SlideShare ist ein Scribd-Unternehmen logo
1 von 7
Downloaden Sie, um offline zu lesen
International Journal of Electromagnetics ( IJEL ), Vol 1, No 1, August 2016
13
EFFECT OF EBG STRUCTURES ON THE FIELD
PATTERN OF PATCH ANTENNAS
K.Praveen Kumar1
, Dr Habibulla Khan2
1
Associate Professor, Dept of ECE, MLRIT, JNT University Hyderabad, Telangana, India
2
Professor, Dept of ECE, KL University Guntur, Andhra Pradesh, India
ABSTRACT
The incorporation of number of unit cells in EBG arrangement produces two major side effects on the
performance of patch antenna. First one is parasitic loading, this causes multi resonance in antenna hence
obtains some enhancement in antenna band width. Second one is cavity effect, this reflects some of energy
from EBG toward antenna which results in reducing bandwidth. Present paper, rectangular microstrip patch
antenna is surrounded by number of EBG rows is designed; and the results of proposed antenna with a
conventional patch antenna is presented comparatively.
KEY WORDS
Patch antenna, SW, EBG structure, gain, and bandwidth
1.INTRODUCTION
The microstrip patch (MSP) antennas have wider applications in live environment because of its
several advantages. These MSP antennas also have some drawbacks such as narrow bandwidth;
low gain and surface waves excitation[1]. In order to suppress the surface wave propagation, two
techniques have been adopted popularly, namely micromachining [2] and the electromagnetic
bandgap (EBG) structures [3]. However, the placement of EBG structures surrounding to MSP
antenna is effecting it's radiation characteristics.
Present work, the effect on field pattern of MSP antenna by the incorporation of the EBG structures
is investigated. The parameters effect and number of EBG elements arranged in row wise
surrounding to MSP patch antennas also investigated. The changes in the far-field radiation
patterns are discussed.
2.THEORY OF EBG
The parametric study on mushroom-like EBG structure is presented in [4]. It focused on four main
parameters that affecting the overall performance of the antenna design. The parameters namely,
patch width W, the spacing between mushroom-like EBGs, substrate thickness h and substrate
International Journal of Electromagnetics ( IJEL ), Vol 1, No 1, August 2016
14
permittivity εr. In this paper, the study is focusing not only on W, s and h as in [4], but also on the
spacing between patch element, g and the number of rows of the EBG inserted between the patch
elements. The architecture of Mushroom EBG consists of a ground plane, a dielectric substrate,
metallic patches and vias arranged like mushrooms. The mushroom EBG structure is producing an
inductance due to vias and capacitance due to spacing between the adjacent metal patches hence
functions like resonating structure[5].
3.SIMULATION OF PATCH ANTENNA INTEGRATED WITH EBG
The coaxial feed microstrip antenna is designed with following specifications.
Table 1: Microstrip Patch Antenna Specifications
Parameter Value Specification
Dielectric Constant 2.5
Height of substrate 1.588 mm
Length 8.3 mm
Width 11.34 mm
The microstrip patch antenna with one row of mushroom like EBG structure shown in figure 2.
patches located half wavelength (g=15mm) far from antenna radiating edges in E-plane with
resonant frequency at 10GHz . The parameters of EBG unit cell are as followes
Table 1: EBG Unit Cell Specifications
Parameter Value Specification
Width (w) 3.5 mm
Gap (g) 1 mm
Radius of via (r) 0.2 mm
Figure3 is shown return loss of antenna with and without EBG structure, and figure4 shown
E-plane pattern of these two antennas. As shown in figure 3, as expected, bandwidth of antenna
whit one row EBG in E-plane is greater than antenna without EBG about 2%, due to domination of
parasitic effects.
International Journal of Electromagnetics ( IJEL ), Vol 1, No 1, August 2016
15
Figure 2: Microstrip patch antenna with resonant frequency at 10 GHz
Figure 3: Return loss of patch antenna with one row EBG (blue) and without EBG structures (red)
International Journal of Electromagnetics ( IJEL ), Vol 1, No 1, August 2016
16
Figure 4: E-plane patterns of patch antenna (a) without EBG structures (b) with one row EBG
The reference antenna shows large radiation in the backward direction, and the antenna integrated
with one row of conventional mushroom like EBG patches produces a lower backlobe, with less
power wasted in the backward direction. Also, surface wave is reduced in EBG antenna. In this part
the antenna patch is simulated with increasing the number of EBG rows, figure 5 is shown the
antenna patch with 4rows of EBG structures in E-plane. Figure 6 is shown return loss of antenna
with different number EBG rows.
Figure 5: Microstrip patch antenna, with 4 EBG rows.
International Journal of Electromagnetics ( IJEL ), Vol 1, No 1, August 2016
17
Figure 6: Return loss of the antenna with different number EBG rows.
Table 2: Comparisons details between the results obtained with and without EBG rows
EBG Resonance
Frequency
(GHz)
S11 (dB) Band
Width
(GHz)
Gain (dB)
With out 9.98 -32.61 0.708 7.27
One Row 10 -17.06 0.721 6.64
Two Rows 10 -18.30 0.68 6.80
Three
Rows
10.02 -18.13 0.68 6.20
Four Rows 10.02 -17.85 0.68 6.05
The performance of the antenna without EBG row is about the same as the antenna with EBG rows,
except that the return loss is dropped from -32.6 dB to about -18dB. With increasing EBG rows
from 2 to 4 rows, the bandwidth variation is negligible which is the indication of parasitic effects
dominations. The figure 7 is shown the return loss of antenna with 5 rows of EBG structures in the
E-plane, figure 8 represented E-plane pattern for antenna with 5 rows. With 5 EBG rows,
bandwidth suddenly decreases (0.708GHz to 0.401GHz) which is the indication of cavity effect
domination.
International Journal of Electromagnetics ( IJEL ), Vol 1, No 1, August 2016
18
Figure 7: Return loss of the antenna with 5 EBG rows and without.
Figure 8: E-plane patterns of patch antenna (a) without (b) with 5 EBG row.
The reference antenna shows large radiation in the backward direction, and the antenna integrated
with 5 rows of conventional mushroom like EBG patches produces a lower backlobe, with less
power wasted in the backward direction. Also, surface wave is reduced in EBG antenna. The same
process is repeated in this part. The only different is that the spacing between patch is wider, that is
22.5mm (three quarter wavelength) from antenna radiating edges in E-plane to the row of
conventional mushroom like EBG patches edge.
4. CONCLUSION
The patch antenna mostly used in modern mobile communication. The goals of this paper is to
design patch antenna with and without EBG should have same physical dimensions that can
operate at 10GHz and study the influence of the side effects of EBG structure on the performance
of the antenna. it is obvious that for 2 rows of EBG structures, an acceptable bandwidth is
achieved.When 4 rows of EBG rows are used, bandwidth variations is negligible, but side and back
lobe levels decreases in the cost of larger size consumption. The spacing from antenna radiating
edges in E-plane to the row of conventional mushroom like EBG patches edge controls the degree
of influence of the side effects of EBG structure on the performance of antenna.
International Journal of Electromagnetics ( IJEL ), Vol 1, No 1, August 2016
19
ACKNOWLEDGEMENTS
The Author want to thank management MLR Institute of Technology, Hyderabad for their support
and encouragement.
REFERENCES
[1] S. Jing Liang, and Hung-Yu David Yang “Radiation Characteristics of a Microstrip Patch over an
Electromagnetic Bandgap Surface,” IEEE Transactions on Antennas and Propagation, Vol. 55, June
2007, pp.1691-1697
[2] Papalymerou,I.,R.F.Drayton,andL.P.B.Katehi, “Micromachined patch antennas," IEEE Trans. Ant.
Propag, Vol.46, No.2, pp.275-283, 1998.
[3] Agi, K., K.J.Maloy, E.Schmiloglu, M.Mojahedi, and E.Niver, “Integration of a microstrip patch antenna
with a two- dimensional photonic crystal substrate,” Electromagnetic, Vol.19, pp.277-290, May
Jun.1999.
[4] F.Yang and Y.Rahmat-Samii, “Electromagnetic Band Gap Structures in Antenna Engineering”, 1st
edition, Cambridge University Press, 2009.
[5] M.Fallah and L.Shafai, “Enhanced Performance of a Microstrip Patch Antenna using a High Impedance
EBG Structure”, Antennas and Propagation Society International Symposium, Vol 3, 2003.
AUTHORS
K.Praveen Kumar Associate Professor, was born in india, A.P in 1980. He received
B.E(ECE) from Visveswaraiah Technological University, Belgaum. And
M.Tech(Microwave Engg) Acharya Nagarjuna University, Guntur. He has more than
10 years of teaching experience. 14 International Journals, 03 International
Conference in his credit. He is a research scholar of JNT University, Hyderabad. In
the field of Microwave Antenna
Prof. Habibulla khan born in India, 1962. He obtained his B.E. from V R Siddhartha
Engineering College, Vijayawada during 1980-84. M.E from C.I.T, Coimbatore during
1985-87 and PhD from Andhra University in the area of antennas in the year 2007.He is
having more than 20 years of teaching experience and having more than 20 international,
national journals/conference papers in his credit. Prof. Habibulla khan presently working
as Head of the ECE department at K.L.University. He is a fellow of I.E.T.E, Member IE
and other bodies like ISTE. His research interested areas includes Antenna system designing, microwave
engineering, Electromagnetics and RF system designing.

Weitere ähnliche Inhalte

Was ist angesagt?

Mutual Coupling Reduction in Antenna Using EBG on Double Substrate
Mutual Coupling Reduction in Antenna Using EBG on Double SubstrateMutual Coupling Reduction in Antenna Using EBG on Double Substrate
Mutual Coupling Reduction in Antenna Using EBG on Double SubstrateTELKOMNIKA JOURNAL
 
Flexible Wearable Antenna on Electromagnetic Band Gap using PDMS substrate
Flexible Wearable Antenna on Electromagnetic Band Gap using PDMS substrateFlexible Wearable Antenna on Electromagnetic Band Gap using PDMS substrate
Flexible Wearable Antenna on Electromagnetic Band Gap using PDMS substrateTELKOMNIKA JOURNAL
 
Reduction of Mutual Coupling between Closely Spaced Microstrip Antennas Array...
Reduction of Mutual Coupling between Closely Spaced Microstrip Antennas Array...Reduction of Mutual Coupling between Closely Spaced Microstrip Antennas Array...
Reduction of Mutual Coupling between Closely Spaced Microstrip Antennas Array...TELKOMNIKA JOURNAL
 
Design and Analysis of Wideband Microstip Patch Antenna Employing EBG and Par...
Design and Analysis of Wideband Microstip Patch Antenna Employing EBG and Par...Design and Analysis of Wideband Microstip Patch Antenna Employing EBG and Par...
Design and Analysis of Wideband Microstip Patch Antenna Employing EBG and Par...IOSR Journals
 
Circular shape, Dual band proximity feed UWB Antenna
Circular shape, Dual band proximity feed UWB AntennaCircular shape, Dual band proximity feed UWB Antenna
Circular shape, Dual band proximity feed UWB AntennaAmitesh Raikwar
 
Analysis of Circular Patch Antenna Embeded on Silicon Substrate
Analysis of Circular Patch Antenna Embeded on Silicon SubstrateAnalysis of Circular Patch Antenna Embeded on Silicon Substrate
Analysis of Circular Patch Antenna Embeded on Silicon Substrateijceronline
 
Self affine rectangular fractal antenna with uc-ebg structure-2
Self affine rectangular fractal antenna with uc-ebg structure-2Self affine rectangular fractal antenna with uc-ebg structure-2
Self affine rectangular fractal antenna with uc-ebg structure-2IAEME Publication
 
Circular Shape , Dual Band proximity feed UWB Antenna
Circular Shape , Dual Band proximity feed UWB AntennaCircular Shape , Dual Band proximity feed UWB Antenna
Circular Shape , Dual Band proximity feed UWB AntennaAmitesh Raikwar
 
Wideband compact msa using finite ground
Wideband compact msa using finite groundWideband compact msa using finite ground
Wideband compact msa using finite groundIAEME Publication
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAjantjournal
 

Was ist angesagt? (12)

ICRCWIP2014
ICRCWIP2014ICRCWIP2014
ICRCWIP2014
 
Mutual Coupling Reduction in Antenna Using EBG on Double Substrate
Mutual Coupling Reduction in Antenna Using EBG on Double SubstrateMutual Coupling Reduction in Antenna Using EBG on Double Substrate
Mutual Coupling Reduction in Antenna Using EBG on Double Substrate
 
Flexible Wearable Antenna on Electromagnetic Band Gap using PDMS substrate
Flexible Wearable Antenna on Electromagnetic Band Gap using PDMS substrateFlexible Wearable Antenna on Electromagnetic Band Gap using PDMS substrate
Flexible Wearable Antenna on Electromagnetic Band Gap using PDMS substrate
 
Reduction of Mutual Coupling between Closely Spaced Microstrip Antennas Array...
Reduction of Mutual Coupling between Closely Spaced Microstrip Antennas Array...Reduction of Mutual Coupling between Closely Spaced Microstrip Antennas Array...
Reduction of Mutual Coupling between Closely Spaced Microstrip Antennas Array...
 
Design and Analysis of Wideband Microstip Patch Antenna Employing EBG and Par...
Design and Analysis of Wideband Microstip Patch Antenna Employing EBG and Par...Design and Analysis of Wideband Microstip Patch Antenna Employing EBG and Par...
Design and Analysis of Wideband Microstip Patch Antenna Employing EBG and Par...
 
Ma2419992002
Ma2419992002Ma2419992002
Ma2419992002
 
Circular shape, Dual band proximity feed UWB Antenna
Circular shape, Dual band proximity feed UWB AntennaCircular shape, Dual band proximity feed UWB Antenna
Circular shape, Dual band proximity feed UWB Antenna
 
Analysis of Circular Patch Antenna Embeded on Silicon Substrate
Analysis of Circular Patch Antenna Embeded on Silicon SubstrateAnalysis of Circular Patch Antenna Embeded on Silicon Substrate
Analysis of Circular Patch Antenna Embeded on Silicon Substrate
 
Self affine rectangular fractal antenna with uc-ebg structure-2
Self affine rectangular fractal antenna with uc-ebg structure-2Self affine rectangular fractal antenna with uc-ebg structure-2
Self affine rectangular fractal antenna with uc-ebg structure-2
 
Circular Shape , Dual Band proximity feed UWB Antenna
Circular Shape , Dual Band proximity feed UWB AntennaCircular Shape , Dual Band proximity feed UWB Antenna
Circular Shape , Dual Band proximity feed UWB Antenna
 
Wideband compact msa using finite ground
Wideband compact msa using finite groundWideband compact msa using finite ground
Wideband compact msa using finite ground
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
 

Ähnlich wie Effect of EBG Structures on the Field Pattern of Patch Antennas

PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAjantjournal
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAjantjournal
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAjantjournal
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAjantjournal
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAjantjournal
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAjantjournal
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAjantjournal
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAjantjournal
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAjantjournal
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAjantjournal
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAjantjournal
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAjantjournal
 
Radiation pattern control of microstrip antenna in elevation and azimuth plan...
Radiation pattern control of microstrip antenna in elevation and azimuth plan...Radiation pattern control of microstrip antenna in elevation and azimuth plan...
Radiation pattern control of microstrip antenna in elevation and azimuth plan...IJECEIAES
 
17 15034 flexible ijeecs 1570310263(edit)
17 15034 flexible ijeecs 1570310263(edit)17 15034 flexible ijeecs 1570310263(edit)
17 15034 flexible ijeecs 1570310263(edit)nooriasukmaningtyas
 
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDYMONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDYjantjournal
 
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDYMONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDYjantjournal
 
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDYMONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDYjantjournal
 
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDYMONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDYjantjournal
 
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDYMONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDYjantjournal
 
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDYMONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDYjantjournal
 

Ähnlich wie Effect of EBG Structures on the Field Pattern of Patch Antennas (20)

PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
 
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNAPERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
PERFORMANCE ANALYSIS OF 2D-EBG UNDER MONOPOLE ANTENNA
 
Radiation pattern control of microstrip antenna in elevation and azimuth plan...
Radiation pattern control of microstrip antenna in elevation and azimuth plan...Radiation pattern control of microstrip antenna in elevation and azimuth plan...
Radiation pattern control of microstrip antenna in elevation and azimuth plan...
 
17 15034 flexible ijeecs 1570310263(edit)
17 15034 flexible ijeecs 1570310263(edit)17 15034 flexible ijeecs 1570310263(edit)
17 15034 flexible ijeecs 1570310263(edit)
 
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDYMONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
 
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDYMONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
 
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDYMONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
 
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDYMONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
 
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDYMONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
 
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDYMONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
MONO AND MULTI BAND EBG STRUCTURES : A COMPARITIVE STUDY
 

Kürzlich hochgeladen

Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodManicka Mamallan Andavar
 
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfModule-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfManish Kumar
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdfsahilsajad201
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Communityprachaibot
 
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdfDEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdfAkritiPradhan2
 
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESCME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESkarthi keyan
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfalene1
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfBalamuruganV28
 
Industrial Applications of Centrifugal Compressors
Industrial Applications of Centrifugal CompressorsIndustrial Applications of Centrifugal Compressors
Industrial Applications of Centrifugal CompressorsAlirezaBagherian3
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating SystemRashmi Bhat
 
OOP concepts -in-Python programming language
OOP concepts -in-Python programming languageOOP concepts -in-Python programming language
OOP concepts -in-Python programming languageSmritiSharma901052
 
Engineering Drawing section of solid
Engineering Drawing     section of solidEngineering Drawing     section of solid
Engineering Drawing section of solidnamansinghjarodiya
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Coursebim.edu.pl
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfDrew Moseley
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communicationpanditadesh123
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating SystemRashmi Bhat
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Romil Mishra
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Erbil Polytechnic University
 

Kürzlich hochgeladen (20)

Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument method
 
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfModule-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdf
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Community
 
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdfDEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
 
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESCME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdf
 
Industrial Applications of Centrifugal Compressors
Industrial Applications of Centrifugal CompressorsIndustrial Applications of Centrifugal Compressors
Industrial Applications of Centrifugal Compressors
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating System
 
OOP concepts -in-Python programming language
OOP concepts -in-Python programming languageOOP concepts -in-Python programming language
OOP concepts -in-Python programming language
 
Engineering Drawing section of solid
Engineering Drawing     section of solidEngineering Drawing     section of solid
Engineering Drawing section of solid
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Course
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdf
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communication
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating System
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________
 
Designing pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptxDesigning pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptx
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
 

Effect of EBG Structures on the Field Pattern of Patch Antennas

  • 1. International Journal of Electromagnetics ( IJEL ), Vol 1, No 1, August 2016 13 EFFECT OF EBG STRUCTURES ON THE FIELD PATTERN OF PATCH ANTENNAS K.Praveen Kumar1 , Dr Habibulla Khan2 1 Associate Professor, Dept of ECE, MLRIT, JNT University Hyderabad, Telangana, India 2 Professor, Dept of ECE, KL University Guntur, Andhra Pradesh, India ABSTRACT The incorporation of number of unit cells in EBG arrangement produces two major side effects on the performance of patch antenna. First one is parasitic loading, this causes multi resonance in antenna hence obtains some enhancement in antenna band width. Second one is cavity effect, this reflects some of energy from EBG toward antenna which results in reducing bandwidth. Present paper, rectangular microstrip patch antenna is surrounded by number of EBG rows is designed; and the results of proposed antenna with a conventional patch antenna is presented comparatively. KEY WORDS Patch antenna, SW, EBG structure, gain, and bandwidth 1.INTRODUCTION The microstrip patch (MSP) antennas have wider applications in live environment because of its several advantages. These MSP antennas also have some drawbacks such as narrow bandwidth; low gain and surface waves excitation[1]. In order to suppress the surface wave propagation, two techniques have been adopted popularly, namely micromachining [2] and the electromagnetic bandgap (EBG) structures [3]. However, the placement of EBG structures surrounding to MSP antenna is effecting it's radiation characteristics. Present work, the effect on field pattern of MSP antenna by the incorporation of the EBG structures is investigated. The parameters effect and number of EBG elements arranged in row wise surrounding to MSP patch antennas also investigated. The changes in the far-field radiation patterns are discussed. 2.THEORY OF EBG The parametric study on mushroom-like EBG structure is presented in [4]. It focused on four main parameters that affecting the overall performance of the antenna design. The parameters namely, patch width W, the spacing between mushroom-like EBGs, substrate thickness h and substrate
  • 2. International Journal of Electromagnetics ( IJEL ), Vol 1, No 1, August 2016 14 permittivity εr. In this paper, the study is focusing not only on W, s and h as in [4], but also on the spacing between patch element, g and the number of rows of the EBG inserted between the patch elements. The architecture of Mushroom EBG consists of a ground plane, a dielectric substrate, metallic patches and vias arranged like mushrooms. The mushroom EBG structure is producing an inductance due to vias and capacitance due to spacing between the adjacent metal patches hence functions like resonating structure[5]. 3.SIMULATION OF PATCH ANTENNA INTEGRATED WITH EBG The coaxial feed microstrip antenna is designed with following specifications. Table 1: Microstrip Patch Antenna Specifications Parameter Value Specification Dielectric Constant 2.5 Height of substrate 1.588 mm Length 8.3 mm Width 11.34 mm The microstrip patch antenna with one row of mushroom like EBG structure shown in figure 2. patches located half wavelength (g=15mm) far from antenna radiating edges in E-plane with resonant frequency at 10GHz . The parameters of EBG unit cell are as followes Table 1: EBG Unit Cell Specifications Parameter Value Specification Width (w) 3.5 mm Gap (g) 1 mm Radius of via (r) 0.2 mm Figure3 is shown return loss of antenna with and without EBG structure, and figure4 shown E-plane pattern of these two antennas. As shown in figure 3, as expected, bandwidth of antenna whit one row EBG in E-plane is greater than antenna without EBG about 2%, due to domination of parasitic effects.
  • 3. International Journal of Electromagnetics ( IJEL ), Vol 1, No 1, August 2016 15 Figure 2: Microstrip patch antenna with resonant frequency at 10 GHz Figure 3: Return loss of patch antenna with one row EBG (blue) and without EBG structures (red)
  • 4. International Journal of Electromagnetics ( IJEL ), Vol 1, No 1, August 2016 16 Figure 4: E-plane patterns of patch antenna (a) without EBG structures (b) with one row EBG The reference antenna shows large radiation in the backward direction, and the antenna integrated with one row of conventional mushroom like EBG patches produces a lower backlobe, with less power wasted in the backward direction. Also, surface wave is reduced in EBG antenna. In this part the antenna patch is simulated with increasing the number of EBG rows, figure 5 is shown the antenna patch with 4rows of EBG structures in E-plane. Figure 6 is shown return loss of antenna with different number EBG rows. Figure 5: Microstrip patch antenna, with 4 EBG rows.
  • 5. International Journal of Electromagnetics ( IJEL ), Vol 1, No 1, August 2016 17 Figure 6: Return loss of the antenna with different number EBG rows. Table 2: Comparisons details between the results obtained with and without EBG rows EBG Resonance Frequency (GHz) S11 (dB) Band Width (GHz) Gain (dB) With out 9.98 -32.61 0.708 7.27 One Row 10 -17.06 0.721 6.64 Two Rows 10 -18.30 0.68 6.80 Three Rows 10.02 -18.13 0.68 6.20 Four Rows 10.02 -17.85 0.68 6.05 The performance of the antenna without EBG row is about the same as the antenna with EBG rows, except that the return loss is dropped from -32.6 dB to about -18dB. With increasing EBG rows from 2 to 4 rows, the bandwidth variation is negligible which is the indication of parasitic effects dominations. The figure 7 is shown the return loss of antenna with 5 rows of EBG structures in the E-plane, figure 8 represented E-plane pattern for antenna with 5 rows. With 5 EBG rows, bandwidth suddenly decreases (0.708GHz to 0.401GHz) which is the indication of cavity effect domination.
  • 6. International Journal of Electromagnetics ( IJEL ), Vol 1, No 1, August 2016 18 Figure 7: Return loss of the antenna with 5 EBG rows and without. Figure 8: E-plane patterns of patch antenna (a) without (b) with 5 EBG row. The reference antenna shows large radiation in the backward direction, and the antenna integrated with 5 rows of conventional mushroom like EBG patches produces a lower backlobe, with less power wasted in the backward direction. Also, surface wave is reduced in EBG antenna. The same process is repeated in this part. The only different is that the spacing between patch is wider, that is 22.5mm (three quarter wavelength) from antenna radiating edges in E-plane to the row of conventional mushroom like EBG patches edge. 4. CONCLUSION The patch antenna mostly used in modern mobile communication. The goals of this paper is to design patch antenna with and without EBG should have same physical dimensions that can operate at 10GHz and study the influence of the side effects of EBG structure on the performance of the antenna. it is obvious that for 2 rows of EBG structures, an acceptable bandwidth is achieved.When 4 rows of EBG rows are used, bandwidth variations is negligible, but side and back lobe levels decreases in the cost of larger size consumption. The spacing from antenna radiating edges in E-plane to the row of conventional mushroom like EBG patches edge controls the degree of influence of the side effects of EBG structure on the performance of antenna.
  • 7. International Journal of Electromagnetics ( IJEL ), Vol 1, No 1, August 2016 19 ACKNOWLEDGEMENTS The Author want to thank management MLR Institute of Technology, Hyderabad for their support and encouragement. REFERENCES [1] S. Jing Liang, and Hung-Yu David Yang “Radiation Characteristics of a Microstrip Patch over an Electromagnetic Bandgap Surface,” IEEE Transactions on Antennas and Propagation, Vol. 55, June 2007, pp.1691-1697 [2] Papalymerou,I.,R.F.Drayton,andL.P.B.Katehi, “Micromachined patch antennas," IEEE Trans. Ant. Propag, Vol.46, No.2, pp.275-283, 1998. [3] Agi, K., K.J.Maloy, E.Schmiloglu, M.Mojahedi, and E.Niver, “Integration of a microstrip patch antenna with a two- dimensional photonic crystal substrate,” Electromagnetic, Vol.19, pp.277-290, May Jun.1999. [4] F.Yang and Y.Rahmat-Samii, “Electromagnetic Band Gap Structures in Antenna Engineering”, 1st edition, Cambridge University Press, 2009. [5] M.Fallah and L.Shafai, “Enhanced Performance of a Microstrip Patch Antenna using a High Impedance EBG Structure”, Antennas and Propagation Society International Symposium, Vol 3, 2003. AUTHORS K.Praveen Kumar Associate Professor, was born in india, A.P in 1980. He received B.E(ECE) from Visveswaraiah Technological University, Belgaum. And M.Tech(Microwave Engg) Acharya Nagarjuna University, Guntur. He has more than 10 years of teaching experience. 14 International Journals, 03 International Conference in his credit. He is a research scholar of JNT University, Hyderabad. In the field of Microwave Antenna Prof. Habibulla khan born in India, 1962. He obtained his B.E. from V R Siddhartha Engineering College, Vijayawada during 1980-84. M.E from C.I.T, Coimbatore during 1985-87 and PhD from Andhra University in the area of antennas in the year 2007.He is having more than 20 years of teaching experience and having more than 20 international, national journals/conference papers in his credit. Prof. Habibulla khan presently working as Head of the ECE department at K.L.University. He is a fellow of I.E.T.E, Member IE and other bodies like ISTE. His research interested areas includes Antenna system designing, microwave engineering, Electromagnetics and RF system designing.