑃𝑘 − Update the error covariance.
  • 25. ideal  grid  for  all PMU  Data  Processing  (3/3) • Sample  results. SLIDE  25 29/11/2016 WWW.IDE4L.EU 0 20 40 60 80 100 120 140 160 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 Time (sec) Vmag(p.u.) Raw data Curated data Steady state component Dynamics 0 20 40 60 80 100 120 140 160 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 Time (sec) Vang(rad.) Raw data Curated data Steady state component Dynamics voltage  magnitude   (per  unit) voltage  angle  (radian)
  • 26. ideal  grid  for  all Outline • Introduction:  PMUs  in  distribution  networks? • PMU  Application  Use  Case  Definition  using  SGAM • Methodology  and  Experimental  Lab  Testing • Development,  Implementation  and  Testing  using  RT-­‐HIL   Simulation • The  Reference  Distribution  Grid  Model • Handling  PMU  Data: • Getting  the  data:  The  Khorjin Gateway  and  The  S3DK  Toolkit • Cleaning  the  data:  PMU  Data  Feature  Extraction • Using  the  Data:  Applications • Steady  State  Model  Synthesis   • Dynamic  Line  Rating  for  Distribution  Feeders • Small-­‐Signal  Dynamic  Analysis • Conclusions 29/11/2016 WWW.IDE4L.EUSLIDE  26
  • 27. ideal  grid  for  all Real-­‐Time  Steady  State  Model   Synthesis  of   Active  Distribution  Networks SLIDE  27 29/11/2016 WWW.IDE4L.EU
  • 28. ideal  grid  for  all Background • Currently,  TSOs  maintain  reduced  models  of   portions  of  the  distribution  networks,   however: • The  models  covers  limited  portions  of  the   distribution  network  due  to  the  lack  of  network   “observability”  (measurement  points)  and   computational  burden  associated  with  simulating   large  joint  T&D  models. • The  models  are  not  updated  frequently. • The  reduction  methods,  used  by  TSOs,  often  make   assumptions  that  are  no  longer  valid  for  active   distribution  networks. SLIDE  28 29/11/2016 WWW.IDE4L.EU
  • 29. ideal  grid  for  all SLIDE  29 29/11/2016 WWW.IDE4L.EU Methodology  and  Application V1 abc <δ1 abc PMU1   I1 abc <φ1 abc Any feeder configuration with an arbitrary combination of load and DG PMU2 V1 a <δ1 a I1 a <φ1 a I2 a <φ2 a V2 a <δ2 a R a X a R a X a Ra Xa E a <δ a V0 a <δ0 a I0 a <φ0 a The reduced steady state equivalent model for phase ‘a’ 3 3 3 ... V3 abc <δ3 abc I3 abc <φ3 abc 3 PMU3 .. . PMU N VT abc <δT abc PMU at Transmission Level IT abc <φT abc Any feeder configuration with an arbitrary combination of load and DG 3 3 3 V1 abc <δ1 abc I1 abc <φ1 abc 3 PMU at Distribution Level VT a <δT a IT a <φT a I1 a <φ1 a V1 a <δ1 aR a X a R a X a V0 a <δ0 a E a <δ a Ra XaI0 a <φ0 a The reduced steady state equivalent model for phase ’a’ 2R a 2X a The reduced steady state equivalent model for phase ’a’ E a <δ a I2=0 Open-circuited VT a <δT a IT a <φT a With  N available  PMUs With  1 available  PMU • Model  parameters  are  obtained  by  writing  KVL  equations   across  the  model  branches  and  equate  Vi’s  and  Ii’s to  PMU   measurements. Event1 Event2 0 80 1600 80 160 Event1 Event2 Event1 Event2 Event1 Event2 R(p.u.)X(p.u.) Ea (p.u.)δa (rad) Estimated  parameters  of  equivalent  model LabVIEW  Application
  • 30. ideal  grid  for  all SLIDE  30 29/11/2016 WWW.IDE4L.EU Illustration  Example  (1/2) • Steady  state  model  of  a  portion  of  the  reference  grid  is   estimated  during  wind  curtailment  at  different  dispatch   levels. R X E δ E<δ R X
  • 31. ideal  grid  for  all SLIDE  31 29/11/2016 WWW.IDE4L.EU Illustration  Example  (2/2) • True  and  reproduced  current  and  voltage  phasors  are   compared  using  TVE. • The  mean  TVE  is  less  than  2.5%. 1.5 1.55 1.6 1.65 1.7 1.75 1.8 0 5 10 15 20 25 30 35 40 TVE for V2 (%) Probabilitydistribution TVE for Voltage Phasor at PMU2 empirical generalized pareto generalized extreme value inversegaussian birnbaumsaunders 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 TVE for I1 (%) Probabilitydistribution TVE for Current Phasor at PMU1 empirical generalized pareto generalized extreme value inversegaussian birnbaumsaunders 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 0 5 10 15 20 25 30 35 40 TVE for I2 (%) Probabilitydistribution TVE for Current Phasor at PMU2 empirical generalized extreme value generalized pareto inversegaussian birnbaumsaunders 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0 10 20 30 40 50 60 70 80 90 TVE for V1 (%) Probabilitydistribution TVE for Voltage Phasor at PMU1 empirical generalized pareto generalized extreme value beta gamma Variables  with  hat  are  reproduced  ones.
  • 32. ideal  grid  for  all Dynamic  Line  Rating  for   Aerial  Distribution  Feeders SLIDE  32 29/11/2016 WWW.IDE4L.EU
  • 33. ideal  grid  for  all SLIDE  33 29/11/2016 WWW.IDE4L.EU Background • Dynamic  line  rating  (DLR)  is  a  way  to  optimize   the  ampacity  of  transmission  and  distribution   lines  by  measuring  the  effects  of  weather  and   actual  line  current. • The  inputs  needed  for  the  method: • Weather  data  => provided  by  a  close-­‐by  weather   station. • Line  loading  => provided  by  PMU! • Real-­‐time  sag  => provided  by  a  GPS-­‐based   measurement  device.  
  • 34. ideal  grid  for  all SLIDE  34 29/11/2016 WWW.IDE4L.EU Methodology  and  Application LabVIEW  Application
  • 35. ideal  grid  for  all SLIDE  35 29/11/2016 WWW.IDE4L.EU • Results  are  obtained  by   applying  the  method  on  data   from  a  real  feeder. • Output  shows  accurate   correlation  with  different   inputs.   Sample  Results
  • 36. ideal  grid  for  all Small  Signal  Dynamic  Analysis  of   Active  Distribution  Networks SLIDE  36 29/11/2016 WWW.IDE4L.EU
  • 37. ideal  grid  for  all SLIDE  37 29/11/2016 WWW.IDE4L.EU Background • For  reliable  operation  of  the  power  system,   oscillations  are  required  to  decay. • Accurate  and  real-­‐time  estimates  of  active   distribution  networks  oscillatory  modes  has   become  ever  so  important. • Timely  extraction  of  these  modes  and  related   parameters  from  network  measurements  has   considerable  potential  for  near  real-­‐time   dynamic  security  assessment.
  • 38. ideal  grid  for  all Extracting  and  Exchanging  Small  Signal  Stability  Information 38 Data  curation,  fusion  and   extraction  of  steady  state   component   • Ambient  Data  Analysis   (for  stochastic   variations) • Ringdown  Data  Analysis   (for  transients)   TSO Calculation  of   stability  indices Data  process and  analysis Data  process and  analysis Data  process and  analysis Centralized   Architecture Decentralized   Architecture
  • 39. ideal  grid  for  all SLIDE  39 29/11/2016 WWW.IDE4L.EU Implementation  Architectures Centralized   Decentralized  
  • 40. ideal  grid  for  all SLIDE  40 29/11/2016 WWW.IDE4L.EU   PMU  data  collection   and  transmission   Dynamic  component  extraction  by   Kalman  filter   Data  pre-­‐processing  (detrending   and  downsampling)   Ringdown   detected?   Ambient  analysis   (ARMA)   Ringdown   analysis  (ERA)  Modal  parameters   Modal  parameters   LabVIEW  Application Methodology  and  Application
  • 41. ideal  grid  for  all SLIDE  41 29/11/2016 WWW.IDE4L.EU Illustration  Example  (1/2) • 4  PMUs  were  deployed  in  the   reference  grid  to  be   used  for  mode   estimation  under   two  different architectures of  centralized and decentralized
  • 42. ideal  grid  for  all SLIDE  42 29/11/2016 WWW.IDE4L.EU Illustration  Example  (2/2) Centralized  Decentralized   Inter-­‐area  oscillatory  mode  between  HV   section  and  rest  of  the  grid Forced  local  oscillatory  mode  detectable  in   decentralized  architecture
  • 43. ideal  grid  for  all References  and  Resources of  work  presented  and  related  to  this  presentation • Github Repositories  (Open  Source  Software  Resources) • https://github.com/SmarTS-­‐Lab/ • https://github.com/SmarTS-­‐Lab-­‐Parapluie (PMU  applications  and  software  tools) • Under  Review: • N.  Singh,  H.  Hooshyar and  L.  Vanfretti,  “Feeder  Dynamic  Rating  Application  for   Active  Distribution  Networks  using  Synchrophasors,”  Sustainable  Energy,  Grids  and   Networks.  (under  third  review) • F.  Mahmood,  H.  Hooshyar,  and  L.  Vanfretti,  “Sensitivity  Analysis  of  a  PMU-­‐Based   Steady  State  Model  Synthesis  Method,”  IEEE  PES  GM  2017. • R.S.  Singh,  H.  Hooshyar,  and  L.  Vanfretti,  “Real-­‐Time  Testing  of  a  Decentralized   PMU  Data-­‐Based  Power  System  Mode  Estimator,”  IEEE  PES  GM  2017. 29/11/2016 WWW.IDE4L.EUSLIDE  43
  • 44. ideal  grid  for  all References  and  Resources of  work  presented  and  related  to  this  presentation • Published/Accepted   for  Publication: • S.R.  Firouzi,  L.  Vanfretti,  A.  Ruiz-­‐Alvarez,  H.  Hooshyar and  F.  Mahmood,  “Interpretation  and  Implementation  of  IEC  61850-­‐90-­‐5  Routed-­‐ Sampled  Value  and  Routed-­‐GOOSE  Protocols  for  IEEE  C37.118.2  Compliant  Wide-­‐Area  Synchrophasor  Data  Transfer,”  Electric  Power   Systems  Research,  2017. • F.  Mahmood,  H.  Hooshyar,  J.  Lavenius,  P.  Lund  and  L.  Vanfretti,  “Real-­‐Time  Reduced  Steady  State  Model  Synthesis  of  Active  Distribution   Networks  using  PMU  Measurements,”  IEEE  Transactions  on  Power  Delivery,  2017.  http://dx.doi.org/10.1109/TPWRD.2016.2602302 • F.  Mahmood,  H.  Hooshyar and  L.  Vanfretti,  "Extracting  Steady  State  Components  from  Synchrophasor  Data  Using  Kalman Filters,"   Energies,  vol.  9,  2016. • H.  Hooshyar,  F.  Mahmood,  L.  Vanfretti,  and  M.  Baudette  “Specification,  Implementation  and  Hardware-­‐in-­‐the-­‐Loop  Real-­‐Time  Simulation   of  an  Active  Distribution  Grid,”  Sustainable  Energy,  Grids  and  Networks  (SEGAN),  Elsevier,  vol.  3,  Sept.  2015,  pp.  36-­‐51.  Available  in  open-­‐ access:  https://dx.doi.org/doi:10.1016/j.segan.2015.06.002 • H.  Hooshyar,  L.  Vanfretti  and  C.  Dufour,  “Delay-­‐Free  Parallelization  for  Real-­‐Time  Simulation  of  a  Large  Active  Distribution  Grid  Model,”   IEEE  IECON  2016,  Firenze,  October  2016. • R.S.  Singh,  M.  Baudette,  H.  Hooshyar,  M.S.  Almas,  Stig Løvlund,  L.  Vanfretti,  “‘In  Silico’  Testing  of  a  Decentralized  PMU  Data-­‐Based  Power   Systems  Mode  Estimator,”  IEEE  PES  General  Meeting  2016,  Boston,  MA,  USA.   • A.  Bidadfar,  H.  Hooshyar,  M.  Monadi,  L.  Vanfretti,  Decoupled  Voltage  Stability  Assessment  of  Distribution  Networks  using   Synchrophasors,”  IEEE  PES  General  Meeting  2016,  Boston,  MA,  USA. • S.R.  Firouzi,  L.  Vanfretti,  A.  Ruiz-­‐Alvarez,  F.  Mahmood,  H.  Hooshyar,  I.  Cairo,  “An  IEC  61850-­‐90-­‐5  Gateway  for  IEEE  C37.118.2   Synchrophasor  Data  Transfer,”  IEEE  PES  General  Meeting  2016,  Boston,  MA,  USA. • R.S.  Singh,  H.  Hooshyar and  L.  Vanfretti,  “Laboratory  Test  Set-­‐Up  for  the  Assessment  of  PMU  Time  Synchronization  Requirements,”  IEEE   PowerTech 2015,  The  Netherlands,  2015. • R.S.  Singh,  H.  Hooshyar and  L.  Vanfretti,  “Assessment  of  Time  Synchronization  Requirements  for  Phasor  Measurement  Units,”  IEEE  PES   PowerTech 2015,  The  Netherlands,  2015. • H.  Hooshyar,  F.  Mahmood,  and  L.  Vanfretti,  “HIL  Simulation  of  a  Distribution  System  Reference  Model,”  NORDAC  2014. • H.  Hooshyar and  L.  Vanfretti,  “Specification  and  Implementation  of  a  Reference  Grid  for  Distribution  Network  Dynamics  Studies,”  IEEE   PES  General  Meeting,  2014,  National  Harbor,  MD  (Washington,  DC  Metro  Area). • L.  Vanfretti,  V.  H.  Aarstrand,  M.  Shoaib Almas,  V.  Peric,  and  J.  O.  Gjerde,  ”A  software  development  toolkit  for  real-­‐time  synchrophasor   applications”,  2013  IEEE  Grenoble  Conference  PowerTech,  POWERTECH  2013;  Grenoble,  France,  16-­‐20  June  2013. 29/11/2016 WWW.IDE4L.EUSLIDE  44
  • 45. ideal  grid  for  all Conclusions • The  increase  of  intermittent  renewable  sources  at  the  distribution  network   bring  technical  challenges into  DSO  operations. • Synchrophasor  measurements  have  a  great  potential  to  support  the  technical   operation  of  distribution  networks • Applications  can  play  an  important  role  of  extracting  key  information   about  the   operation  of  the  grid • TSOs-­‐to-­‐DSOs  interaction  in  operations  through  PMU  Apps. • DSOs  can  enhance  the  way  they  operate  by  having  better  knowledge   of  the   system’s  performance  in  near  real-­‐time • TSOs  can  gain  visibility  of  the  phenomena   at  lower  voltage  levels, and  device   actions • Real-­‐time  automatic  control  and  protection  is  the  next  big  step • Existing  architecture,  automation  and  system  level  technology  not  up  to  the  task • Interoperability  and  Standardization: • Too  slow  and  maybe  even  useless  without  Open  Source  Software  and  Hardware platforms  and  building  blocks • Need  to  develop  and  support  a  truly  open  market  of  products  and  services 29/11/2016 WWW.IDE4L.EUSLIDE  45
  • 46. ideal  grid  for  all Thank  you! www.ide4l.eu https://www.kth.se/profile/luigiv luigiv@kth.se