SlideShare ist ein Scribd-Unternehmen logo
1 von 228
Downloaden Sie, um offline zu lesen
Semantic Web and Linked Data
or how to link data
and schemas on the web
a W3C tutorial by Fabien Gandon, http://fabien.info, @fabien_gandon
WWW 2014
semantic web
mentioned by Tim BL
in 1994 at WWW
[Tim Berners-Lee 1994, http://www.w3.org/Talks/WWW94Tim/]
don’t read
the sign
you loose!
machines don’t.
we identify and interpret information,
A WEB OF LINKED DATA
IRI
HTML
HTTP
identification
address
communication
WEB
W3C®SEMANTIC WEB STANDARD STACK
W3C®SEMANTIC WEB STANDARD STACK
W3C®
A WEB OF
LINKED DATA
RDFstands for
Resource: pages, dogs, ideas...
everything that can have a URI
Description: attributes, features, and
relations of the resources
Framework: model, languages and
syntaxes for these descriptions
RDFis a triple model i.e. every
piece of knowledge is broken down into
( subject , predicate , object )
doc.html has for author Fabien
and has for theme Music
doc.html has for author Fabien
doc.html has for theme Music
( doc.html , author , Fabien )
( doc.html , theme , Music )
( subject , predicate , object )
Predicate
Subject
Object
a triplethe RDF atom
RDFis also a graph model
to link the descriptions of resources
RDFtriples can be seen as arcs
of a graph (vertex,edge,vertex)
( doc.html , author , Fabien )
( doc.html , theme , Music )
Fabien
author
doc.html
theme
Music
identify what
exists on the
web
http://my-site.fr
identify,
on the web,
what exists
http://animals.org/this-zebra
http://ns.inria.fr/fabien.gandon#me
http://inria.fr/schema#author
http://inria.fr/rr/doc.html
http://inria.fr/schema#theme
Music
open and link data in a
global giant graph
RDFin values of properties can also be
literals i.e. strings of characters
( doc.html , author , Fabien )
( doc.html , theme , "Music" )
http://ns.inria.fr/fabien.gandon#me
http://inria.fr/schema#author
http://inria.fr/rr/doc.html
http://inria.fr/schema#theme
"Music"
http://ns.inria.fr/fabien.gandon#me
http://inria.fr/schema#author
Music
http://inria.fr/rr/doc.html
http://inria.fr/rr/doc.html
http://inria.fr/schema#theme
RDF< /> has an XML syntax
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-
rdf-syntax-ns#"
xmlns:inria="http://inria.fr/schema#" >
<rdf:Description
rdf:about="http://inria.fr/rr/doc.html">
<inria:author rdf:resource=
"http://ns.inria.fr/fabien.gandon#me"/>
<inria:theme>Music</inria:theme>
</rdf:Description>
</rdf:RDF>
RDFhas other syntaxes
(Turtle, TriG, N-Triples, N-Quads, JSON, RDFa)
Turtle
@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix inria: <http://inria.fr/schema#> .
<http://inria.fr/rr/doc.html>
inria:author
<http://ns.inria.fr/fabien.gandon#me> ;
inria:theme "Music" .
N-Triples
<http://inria.fr/rr/doc.html>
<http://inria.fr/schema#author>
<http://ns.inria.fr/fabien.gandon#me> .
<http://inria.fr/rr/doc.html>
<http://inria.fr/schema#theme> "Music" .
writing rules for RDF triples
• the subject is always a resource (never a literal)
• properties are binary relations and their types are
identified by IRIs
• the value is a resource or a literal
blank nodes (bnodes)
http://bu.ch/l23.html
author
"My Life"
title
"John"
surname
"Doe"
firstname
handy anonymous nodes (existential quantification)
there exist a resource such that… {  r ; …}
<rdf:Description rdf:about="http://bu.ch/123.html ">
<author>
<rdf:Description>
<surname>Doe</surname>
<firstname>John</firstname>
</rdf:Description>
</author>
<title>My Life</title>
</rdf:Description>
<http://bu.ch/123.html>
author
[surname "Doe" ;
firstname "John" . ] ;
title "My Life" .
XML schema datatypes & literals
standard literals are xsd:string
type literals with datatypes from XML Schema
<rdf:Description rdf:about="#Fabien">
<teaching rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">
true</teaching>
<birth rdf:datatype="http://www.w3.org/2001/XMLSchema#date">
1975-07-31</birth>
</rdf:Description/>
#Fabien teaching "true"^^xsd:boolean ;
birth "1975-07-31"^^xsd:date .
#Fabien "true"^^xsd:boolean
"1975-07-31"^^xsd:date
teaching
birth
XML Schema datatypes
W3C-http://www.w3.org/TR/xmlschema-2/
langue
<Book>
<title xml:lang=‘fr’>Seigneur des anneaux</title>
<title xml:lang=‘en’>Lord of the rings</title>
</Book>
<Book> title "Seigneur des anneaux"@fr ;
title "Lord of the rings"@en .
literals with languages and without are disjoint
“Fabien”  “Fabien”@en  “Fabien”@fr
typing resources
using URIs to identify the types
<urn://~fgandon> rdf:type <http://www.inria.fr/schema#Person>
a resource can have several types
<urn://~fgandon> rdf:type <http://www.inria.fr/schema#Person>
<urn://~fgandon> rdf:type <http://www.inria.fr/schema#Researcher>
<urn://~fgandon> rdf:type <http://www.mit.edu/schema#Lecturer>
<rdf:Description rdf:about="urn://~fgandon">
<rdf:type rdf:resource="http://www.inria.fr/schema#Person" />
<name>Fabien</name>
</rdf:Description>
<in:Person rdf:about="urn://~fgandon">
<name>Fabien</name>
</in:Person>
<urn://~fgandon>
a in:Person ;
name "Fabien" .
question:
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:exs="http://example.org/schema#">
<rdf:Description rdf:about="http://example.org/doc.html">
<rdf:type rdf:resource="http://example.org/schema#Report"/>
<exs:theme rdf:resource="http://example.org#Music"/>
<exs:theme rdf:resource="http://example.org#History"/>
<exs:nbPages rdf:datatype="http://www.w3.org/2001/XMLSchema#int">23</exs:nbPages>
</rdf:Description>
</rdf:RDF>
meaning ?
question:
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:exs="http://example.org/schema#">
<rdf:Description rdf:about="http://example.org/doc.html">
<rdf:type rdf:resource="http://example.org/schema#Report"/>
<exs:theme rdf:resource="http://example.org#Music"/>
<exs:theme rdf:resource="http://example.org#History"/>
<exs:nbPages rdf:datatype="http://www.w3.org/2001/XMLSchema#int">23</exs:nbPages>
</rdf:Description>
</rdf:RDF> exs:Report
rdf:type
exs:nbPages
“23”^^xsd:int
exs:theme
http://example.org/doc.html
http://example.org#Music
http://example.org#History
exs:theme
bags = unordered groups
<rdf:Description rdf:about="#">
<author>
<rdf:Bag>
<rdf:li>Ivan Herman</rdf:li>
<rdf:li>Fabien Gandon</rdf:li>
</rdf:Bag>
</author>
</rdf:Description>
<#> author _:a
_:a rdf:_1 “Ivan Herman”
_:a rdf:_2 “Fabien Gandon”
<#> author [
a rdf:Bag ;
rdf:li "Ivan Herman" ;
rdf:li "Fabien Gandon" . ] .
sequence
ordered group of resources or literals
<rdf:Description rdf:about="#partition">
<contains>
<rdf:Seq>
<rdf:li rdf:about="#C"/>
<rdf:li rdf:about="#C"/>
<rdf:li rdf:about="#C"/>
<rdf:li rdf:about="#D"/>
<rdf:li rdf:about="#E"/>
</rdf:Seq>
</contains>
</rdf:Description>
<partition>
contains [
a rdf:Seq ;
rdf:li "C" ;
rdf:li "C" ;
rdf:li "C" ;
rdf:li "D" ;
rdf:li "E" .
] .
alternativese.g. title of a book in different languages
<rdf:Description rdf:about="#book">
<title>
<rdf:Alt>
<rdf:li xml:lang="fr">l’homme qui prenait sa femme
pour un chapeau</rdf:li>
<rdf:li xml:lang="en">the man who mistook his wife
for a hat</rdf:li>
</rdf:Alt>
</title>
</rdf:Description>
<#book>
title [
a rdf:Alt ;
rdf:li "l’homme…"@fr ;
rdf:li "the man…"@en .
] .
collectionexhaustive and ordered list
<rdf:Description rdf:about="#week">
<dividedIn rdf:parseType="Collection">
<rdf:Description rdf:about="#monday"/>
<rdf:Description rdf:about="#tuesday"/>
<rdf:Description rdf:about="#wednesday"/>
<rdf:Description rdf:about="#thursday"/>
<rdf:Description rdf:about="#friday"/>
<rdf:Description rdf:about="#saturday"/>
<rdf:Description rdf:about="#sunday"/>
</devidedIn>
</rdf:Description>
wednesday
friday
sunday
nil
monday
tuesday
thursday
saturday
firstrest
List
_:a
_:b
_:c
_:d
_:e
_:f
_:g
<#week> dividedIn
( <#monday> <#tuesday> <#wednesday>
<#thursday> <#friday> <#saturday> <#sunday>
) .
RDF(named) graphs
group triples in graphs named by IRIs
http://ns.inria.fr/fabien.gandon#me
http://inria.fr/schema#author
Music
http://inria.fr/rr/doc.html
http://inria.fr/rr/doc.html
http://inria.fr/schema#theme
http://inria.fr/people
http://inria.fr/topics
TriG
@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix inria: <http://inria.fr/schema#> .
GRAPH <http://inria.fr/people>
{ <http://inria.fr/rr/doc.html>
inria:author
<http://ns.inria.fr/fabien.gandon#me> .
}
GRAPH <http://inria.fr/topics>
{ <http://inria.fr/rr/doc.html>
inria:theme "Music" .
}
N-Quads
<http://inria.fr/rr/doc.html>
<http://inria.fr/schema#author>
<http://ns.inria.fr/fabien.gandon#me>
<http://inria.fr/people> .
<http://inria.fr/rr/doc.html>
<http://inria.fr/schema#theme> "Music"
<http://inria.fr/topics> .
rdf:about
rdf:type
ex:ingredients
rdf:label
dc:creator
ex:weight
openmodel
• extensible vocabulary based on URIs
• anyone can say anything about anything
http://my_domain.org/my_path/my_type
linkto the world
ACCESSING DATA ON THE WEB
May 2007 April 2008 September 2008
March 2009
September 2010
Linking Open Data
Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/
September 2011
0
100
200
300
400
10/10/2006 28/04/2007 14/11/2007 01/06/2008 18/12/2008 06/07/2009 22/01/2010 10/08/2010 26/02/2011 14/09/2011 01/04/2012
thematic content
Domains
Number of
datasets
Number of
Triples
% Out links %
Media 25 1 841 852 061 5,82 % 50 440 705 10,01 %
Geography 31 6145 532 484 19,43 % 35 812 328 7,11 %
Government 49 13 315 009 400 42,09 % 19 343 519 3,84 %
Publications 87 2 950 720 693 9,33 % 139 925 218 27,76 %
Inter-domain 41 4 184 635 715 13,23 % 63 183 065 12,54 %
Life Sciences 41 3 036 336 004 9,60 % 191 844 090 38,06 %
Users’ content 20 134 127 413 0,42 % 3 449 143 0,68 %
295 31 634 213 770 503 998 829
42%
20%
13%
10%
9%
6%
0%
Government
Geography
Inter-domain
Life Sciences
Publications
Media
Users' content
ratatouille.fr
datatouille.fr
linked data principles Use RDF as data format
 Use HTTP URIs as names for things so that
people can look up those names
 When someone looks up a URI, provide useful information
(RDF, HTML, etc.) using content negotiation
 Include links to other URIs so that related things can be discovered
HTTP URI
GET
HTML,RDF,…
GET
303
DNShe who controls the name
controls the access
ex. bit.ly & Libya
.fr
*
.inria
isicil
dir.w3.org
query with SPARQL
SPARQL Protocol and RDF
Query Language
SPARQL in 3 parts
part 1: query language
part 2: result format
part 3: access protocol
SPARQL query
SELECT ...
FROM ...
WHERE { ... }
examplepersons at least 18-year old
PREFIX ex: <http://inria.fr/schema#>
SELECT ?person ?name
WHERE {
?person rdf:type ex:Person .
?person ex:name ?name .
?person ex:age ?age .
FILTER (?age > 17)
}
left left
x
*
z
left(x,y)
left(y,z)
right(z,v)
right(z,u)
right(u,v)
left(x,?p) left(?p,z)

right
x
y
z
u v
right
left left
graph mapping / projection
classical three clauses:
– Select: clause to select the values to be returned
– Where: triple/graph pattern to match
– Filter: constraints expressed using test functions
(XPath 2.0 or external)
SPARQL triples
• triples and question marks for variables:
?x rdf:type ex:Person
• graph patterns to match:
SELECT ?subject ?proprerty ?value
WHERE {?subject ?proprerty ?value}
• a pattern is, by default, a conjunction of triples
SELECT ?x WHERE
{ ?x rdf:type ex:Person .
?x ex:name ?name . }
question:
• Query:
SELECT ?name WHERE {
?x name ?name .
?x email ?email .
}
• Base:
_:a name "Fabien"
_:b name "Thomas"
_:c name "Lincoln"
_:d name "Aline"
_:b email <mailto:thom@chaka.sn>
_:a email <mailto:Fabien.Gandon@inria.fr>
_:d email <mailto:avalandre@pachinko.jp>
_:a email <mailto:bafien@fabien.info>
• Results ?
x2
prefixes
to use namespaces:
PREFIX mit: <http://www.mit.edu#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?student
WHERE {
?student mit:registeredAt ?x .
?x foaf:homepage <http://www.mit.edu> .
}
Base namespace : BASE <…>
SPARQL result
failure/ success
values found
result formats
• a binding i.e. list of all the selected values
(SELECT) for each answer found;
(stable XML format ; e.g. for XSLT transformations)
• RDF sub-graphs for each answer found
(RDF/XML format ; e.g. for application integration)
• JSON (eg. ajax web applications)
• CSV/TSV (eg. export)
example of binding
results for previous query in XML
<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
<head>
<variable name="student"/>
</head>
<results ordered="false" distinct="false">
<result>
<binding name="student">
<uri>http//www.mit.edu/data.rdf#ndieng</uri></binding>
</result>
<result>
<binding name="student">
<uri>http//www.mit.edu/data.rdf#jdoe</uri></binding>
</result>
</sparql>
simplified syntax
triples with a common subject:
SELECT ?name ?fname
WHERE {
?x a Person;
name ?name ;
firstname ?fname ;
author ?y . }
list of values
?x firstname "Fabien", "Lucien" .
blank node
[firstname "Fabien"] or [] firstname "Fabien"
SELECT ?name ?fname
WHERE {
?x rdf:type Person .
?x name ?name .
?x firstname ?fname .
?x author ?y .
}
source
PREFIX mit: <http://www.mit.edu#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
FROM http//www.mit.edu/data.rdf
SELECT ?student
WHERE {
?student mit:registeredAt ?x .
?x foaf:homepage <http://www.mit.edu> .
}
optional part
PREFIX mit: <http://www.mit.edu#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?student ?name
WHERE {
?student mit:registeredAt ?x .
?x foaf:homepage <http://www.mit.edu> .
OPTIONAL {? student foaf:name ?name . }
}
possibly unbound
union
alternative graph patterns
PREFIX mit: <http://www.mit.edu#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?student ?name
WHERE {
?student mit:registeredAt ?x .
{
{
?x foaf:homepage <http://www.mit.edu> .
}
UNION
{
?x foaf:homepage <www.stanford.edu/> .
}
}
}
sort, filter and limit answers
PREFIX mit: <http://www.mit.edu#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?student ?name
WHERE {
?student mit:registeredAt ?x .
?x foaf:homepage <http://www.mit.edu> .
?student foaf:name ?name .
? student foaf:age ?age .
FILTER (?age > 22)
}
ORDER BY ?name
LIMIT 20
OFFSET 20
students older than 22 years sorted by name
results from number #21 to #40
operators
• Inside the FILTER:
– Comparators: <, >, =, <=, >=, !=
– Tests on variables : isURI(?x), isBlank(?x),
isLiteral(?x), bound(?x)
– Regular expression regex(?x, "A.*")
– Attributes and values: lang(), datatype(), str()
– Casting: xsd:integer(?x)
– External functions and extensions
– Boolean combinations: &&, ||
• In the where WHERE: @fr , ^^xsd:integer
• In the SELECT: distinct
other functions (v 1.1)
isNumeric(Val) test it is a numeric value
coalesce(val,…, val) first valid value
IRI(Str)/URI(Str) to build an iri/uri from a string
BNODE(ID) to build a blank node
RAND() random value between 0 and 1
ABS(Val) absolute value
CEIL(Val), FLOOR(Val), ROUND(Val)
NOW() today’s date
DAY(Date), HOURS(Date), MINUTES(Date),
MONTH(Date), SECONDS(Date),
TIMEZONE(Date), TZ(Date), YEAR(Date)
to access different parts of a date
MD5(Val), SHA1(Val), SHA256(Val),
SHA384(Val), SHA512(Val) hash functions
string / literal functions (v1.1)
STRDT(value, type) build a typed literal
STRLANG(value, lang) build a literal with a language
CONCAT(lit1,…,litn) concatenate a list of literal
CONTAINS(lit1,lit2), STRSTARTS(lit1,lit2),
STRENDS(lit1,lit2)
to test string inclusion
SUBSTR(lit, start [,length]) extract a sub string
ENCODE_FOR_URI (Str) encodes a string as URI
UCASE (Str), LCASE (Str) uppercase and lowercase
STRLEN (Str) length of the string
aggregates
group by + count, sum, min, max,
avg, group_concat, or sample
ex. average scores, grouped by the subject, but
only where the mean is greater than 10
SELECT (AVG(?score) AS ?average)
WHERE { ?student score ?score . }
GROUP BY ?student
HAVING(AVG(?score) > 10)
question:
PREFIX ex: <http://www.exemple.abc#>
SELECT ?person
WHERE {
?person rdf:type ?type .
FILTER(! ( ?type = ex:Man ))
}
minussubstract a pattern
PREFIX ex: <http://www.exemple.abc#>
SELECT ?person
WHERE {
{ ?x rdf:type ex:Person }
minus {?x rdf:type ex:Man}
}
not existcheck the absence of a pattern
PREFIX ex: <http://www.exemple.abc#>
SELECT ?person
WHERE {
?x ex:memberOf ?org .
filter (not exists
{?y ex:memberOf <Hell>})
}
if… then… else
prefix foaf: <http://xmlns.com/foaf/0.1/>
select * where {
?x foaf:name ?name ; foaf:age ?age .
filter (
if (langMatches( lang(?name), "FR"),
?age>=18, ?age>=21) )
}
test a value is in / not in a list
prefix foaf: <http://xmlns.com/foaf/0.1/>
select * where {
?x foaf:name ?n .
filter (?n in ("fabien", "olivier",
"catherine") )
}
valuespre-defined bindings
select ?person where {
?person name ?name .
VALUES (?name)
{ "Peter" "Pedro" "Pierre" }
}
paths
prefix foaf: <http://xmlns.com/foaf/0.1/>
select ?friends_fab where {
?x foaf:name "Fabien Gandon" ;
foaf:knows+ ?friends_fab ;
}
/ : sequence
| : alternative
+ : one or several
* : zero or several
? : optional
^ : reverse
! : negation
{min,max} : length
select expression
select ?x (year(?date) as ?year)
where {
?x birthdate ?date .
}
subquery / nested query
select ?name where {
{select (max(?age) as ?max)
where { ?person age ?age }
}
?senior age ?max
?senior name ?name
}
construct RDF as result
PREFIX mit: <http://www.mit.edu#>
PREFIX corp: <http://mycorp.com/schema#>
CONSTRUCT
{ ?student rdf:type corp:FuturExecutive . }
WHERE
{ ?student rdf:type mit:Student . }
free description
PREFIX mit: <http://www.mit.edu#>
DESCRIBE ?student
{ ?student rdf:type mit:Student . }
or
DESCRIBE <…URI…>
SPARQL protocol
exchange queries and their
results through the web
e.g. DBpedia
QAKIS
Gephi Plugin
(June 2012)
publication
process demo
• one-click setup
• import raw data
• transform to RDF
• publish on the web
• query online
Test on DBpedia
• Connect to:
http://dbpedia.org/snorql/ or
http://fr.dbpedia.org/sparql or …
http://wiki.dbpedia.org/Internationalization/Chapters
• Query:
SELECT * WHERE {
?x rdfs:label "Paris"@fr .
?x ?p ?v .
}
LIMIT 10
HTTP SPARQL
Linked Data Platform
HTTP access to LD resources & containers
get, post, put, delete resources from LD servers.
GET /people/fab HTTP/1.1
Host: data.inria.fr
PUT http://data.inria.fr/people/fab HTTP/1.1
Host: data.inria.fr
Content-Type: text/turtle
<fab> a foaf:Person ;
rdfs:label "Fabien" ;
foaf:mbox <fabien.gandon@inria.fr> .
?
!
SEMANTIC WEB
semantic web: linked data and semantics of schemas
a little semantics in a world of links
had typed links…
the original web
publish the data schemas
180°C+ = ?

+
= 
what is the last
document
you read?
documents
{ }
your answer relies on a
shared ontology
we infer from it
we all understood
Document
Book
Novel Short Story
sub
type
sub
type
#12
#21
#47 #48
"document"
"book"
"livre"
"novel"
"roman"
"short story"
"nouvelle"
#21  #12
#48  #21#47  #21
#21  #12
#48  #21#47  #21
ontological
knowledge formalized
#12
#21
#47 #48
languages
to formalize
ontologies
W3C®
PUBLISH
SEMANTICS
OF SCHEMAS
RDFS means RDF Schema
RDFS provides primitives to Write
lightweight ontologies
RDFS to define classes of resources
and organize their hierarchy
Document
Report
RDFS to define relations between
resources, their signature
and organize their hierarchy
creator
author
Document Person
FO  R  GF  GRmapping modulo an ontology
car
vehicle
car(x)vehicle(x)
GF
GRvehicle
car
O
an old schema of RDFS
W3C http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
example of RDFS schema
<rdf:RDF xml:base ="http://inria.fr/2005/humans.rdfs"
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns ="http://www.w3.org/2000/01/rdf-schema#>
<Class rdf:ID="Man">
<subClassOf rdf:resource="#Person"/>
<subClassOf rdf:resource="#Male"/>
<label xml:lang="en">man</label>
<comment xml:lang="en">an adult male person</comment>
</Class>
<Man> a Class ; subClassOf <Person>, <Male> .
example of RDFS properties
<rdf:RDF xml:base ="http://inria.fr/2005/humans.rdfs"
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns ="http://www.w3.org/2000/01/rdf-schema#>
<rdf:Property rdf:ID="hasMother">
<subPropertyOf rdf:resource="#hasParent"/>
<range rdf:resource="#Female"/>
<domain rdf:resource="#Human"/>
<label xml:lang="en">has for mother</label>
<comment xml:lang="en">to have for parent a female.
</comment>
</rdf:Property>
<hasMother> a rdf:Property ;
subPropertyOf <hasParent> ;
range <Female> ; domain <Human> .
example of RDF using this schema
<rdf:RDF xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns="http://inria.fr/2005/humans.rdfs#"
xml:base=" http://inria.fr/2005/humans.rdfs-instances" >
<rdf:Description rdf:ID="Lucas">
<rdf:type
rdf:resource="http://inria.fr/2005/humans.rdfs#Man"/>
<hasMother rdf:resource="#Laura"/>
</rdf:Description>
<Man rdf:ID="Lucas">
<hasMother rdf:resource="#Laura"/>
</Man>
<Luca> a Man; hasMother <Laura> .
rdfs:label
a resource may have one or more labels in
one or more natural language
<rdf:Property rdf:ID='name'>
<rdfs:domain rdf:resource='Person'/>
<rdfs:range rdf:resource='&rdfs;Literal'/>
<rdfs:label xml:lang='fr'>nom</rdfs:label>
<rdfs:label xml:lang='fr'>nom de famille</rdfs:label>
<rdfs:label xml:lang='en'>name</rdfs:label>
</rdf:Property>
<name> a rdf:Property ;
range rdfs:Literal ; domain <Person> ;
label "nom"@fr, "nom de famille"@fr, "name"@en .
rdfs:comment & rdfs:seeAlso
comments provide definitions and explanations in natural
language
<rdfs:Class rdf:about=‘#Woman’>
<rdfs:subClassOf rdf:resource="#Person"/>
<rdfs:comment xml:lang=‘fr’>une personne adulte du
sexe féminin</rdfs:comment>
<rdfs:comment xml:lang=‘en’>a female adult person
</rdfs:comment>
</rdfs:Class>
see also…
<rdfs:Class rdf:about=‘#Man’>
<rdfs:seeAlso rdf:resource=‘#Woman’/>
</rdfs:Class>
<Woman> a rdfs:Class ; rdfs:subClassOf <Person> ;
rdfs:comment "adult femal person"@en ;
rdfs:comment "une adulte de sexe féminin"@fr .
<Man> a rdfs:Class ; rdfs:seeAlso <Woman> .
CORESE/ KGRAM [Corby et al.]
OWLprovides additional
primitives for
heavyweight ontologies
OWLin one…
enumeration
intersection
union
complement
 disjunction
restriction!
cardinality
1..1
algebraic properties
equivalence
[>18]
disjoint union
value restrict.
disjoint properties
qualified cardinality
1..1
!
individual prop. neg
chained prop.


keys
…
enumerated class
define a class by providing all its members
<owl:Class rdf:id="EyeColor">
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:ID="Blue"/>
<owl:Thing rdf:ID="Green"/>
<owl:Thing rdf:ID="Brown"/>
<owl:Thing rdf:ID="Black"/>
</owl:oneOf>
</owl:Class>
{a,b,c,d,e}
classes defined by union
of other classes
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Person"/>
<owl:Class rdf:about="#Group"/>
</owl:unionOf>
</owl:Class>
classes defined by intersection
of other classes
<owl:Class rdf:ID="Man">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Male"/>
<owl:Class rdf:about="#Person"/>
</owl:intersectionOf>
</owl:Class>
complement and disjunction
complement class
<owl:Class rdf:ID="Male">
<owl:complementOf rdf:resource="#Female"/>
</owl:Class>
declare a disjunction
<owl:Class rdf:ID="Square">
<owl:disjointWith rdf:resource="#Round"/>
</owl:Class>

restriction on all values
<owl:Class rdf:ID="Herbivore">
<subClassOf rdf:resource="#Animal"/>
<subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#eats" />
<owl:allValuesFrom rdf:resource="#Plant" />
</owl:Restriction>
</subClassOf>
</owl:Class>
!
restriction on some values
<owl:Class rdf:ID="Sportive">
<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="#hobby" />
<owl:someValuesFrom rdf:resource="#Sport" />
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>
!
restriction to an exact value
<owl:Class rdf:ID="Bike">
<subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#nbWheels" />
<owl:hasValue>2</owl:hasValue>
</owl:Restriction>
</subClassOf>
</owl:Class>
!
restriction on cardinality
how many times a property is used for
a same subject but with different values
• Constraints: minimum, maximum, exact number
• Exemple
<owl:Class rdf:ID="Person">
<subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#name" />
<owl:maxCardinality>1</owl:maxCardinality>
</owl:Restriction>
</subClassOf>
</owl:Class>
1..1
types of properties
• ObjectProperty are relations between resources only
e.g. hasParent(#thomas,#stephan)
• DatatypeProperty have a literal value possibly typed
ex:hasAge(#thomas,16^^xsd:int)
• AnnotationProperty are ignored in inferences and used
for documentation and extensions
algebraic properties
• Symmetric property, xRy  yRx
<owl:SymmetricProperty rdf:ID="hasSpouse" />
• Inverse property, xR1y  yR2x
<rdf:Property rdf:ID="hasChild">
<owl:inverseOf rdf:resource="#hasParent"/>
</rdf:Property>
• Transitive property, xRy & yRz  xRz
<owl:TransitiveProperty rdf:ID="hasAncestor" />
• Functional property, xRy & xRz  y=z
<owl:FunctionalProperty rdf:ID="hasMother" />
• Inverse functional property, xRy & zRy  x=z
<owl:InverseFunctionalProperty
rdf:ID="hasSocialSecurityNumber" />
!
!
equivalencies and alignment
• equivalent classes : owl:equivalentClass
• equivalent properties: owl:equivalentProperty
• identical or different resources:
owl:sameAs, owl:differentFrom

document the schemas
description of the ontology
owl:Ontology, owl:imports, owl:versionInfo,
owl:priorVersion, owl:backwardCompatibleWith,
owl:incompatibleWith
versions of classes and properties
owl:DeprecatedClass, owl:DeprecatedProperty
OWL profiles
EL: large numbers of properties and/or classes
and polynomial time.
QL: large volumes of instance data, and
conjunctive query answering using
conventional relational database in LOGSPACE
RL: scalable reasoning without sacrificing too
much expressive power using rule-based
reasoning in polynomial time
VoCamp
camps for vocabulary hackers
semantic waste separation
the web is a garbage can,
the semantic web will be a semantic garbage can.
Discovery Hub
Rule Interchange Format (RIF)
core and extensions
e.g. infer new relations
rule: if a member of a team is interested in a topic then
the team as a whole is interested in that topic
?person interestedBy ?topic
?person member ?team

?team interestedBy ?topic
interestedByPerson
?person
Topic
?topic
member Team
?team
interestedBy
question: forward chaining
ex:Fabien ex:activity ex:Research
ex:Fabien ex:in ex:WimmicsTeam
ex:WimmicsTeam ex:in ex:INRIASophia
ex:INRIASophia ex:in ex:INRIA
ex:WimmicsTeam ex:activity ex:Research
ex:INRIASophia ex:activity ex:Research
ex:INRIA ex:activity ex:Research
IF
?x ex:activity ?y
?x ex:in ?z
THEN
?z ex:activity ?y
RIF Core
subset shared by most systems: add only
employee1 [function-> “executive”
bonus -> 10 ]
ForAll ?emp (?emp [ bonus -> 15 ] :-
?emp [ function -> “executive” ] )
employee1 [function -> “executive”
bonus -> 10
bonus -> 15 ]
RIF Core
monotonic Horn clause on frames
conclusion :- hyp1 and hyp2 and hyp3 …
• IRI as constants
• frames as triplets
• lists
• existential quantification in condition
• class membership and equality in condition
RIF BLD (Basic Logic Dialect)
still monotonic : no changes.
• conjunction in conclusion
• fonctions, predicates and named arguments f(?x)
Maganer(?e) :- Exists ?g (manage(?e ?g))
• disjunction in condition
• equality in conclusion
• sub-classes
RIF PRD (Production Rules Dialect)
full production rules in forward chaining
• add, delete, modify, run
• instantiate frames (new)
• negation as failure (ineg)
• no longer monotonic
Forall ?customer ?purchasesYTD
(If And( ?customer#ex:Customer
?customer[ex:purchasesYTD->?purchasesYTD]
External(pred:numeric-greater-than(?purchasesYTD 5000)) )
Then Do( Modify(?customer[ex:status->"Gold"]) ) )
(from PRD Rec. Doc.)
RIF, RIF, RIF,…
• DTB (Datatypes and Built-Ins) : data types with their
predicates and functions
• FLD: how to specify new dialects extending BLD
• SWC : syntax and semantics to combine RIF, RDF
graphs, RDFS and OWL (RL)
SKOS
knowledge
thesauri,
classifications,
subjects,
taxonomies,
folksonomies,
... controlled
vocabulary
168
natural language expressions to refer to concepts
169
inria:CorporateSemanticWeb
skos:prefLabel "corporate semantic web"@en;
skos:prefLabel "web sémantique d'entreprise"@fr;
skos:altLabel "corporate SW"@en;
skos:altLabel "CSW"@en;
skos:hiddenLabel "web semantique d'entreprise"@fr.
labels
between conceptsinria:CorporateSemanticWeb
skos:broader w3c:SemanticWeb;
skos:narrower inria:CorporateSemanticWiki;
skos:related inria:KnowledgeManagement.
relations
inria:CorporateSemanticWeb
skos:scopeNote "only within KM community";
skos:definition "a semantic web on an intranet";
skos:example "Nokia's internal use of RDF gateway";
skos:historyNote "semantic intranet until 2006";
skos:editorialNote "keep wikipedia def. uptodate";
skos:changeNote "acronym added by fabien".
EXTENDING TO OTHER SOURCES
toward all forms of data on the web
many databuried and dormant in web pages
R2RML
a standard transformation of a
relationnal database in RDF
schema
mapping
direct mapping
• cells of a line  triples with a shared subject
• names of columns  names of properties
• each value of a cell  one object
• links between tables
name fname age
doe john 34
did sandy 45
#s1 :name "doe"
#s1 :fname "john"
#s1 :age "34"
#s2 :name "did"
#s2 :fname "sandy"
#s2 :age "45"
#s3 …
example of mapping
ISBN Author Title Year
0006511409X id_xyz The Glass Palace 2000
ID Name Homepage
id_xyz Ghosh, Amitav http://www.amitavghosh.com
http://…isbn/000651409X
Ghosh, Amitav http://www.amitavghosh.com
The Glass Palace
2000
a:name
a:homepage
a:author
(1) transforming
table of persons
ISBN Author Title Year
0006511409X id_xyz The Glass Palace 2000
ID Name Homepage
id_xyz Ghosh, Amitav http://www.amitavghosh.com
http://…isbn/000651409X
Ghosh, Amitav http://www.amitavghosh.com
The Glass Palace
2000
a:name
a:homepage
a:author
:P_Table rdf:type rr:TriplesMap ;
rr:subjectMap [
rr:termtype "BlankNode" ;
rr:column "ID" ;
] ;
rr:predicateObjectMap [
rr:predicateMap [
rr:predicate a:name
];
rr:objectMap [
rr:column "Name"
]
] ;
rr:predicateObjectMap [
rr:predicateMap [
rr:predicate a:homepage
];
rr:objectMap [
rr:column "Homepage" ;
rr:termtype "IRI"
]
] ;
(2) transforming
table of books
ISBN Author Title Year
0006511409X id_xyz The Glass Palace 2000
ID Name Homepage
id_xyz Ghosh, Amitav http://www.amitavghosh.com
http://…isbn/000651409X
Ghosh, Amitav http://www.amitavghosh.com
The Glass Palace
2000
a:name
a:homepage
a:author
:B_Table rdf:type rr:TriplesMap ;
rr:subjectMap [
rr:template "http://...isbn/{ISBN}";
];
rr:predicateObjectMap [
rr:predicateMap [
rr:predicate a:title
];
rr:objectMap [
rr:column "Title"
]
] ;
rr:predicateObjectMap [
rr:predicateMap [
rr:predicate a:year
];
rr:objectMap [
rr:column "Year" ;
]
] ;
(3) linking tables
ISBN Author Title Year
0006511409X id_xyz The Glass Palace 2000
ID Name Homepage
id_xyz Ghosh, Amitav http://www.amitavghosh.com
http://…isbn/000651409X
Ghosh, Amitav http://www.amitavghosh.com
The Glass Palace
2000
a:name
a:homepage
a:author
:B_Table a rr:TriplesMap ;
...
rr:refPredicateObjectMap [
rr:refPredicateMap [
rr:predicate a:author
];
rr:refObjectMap [
rr:parentTriplesMap :P_Table ;
rr:joinCondition
"{child}.Author = {parent}.ID"
]
]
].
schema.org
schemas to improve index, search and display e.g:
• Creative works, Book, Movie, MusicRecording, Recipe, TVSeries ...
• Embedded non-text objects, AudioObject, ImageObject, VideoObject
• Event
• Organization
• Person
• Place, LocalBusiness, Restaurant ...
• Product, Offer, AggregateOffer
• Review, AggregateRating
= + + +
RDFa 1.1: example on schema.org
<div vocab="http://schema.org/" typeof="Product">
<img rel="image" src="dell-30in-lcd.jpg" />
<span property="name">Dell UltraSharp 30" LCD Monitor</span>
<div rel="hasAggregateRating" >
<div typeof="http://schema.org/AggregateRating">
<span property="ratingValue">87</span>
out of <span property="bestRating">100</span>
based on <span property="ratingCount">24</span> user ratings
</div>
</div>
<div rel="offers" >
<div typeof="http://schema.org/AggregateOffer">
<span property="lowPrice">$1250</span>
to <span property="highPrice">$1495</span>
from <span property="offerCount">8</span> sellers
</div>
</div>
(…)
PS: RDFa Lite = vocab + typeof + property + about + prefix.
GRDDL opens formats
by allowing us to declare RDF extraction
algorithms inside XML documents
<head profile="http://www.w3.org/2003/g/data-view">
<title>The man who mistook his wife for a hat</title>
<link rel="transformation"
href="http://www.w3.org/2000/06/ dc-extract/dc-extract.xsl" />
<meta name="DC.Subject" content="clinical tales" />
…
code inside the page
<html xmlns="http://www.w3.org/1999/xhtml" dir="ltr" lang="en-US"
xmlns:fb="https://www.facebook.com/2008/fbml">
<head prefix="og: http://ogp.me/ns# fb: http://ogp.me/ns# YOUR_NAMESPACE:
http://ogp.me/ns/apps/YOUR_NAMESPACE#">
<meta property="fb:app_id" content="YOUR_APP_ID" />
<meta property="og:type" content="YOUR_NAMESPACE:recipe" />
<meta property="og:title" content="Stuffed Cookies" />
<meta property="og:image" content="http://example.com/cookie.jpg" />
<meta property="og:description" content="The Turducken of Cookies" />
<meta property="og:url" content="http://example.com/cookie.html">
<script type="text/javascript">
function postCook()
{ FB.api('/me/YOUR_NAMESPACE:cook' +
'?recipe=http://example.com/cookie.html','post', (…) }); }
</script>
</head>
<body>
(…)
<form>
<input type="button" value="Cook" onclick="postCook()" />
</form>
</body>
</html>
VoID: describing RDF datasets/linksets
:DBpedia a void:Dataset;
void:sparqlEndpoint <http://dbpedia.org/sparql>;
void:feature :RDFXML ;
void:subset :DBpedia2Geonames ;
void:uriLookupEndpoint <http://lookup.dbpedia.org/api/search.asmx/KeywordSearch? QueryString=> ;
dcterms:modified "2008-11-17"^^xsd:date;
dcterms:title "DBPedia";
dcterms:description "RDF data extracted from Wikipedia";
dcterms:publisher :DBpedia_community;
dcterms:license <http://creativecommons.org/licenses/by-sa/3.0/>;
dcterms:source <http://dbpedia.org/resource/Wikipedia>.
:Geonames a void:Dataset;
void:sparqlEndpoint <http://geosparql.appspot.com/query>;
void:triples "107983838"^^xsd:integer ;
dcterms:subject <http://dbpedia.org/resource/Location> .
:DBpedia2Geonames a void:Linkset ;
void:linkPredicate owl:sameAs ;
void:target :DBpedia ;
void:target :Geonames .
e.g. DBpedia dataset
DCAT: describing any dataset
Data Cube: publish multi-dimensional
data (statistics)
CSV-LD & Linked CSV
• contexts to interpret and generate CSV
• conventions for CSV to be linked in RDF
SAWSDLsemantic annotation of WSDL (W3C Rec. 2007)
SAWSDL…
semantically
services annotated and searched
providerserviceclientrequester
directory
3
12
a (too) fast three-tier summary
RDFa, microdata,…
LDP, HTTP, JSON-LD, …
R2RML, SPARQL, RDF, …
presentation
logic
data
W3C®
PROVENANCE
Provenance: PROV-DM & PROV-O
describe entities and activities
involved in providing a resource
PROV-O provenance ontology
PROV-O provenance ontology
PROV-DM & PROV-O: primer example
ex:compose prov:used ex:dataSet1 ;
prov:used ex:regionList .
ex:composition prov:wasGeneratedBy ex:compose .
ex:illustrate prov:used ex:composition .
ex:chart1 prov:wasGeneratedBy ex:illustrate .
PROV primer full example
annotating multimédia elements
• semantic description of multimedia
resources [Media Annotation]
• pointing to internal elements of
multimedia resources [Media Fragment]
multimedia fragment
• part of the URL after the #
http://www.example.com/example.ogv#track=audio&t=10,20
• dimensions:
– temporal:
t=10,20 / t=npt:,0:02:01.5 / t=clock:2009-07-26T11:19:01Z
– spatial:
xywh=pixel:160,120,320,240 / xywh=percent:25,25,50,50
– track:
track=1 / track=video&track=subtitle / track=Wide
– named:
id=chapter-1
• fragment are not sent with the URL but encoded in
the HTTP request
ontologies for multimedia descriptions
ontology for Media Resources 1.0
<video.ogv> a ma:MediaResource ;
ma:hasTrack <video.ogv#track=audio>,
<video.ogv#track=subtitle>;
ma:hasSubtitling <video.ogv#track=subtitle> ;
ma:hasSigning <video.ogv#xywh=percent:70,70,90,90> .
<video.ogv#track=audio> a ma:AudioTrack ;
ma:hasLanguage [ rdfs:label "en-GB" ] ;
ma:hasFragment <video.ogv#track=audio&t=10,20> .
<video.ogv#track=audio&t=10,20> a ma:MediaFragment ;
ma:hasLanguage [ rdfs:label "fr" ] .
<video.ogv#track=subtitle> a ma:DataTrack ;
ma:hasLanguage [ rdfs:label "es" ] .
<video.ogv#xywh=percent:70,70,90,90> a ma:MediaFragment ;
ma:hasLanguage [ rdfs:label "bfi" ] .
Time line
some pointers• W3C standards
http://www.w3.org/standards/semanticweb/
• SW Tools
http://www.w3.org/2001/sw/wiki/Tools
• Linked Data Book
http://linkeddatabook.com/editions/1.0/
• W3DevCampus
http://www.w3devcampus.com/
• EUCLID material
http://www.euclid-project.eu/
http://www.w3.org/2001/sw/wiki/Tools
open standards
sources
data
doggy-bag
impossible
to predict every
usage
black boxes
avoid building
explicit
make conceptualizations
open your data
to those who could use them
#WatchDogs #WeAreData @ubisoft
66 FOAF primitives 3 475 908 348 references (2)
x 52 millions
“a small tree ruling a big graph”(1)
(1) Franck Van Harmelen, ISWC 2011
(2) Libby Miller, 2009
“semantic web”
and not
“semanticweb”
[C. Welty, ISWC 2007]
“a lightweight ontology
allows us to do
lightweight reasoning”
[J. Hendler, ISWC 2007]
data
data bases
data models
open data
linked data
closed data
enterprise data
linked enterprise data
linked open data
data schemas
semantic web of data
data structures
linked data schemas
web of data
big data
big data streams
data streams
linked data streams web of sensors, things, …
VELOCITY
big linked data
VOLUME
VARIETY
VVeb data
linked healthcare data
VICINITY
VISIBILITY
personal data
data mining
data type
web 1, 2
price convert?
person homepage?
more info?
web 1, 2, 3
identify
describe & link
query
reasoning
trace
URI
RDF
HTTP, SPARQL, LDP
RDFS & OWL
PROV-O
GOALS AND MEANS
identify
describe & link
query
reasoning
trace
http://fabien.fr#me
#me type man
select * {?r type ?t}
man subClassOf male
wasAttributedTo #me
GOALS AND MEANS
informal
formal
usage representation
one web…
data
person document
program
metadata
he who controls metadata, controls the web
and through the world-wide web many things in our world.
fabien, gandon, @fabien_gandon, http://fabien.info
WWW 2014

Weitere ähnliche Inhalte

Was ist angesagt?

Debunking some “RDF vs. Property Graph” Alternative Facts
Debunking some “RDF vs. Property Graph” Alternative FactsDebunking some “RDF vs. Property Graph” Alternative Facts
Debunking some “RDF vs. Property Graph” Alternative FactsNeo4j
 
Introduction to the Semantic Web
Introduction to the Semantic WebIntroduction to the Semantic Web
Introduction to the Semantic WebTomek Pluskiewicz
 
Understanding RDF: the Resource Description Framework in Context (1999)
Understanding RDF: the Resource Description Framework in Context  (1999)Understanding RDF: the Resource Description Framework in Context  (1999)
Understanding RDF: the Resource Description Framework in Context (1999)Dan Brickley
 
RDF 개념 및 구문 소개
RDF 개념 및 구문 소개RDF 개념 및 구문 소개
RDF 개념 및 구문 소개Dongbum Kim
 
Semantic Web - Ontologies
Semantic Web - OntologiesSemantic Web - Ontologies
Semantic Web - OntologiesSerge Linckels
 
Chapter 1 semantic web
Chapter 1 semantic webChapter 1 semantic web
Chapter 1 semantic webR A Akerkar
 
Resource description framework
Resource description frameworkResource description framework
Resource description frameworkStanley Wang
 
Querying the Wikidata Knowledge Graph
Querying the Wikidata Knowledge GraphQuerying the Wikidata Knowledge Graph
Querying the Wikidata Knowledge GraphIoan Toma
 
A la découverte du Web sémantique
A la découverte du Web sémantiqueA la découverte du Web sémantique
A la découverte du Web sémantiqueGautier Poupeau
 
RDFS In A Nutshell V1
RDFS In A Nutshell V1RDFS In A Nutshell V1
RDFS In A Nutshell V1Fabien Gandon
 
Resource description framework
Resource description frameworkResource description framework
Resource description frameworkhozifa1010
 
Web 3.0 The Semantic Web
Web 3.0 The Semantic WebWeb 3.0 The Semantic Web
Web 3.0 The Semantic WebHatem Mahmoud
 
The Semantic Web #9 - Web Ontology Language (OWL)
The Semantic Web #9 - Web Ontology Language (OWL)The Semantic Web #9 - Web Ontology Language (OWL)
The Semantic Web #9 - Web Ontology Language (OWL)Myungjin Lee
 
Hadoop Overview & Architecture
Hadoop Overview & Architecture  Hadoop Overview & Architecture
Hadoop Overview & Architecture EMC
 
Introduction to Hadoop and Hadoop component
Introduction to Hadoop and Hadoop component Introduction to Hadoop and Hadoop component
Introduction to Hadoop and Hadoop component rebeccatho
 

Was ist angesagt? (20)

Debunking some “RDF vs. Property Graph” Alternative Facts
Debunking some “RDF vs. Property Graph” Alternative FactsDebunking some “RDF vs. Property Graph” Alternative Facts
Debunking some “RDF vs. Property Graph” Alternative Facts
 
RDF Data Model
RDF Data ModelRDF Data Model
RDF Data Model
 
Introduction to the Semantic Web
Introduction to the Semantic WebIntroduction to the Semantic Web
Introduction to the Semantic Web
 
Understanding RDF: the Resource Description Framework in Context (1999)
Understanding RDF: the Resource Description Framework in Context  (1999)Understanding RDF: the Resource Description Framework in Context  (1999)
Understanding RDF: the Resource Description Framework in Context (1999)
 
RDF 개념 및 구문 소개
RDF 개념 및 구문 소개RDF 개념 및 구문 소개
RDF 개념 및 구문 소개
 
SPARQL Tutorial
SPARQL TutorialSPARQL Tutorial
SPARQL Tutorial
 
Semantic Web - Ontologies
Semantic Web - OntologiesSemantic Web - Ontologies
Semantic Web - Ontologies
 
Chapter 1 semantic web
Chapter 1 semantic webChapter 1 semantic web
Chapter 1 semantic web
 
Resource description framework
Resource description frameworkResource description framework
Resource description framework
 
Querying the Wikidata Knowledge Graph
Querying the Wikidata Knowledge GraphQuerying the Wikidata Knowledge Graph
Querying the Wikidata Knowledge Graph
 
Introduction to SPARQL
Introduction to SPARQLIntroduction to SPARQL
Introduction to SPARQL
 
A la découverte du Web sémantique
A la découverte du Web sémantiqueA la découverte du Web sémantique
A la découverte du Web sémantique
 
Semantic web
Semantic webSemantic web
Semantic web
 
Hadoop Tutorial For Beginners
Hadoop Tutorial For BeginnersHadoop Tutorial For Beginners
Hadoop Tutorial For Beginners
 
RDFS In A Nutshell V1
RDFS In A Nutshell V1RDFS In A Nutshell V1
RDFS In A Nutshell V1
 
Resource description framework
Resource description frameworkResource description framework
Resource description framework
 
Web 3.0 The Semantic Web
Web 3.0 The Semantic WebWeb 3.0 The Semantic Web
Web 3.0 The Semantic Web
 
The Semantic Web #9 - Web Ontology Language (OWL)
The Semantic Web #9 - Web Ontology Language (OWL)The Semantic Web #9 - Web Ontology Language (OWL)
The Semantic Web #9 - Web Ontology Language (OWL)
 
Hadoop Overview & Architecture
Hadoop Overview & Architecture  Hadoop Overview & Architecture
Hadoop Overview & Architecture
 
Introduction to Hadoop and Hadoop component
Introduction to Hadoop and Hadoop component Introduction to Hadoop and Hadoop component
Introduction to Hadoop and Hadoop component
 

Andere mochten auch

Introduction to the Semantic Web
Introduction to the Semantic WebIntroduction to the Semantic Web
Introduction to the Semantic WebMarin Dimitrov
 
Web Trends to Watch in 2014
Web Trends to Watch in 2014Web Trends to Watch in 2014
Web Trends to Watch in 2014David King
 
Video Tools for Teachers - Digital Video
Video Tools for Teachers - Digital VideoVideo Tools for Teachers - Digital Video
Video Tools for Teachers - Digital VideoNik Peachey
 
What I Carry: 10 Tools for Success
What I Carry: 10 Tools for SuccessWhat I Carry: 10 Tools for Success
What I Carry: 10 Tools for SuccessJonathon Colman
 
Dear NSA, let me take care of your slides.
Dear NSA, let me take care of your slides.Dear NSA, let me take care of your slides.
Dear NSA, let me take care of your slides.Emiland
 
Deep Learning through Examples
Deep Learning through ExamplesDeep Learning through Examples
Deep Learning through ExamplesSri Ambati
 
Building a keyboard from scratch
Building a keyboard from scratchBuilding a keyboard from scratch
Building a keyboard from scratchJesse Vincent
 
Getting Started With SlideShare
Getting Started With SlideShareGetting Started With SlideShare
Getting Started With SlideShareSlideShare
 
How to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & TricksHow to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & TricksSlideShare
 
Thermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat TransferThermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat TransferVJTI Production
 
Occupational Safety and Health Management in Construction Industry
Occupational Safety and Health Management in Construction IndustryOccupational Safety and Health Management in Construction Industry
Occupational Safety and Health Management in Construction IndustryNorrazman Zaiha Zainol
 
The Ultimate Guide to Creating Visually Appealing Content
The Ultimate Guide to Creating Visually Appealing ContentThe Ultimate Guide to Creating Visually Appealing Content
The Ultimate Guide to Creating Visually Appealing ContentNeil Patel
 
The Semantic Web
The Semantic WebThe Semantic Web
The Semantic Webostephens
 
What Makes Great Infographics
What Makes Great InfographicsWhat Makes Great Infographics
What Makes Great InfographicsSlideShare
 
What to Upload to SlideShare
What to Upload to SlideShareWhat to Upload to SlideShare
What to Upload to SlideShareSlideShare
 
Masters of SlideShare
Masters of SlideShareMasters of SlideShare
Masters of SlideShareKapost
 
STOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
STOP! VIEW THIS! 10-Step Checklist When Uploading to SlideshareSTOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
STOP! VIEW THIS! 10-Step Checklist When Uploading to SlideshareEmpowered Presentations
 
10 Ways to Win at SlideShare SEO & Presentation Optimization
10 Ways to Win at SlideShare SEO & Presentation Optimization10 Ways to Win at SlideShare SEO & Presentation Optimization
10 Ways to Win at SlideShare SEO & Presentation OptimizationOneupweb
 

Andere mochten auch (20)

Introduction to the Semantic Web
Introduction to the Semantic WebIntroduction to the Semantic Web
Introduction to the Semantic Web
 
Web Trends to Watch in 2014
Web Trends to Watch in 2014Web Trends to Watch in 2014
Web Trends to Watch in 2014
 
Video Tools for Teachers - Digital Video
Video Tools for Teachers - Digital VideoVideo Tools for Teachers - Digital Video
Video Tools for Teachers - Digital Video
 
What I Carry: 10 Tools for Success
What I Carry: 10 Tools for SuccessWhat I Carry: 10 Tools for Success
What I Carry: 10 Tools for Success
 
Dear NSA, let me take care of your slides.
Dear NSA, let me take care of your slides.Dear NSA, let me take care of your slides.
Dear NSA, let me take care of your slides.
 
Deep Learning through Examples
Deep Learning through ExamplesDeep Learning through Examples
Deep Learning through Examples
 
Building a keyboard from scratch
Building a keyboard from scratchBuilding a keyboard from scratch
Building a keyboard from scratch
 
Getting Started With SlideShare
Getting Started With SlideShareGetting Started With SlideShare
Getting Started With SlideShare
 
How to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & TricksHow to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & Tricks
 
Thermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat TransferThermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat Transfer
 
Occupational Safety and Health Management in Construction Industry
Occupational Safety and Health Management in Construction IndustryOccupational Safety and Health Management in Construction Industry
Occupational Safety and Health Management in Construction Industry
 
The Ultimate Guide to Creating Visually Appealing Content
The Ultimate Guide to Creating Visually Appealing ContentThe Ultimate Guide to Creating Visually Appealing Content
The Ultimate Guide to Creating Visually Appealing Content
 
The Semantic Web
The Semantic WebThe Semantic Web
The Semantic Web
 
What Makes Great Infographics
What Makes Great InfographicsWhat Makes Great Infographics
What Makes Great Infographics
 
What to Upload to SlideShare
What to Upload to SlideShareWhat to Upload to SlideShare
What to Upload to SlideShare
 
Masters of SlideShare
Masters of SlideShareMasters of SlideShare
Masters of SlideShare
 
STOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
STOP! VIEW THIS! 10-Step Checklist When Uploading to SlideshareSTOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
STOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
 
You Suck At PowerPoint!
You Suck At PowerPoint!You Suck At PowerPoint!
You Suck At PowerPoint!
 
10 Ways to Win at SlideShare SEO & Presentation Optimization
10 Ways to Win at SlideShare SEO & Presentation Optimization10 Ways to Win at SlideShare SEO & Presentation Optimization
10 Ways to Win at SlideShare SEO & Presentation Optimization
 
BUSINESS QUIZ -Round 1
 BUSINESS QUIZ -Round 1 BUSINESS QUIZ -Round 1
BUSINESS QUIZ -Round 1
 

Ähnlich wie An introduction to Semantic Web and Linked Data

An introduction to Semantic Web and Linked Data
An introduction to Semantic Web and Linked DataAn introduction to Semantic Web and Linked Data
An introduction to Semantic Web and Linked DataGabriela Agustini
 
W3C Tutorial on Semantic Web and Linked Data at WWW 2013
W3C Tutorial on Semantic Web and Linked Data at WWW 2013W3C Tutorial on Semantic Web and Linked Data at WWW 2013
W3C Tutorial on Semantic Web and Linked Data at WWW 2013Fabien Gandon
 
An introduction to Semantic Web and Linked Data
An introduction to Semantic  Web and Linked DataAn introduction to Semantic  Web and Linked Data
An introduction to Semantic Web and Linked DataGabriela Agustini
 
Two graph data models : RDF and Property Graphs
Two graph data models : RDF and Property GraphsTwo graph data models : RDF and Property Graphs
Two graph data models : RDF and Property Graphsandyseaborne
 
Creating Web APIs with JSON-LD and RDF
Creating Web APIs with JSON-LD and RDFCreating Web APIs with JSON-LD and RDF
Creating Web APIs with JSON-LD and RDFdonaldlsmithjr
 
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIsJosef Petrák
 
ontology.ppt
ontology.pptontology.ppt
ontology.pptPrerak10
 
SemanticWeb Nuts 'n Bolts
SemanticWeb Nuts 'n BoltsSemanticWeb Nuts 'n Bolts
SemanticWeb Nuts 'n BoltsRinke Hoekstra
 
Graph databases & data integration v2
Graph databases & data integration v2Graph databases & data integration v2
Graph databases & data integration v2Dimitris Kontokostas
 
What’s in a structured value?
What’s in a structured value?What’s in a structured value?
What’s in a structured value?Andy Powell
 
Semantic Web(Web 3.0) SPARQL
Semantic Web(Web 3.0) SPARQLSemantic Web(Web 3.0) SPARQL
Semantic Web(Web 3.0) SPARQLDaniel D.J. UM
 
Bio ontologies and semantic technologies
Bio ontologies and semantic technologiesBio ontologies and semantic technologies
Bio ontologies and semantic technologiesProf. Wim Van Criekinge
 
when the link makes sense
when the link makes sensewhen the link makes sense
when the link makes senseFabien Gandon
 
An Introduction to RDF and the Web of Data
An Introduction to RDF and the Web of DataAn Introduction to RDF and the Web of Data
An Introduction to RDF and the Web of DataOlaf Hartig
 
RDFa: an introduction
RDFa: an introductionRDFa: an introduction
RDFa: an introductionKai Li
 
Publishing data on the Semantic Web
Publishing data on the Semantic WebPublishing data on the Semantic Web
Publishing data on the Semantic WebPeter Mika
 

Ähnlich wie An introduction to Semantic Web and Linked Data (20)

An introduction to Semantic Web and Linked Data
An introduction to Semantic Web and Linked DataAn introduction to Semantic Web and Linked Data
An introduction to Semantic Web and Linked Data
 
W3C Tutorial on Semantic Web and Linked Data at WWW 2013
W3C Tutorial on Semantic Web and Linked Data at WWW 2013W3C Tutorial on Semantic Web and Linked Data at WWW 2013
W3C Tutorial on Semantic Web and Linked Data at WWW 2013
 
An introduction to Semantic Web and Linked Data
An introduction to Semantic  Web and Linked DataAn introduction to Semantic  Web and Linked Data
An introduction to Semantic Web and Linked Data
 
SWT Lecture Session 2 - RDF
SWT Lecture Session 2 - RDFSWT Lecture Session 2 - RDF
SWT Lecture Session 2 - RDF
 
Two graph data models : RDF and Property Graphs
Two graph data models : RDF and Property GraphsTwo graph data models : RDF and Property Graphs
Two graph data models : RDF and Property Graphs
 
Creating Web APIs with JSON-LD and RDF
Creating Web APIs with JSON-LD and RDFCreating Web APIs with JSON-LD and RDF
Creating Web APIs with JSON-LD and RDF
 
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
 
ontology.ppt
ontology.pptontology.ppt
ontology.ppt
 
SemanticWeb Nuts 'n Bolts
SemanticWeb Nuts 'n BoltsSemanticWeb Nuts 'n Bolts
SemanticWeb Nuts 'n Bolts
 
Graph databases & data integration v2
Graph databases & data integration v2Graph databases & data integration v2
Graph databases & data integration v2
 
What’s in a structured value?
What’s in a structured value?What’s in a structured value?
What’s in a structured value?
 
Semantic Web(Web 3.0) SPARQL
Semantic Web(Web 3.0) SPARQLSemantic Web(Web 3.0) SPARQL
Semantic Web(Web 3.0) SPARQL
 
Webofdata
WebofdataWebofdata
Webofdata
 
Bio ontologies and semantic technologies
Bio ontologies and semantic technologiesBio ontologies and semantic technologies
Bio ontologies and semantic technologies
 
Data in RDF
Data in RDFData in RDF
Data in RDF
 
when the link makes sense
when the link makes sensewhen the link makes sense
when the link makes sense
 
An Introduction to RDF and the Web of Data
An Introduction to RDF and the Web of DataAn Introduction to RDF and the Web of Data
An Introduction to RDF and the Web of Data
 
RDFa Tutorial
RDFa TutorialRDFa Tutorial
RDFa Tutorial
 
RDFa: an introduction
RDFa: an introductionRDFa: an introduction
RDFa: an introduction
 
Publishing data on the Semantic Web
Publishing data on the Semantic WebPublishing data on the Semantic Web
Publishing data on the Semantic Web
 

Mehr von Fabien Gandon

Walking Our Way to the Web
Walking Our Way to the WebWalking Our Way to the Web
Walking Our Way to the WebFabien Gandon
 
a shift in our research focus: from knowledge acquisition to knowledge augmen...
a shift in our research focus: from knowledge acquisition to knowledge augmen...a shift in our research focus: from knowledge acquisition to knowledge augmen...
a shift in our research focus: from knowledge acquisition to knowledge augmen...Fabien Gandon
 
Evaluation d’explications pour la prédiction de liens dans les graphes de con...
Evaluation d’explications pour la prédiction de liens dans les graphes de con...Evaluation d’explications pour la prédiction de liens dans les graphes de con...
Evaluation d’explications pour la prédiction de liens dans les graphes de con...Fabien Gandon
 
A Never-Ending Project for Humanity Called “the Web”
A Never-Ending Project for Humanity Called “the Web”A Never-Ending Project for Humanity Called “the Web”
A Never-Ending Project for Humanity Called “the Web”Fabien Gandon
 
Wimmics Overview 2021
Wimmics Overview 2021Wimmics Overview 2021
Wimmics Overview 2021Fabien Gandon
 
CovidOnTheWeb : covid19 linked data published on the Web
CovidOnTheWeb : covid19 linked data published on the WebCovidOnTheWeb : covid19 linked data published on the Web
CovidOnTheWeb : covid19 linked data published on the WebFabien Gandon
 
Web open standards for linked data and knowledge graphs as enablers of EU dig...
Web open standards for linked data and knowledge graphs as enablers of EU dig...Web open standards for linked data and knowledge graphs as enablers of EU dig...
Web open standards for linked data and knowledge graphs as enablers of EU dig...Fabien Gandon
 
from linked data & knowledge graphs to linked intelligence & intelligence graphs
from linked data & knowledge graphs to linked intelligence & intelligence graphsfrom linked data & knowledge graphs to linked intelligence & intelligence graphs
from linked data & knowledge graphs to linked intelligence & intelligence graphsFabien Gandon
 
The Web We Mix - benevolent AIs for a resilient web
The Web We Mix - benevolent AIs for a resilient webThe Web We Mix - benevolent AIs for a resilient web
The Web We Mix - benevolent AIs for a resilient webFabien Gandon
 
Overview of the Research in Wimmics 2018
Overview of the Research in Wimmics 2018Overview of the Research in Wimmics 2018
Overview of the Research in Wimmics 2018Fabien Gandon
 
Web science AI and IA
Web science AI and IAWeb science AI and IA
Web science AI and IAFabien Gandon
 
Normative Requirements as Linked Data
Normative Requirements as Linked DataNormative Requirements as Linked Data
Normative Requirements as Linked DataFabien Gandon
 
Wimmics Research Team Overview 2017
Wimmics Research Team Overview 2017Wimmics Research Team Overview 2017
Wimmics Research Team Overview 2017Fabien Gandon
 
On the many graphs of the Web and the interest of adding their missing links.
On the many graphs of the Web and the interest of adding their missing links. On the many graphs of the Web and the interest of adding their missing links.
On the many graphs of the Web and the interest of adding their missing links. Fabien Gandon
 
One Web of pages, One Web of peoples, One Web of Services, One Web of Data, O...
One Web of pages, One Web of peoples, One Web of Services, One Web of Data, O...One Web of pages, One Web of peoples, One Web of Services, One Web of Data, O...
One Web of pages, One Web of peoples, One Web of Services, One Web of Data, O...Fabien Gandon
 
How to supervise your supervisor?
How to supervise your supervisor?How to supervise your supervisor?
How to supervise your supervisor?Fabien Gandon
 
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,Fabien Gandon
 
Wimmics Research Team 2015 Activity Report
Wimmics Research Team 2015 Activity ReportWimmics Research Team 2015 Activity Report
Wimmics Research Team 2015 Activity ReportFabien Gandon
 
Retours sur le MOOC "Web Sémantique et Web de données"
Retours sur le MOOC "Web Sémantique et Web de données"Retours sur le MOOC "Web Sémantique et Web de données"
Retours sur le MOOC "Web Sémantique et Web de données"Fabien Gandon
 
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015Fabien Gandon
 

Mehr von Fabien Gandon (20)

Walking Our Way to the Web
Walking Our Way to the WebWalking Our Way to the Web
Walking Our Way to the Web
 
a shift in our research focus: from knowledge acquisition to knowledge augmen...
a shift in our research focus: from knowledge acquisition to knowledge augmen...a shift in our research focus: from knowledge acquisition to knowledge augmen...
a shift in our research focus: from knowledge acquisition to knowledge augmen...
 
Evaluation d’explications pour la prédiction de liens dans les graphes de con...
Evaluation d’explications pour la prédiction de liens dans les graphes de con...Evaluation d’explications pour la prédiction de liens dans les graphes de con...
Evaluation d’explications pour la prédiction de liens dans les graphes de con...
 
A Never-Ending Project for Humanity Called “the Web”
A Never-Ending Project for Humanity Called “the Web”A Never-Ending Project for Humanity Called “the Web”
A Never-Ending Project for Humanity Called “the Web”
 
Wimmics Overview 2021
Wimmics Overview 2021Wimmics Overview 2021
Wimmics Overview 2021
 
CovidOnTheWeb : covid19 linked data published on the Web
CovidOnTheWeb : covid19 linked data published on the WebCovidOnTheWeb : covid19 linked data published on the Web
CovidOnTheWeb : covid19 linked data published on the Web
 
Web open standards for linked data and knowledge graphs as enablers of EU dig...
Web open standards for linked data and knowledge graphs as enablers of EU dig...Web open standards for linked data and knowledge graphs as enablers of EU dig...
Web open standards for linked data and knowledge graphs as enablers of EU dig...
 
from linked data & knowledge graphs to linked intelligence & intelligence graphs
from linked data & knowledge graphs to linked intelligence & intelligence graphsfrom linked data & knowledge graphs to linked intelligence & intelligence graphs
from linked data & knowledge graphs to linked intelligence & intelligence graphs
 
The Web We Mix - benevolent AIs for a resilient web
The Web We Mix - benevolent AIs for a resilient webThe Web We Mix - benevolent AIs for a resilient web
The Web We Mix - benevolent AIs for a resilient web
 
Overview of the Research in Wimmics 2018
Overview of the Research in Wimmics 2018Overview of the Research in Wimmics 2018
Overview of the Research in Wimmics 2018
 
Web science AI and IA
Web science AI and IAWeb science AI and IA
Web science AI and IA
 
Normative Requirements as Linked Data
Normative Requirements as Linked DataNormative Requirements as Linked Data
Normative Requirements as Linked Data
 
Wimmics Research Team Overview 2017
Wimmics Research Team Overview 2017Wimmics Research Team Overview 2017
Wimmics Research Team Overview 2017
 
On the many graphs of the Web and the interest of adding their missing links.
On the many graphs of the Web and the interest of adding their missing links. On the many graphs of the Web and the interest of adding their missing links.
On the many graphs of the Web and the interest of adding their missing links.
 
One Web of pages, One Web of peoples, One Web of Services, One Web of Data, O...
One Web of pages, One Web of peoples, One Web of Services, One Web of Data, O...One Web of pages, One Web of peoples, One Web of Services, One Web of Data, O...
One Web of pages, One Web of peoples, One Web of Services, One Web of Data, O...
 
How to supervise your supervisor?
How to supervise your supervisor?How to supervise your supervisor?
How to supervise your supervisor?
 
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
 
Wimmics Research Team 2015 Activity Report
Wimmics Research Team 2015 Activity ReportWimmics Research Team 2015 Activity Report
Wimmics Research Team 2015 Activity Report
 
Retours sur le MOOC "Web Sémantique et Web de données"
Retours sur le MOOC "Web Sémantique et Web de données"Retours sur le MOOC "Web Sémantique et Web de données"
Retours sur le MOOC "Web Sémantique et Web de données"
 
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
 

Kürzlich hochgeladen

AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesZilliz
 

Kürzlich hochgeladen (20)

AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector Databases
 

An introduction to Semantic Web and Linked Data

  • 1. Semantic Web and Linked Data or how to link data and schemas on the web a W3C tutorial by Fabien Gandon, http://fabien.info, @fabien_gandon WWW 2014
  • 2. semantic web mentioned by Tim BL in 1994 at WWW [Tim Berners-Lee 1994, http://www.w3.org/Talks/WWW94Tim/]
  • 5. machines don’t. we identify and interpret information,
  • 6. A WEB OF LINKED DATA
  • 11. RDFstands for Resource: pages, dogs, ideas... everything that can have a URI Description: attributes, features, and relations of the resources Framework: model, languages and syntaxes for these descriptions
  • 12. RDFis a triple model i.e. every piece of knowledge is broken down into ( subject , predicate , object )
  • 13. doc.html has for author Fabien and has for theme Music
  • 14. doc.html has for author Fabien doc.html has for theme Music
  • 15. ( doc.html , author , Fabien ) ( doc.html , theme , Music ) ( subject , predicate , object )
  • 17. RDFis also a graph model to link the descriptions of resources
  • 18. RDFtriples can be seen as arcs of a graph (vertex,edge,vertex)
  • 19. ( doc.html , author , Fabien ) ( doc.html , theme , Music )
  • 21. identify what exists on the web http://my-site.fr identify, on the web, what exists http://animals.org/this-zebra
  • 23. open and link data in a global giant graph
  • 24. RDFin values of properties can also be literals i.e. strings of characters
  • 25. ( doc.html , author , Fabien ) ( doc.html , theme , "Music" )
  • 28. RDF< /> has an XML syntax
  • 30. RDFhas other syntaxes (Turtle, TriG, N-Triples, N-Quads, JSON, RDFa)
  • 31. Turtle @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix inria: <http://inria.fr/schema#> . <http://inria.fr/rr/doc.html> inria:author <http://ns.inria.fr/fabien.gandon#me> ; inria:theme "Music" .
  • 33. writing rules for RDF triples • the subject is always a resource (never a literal) • properties are binary relations and their types are identified by IRIs • the value is a resource or a literal
  • 34. blank nodes (bnodes) http://bu.ch/l23.html author "My Life" title "John" surname "Doe" firstname handy anonymous nodes (existential quantification) there exist a resource such that… {  r ; …} <rdf:Description rdf:about="http://bu.ch/123.html "> <author> <rdf:Description> <surname>Doe</surname> <firstname>John</firstname> </rdf:Description> </author> <title>My Life</title> </rdf:Description> <http://bu.ch/123.html> author [surname "Doe" ; firstname "John" . ] ; title "My Life" .
  • 35. XML schema datatypes & literals standard literals are xsd:string type literals with datatypes from XML Schema <rdf:Description rdf:about="#Fabien"> <teaching rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"> true</teaching> <birth rdf:datatype="http://www.w3.org/2001/XMLSchema#date"> 1975-07-31</birth> </rdf:Description/> #Fabien teaching "true"^^xsd:boolean ; birth "1975-07-31"^^xsd:date . #Fabien "true"^^xsd:boolean "1975-07-31"^^xsd:date teaching birth
  • 37. langue <Book> <title xml:lang=‘fr’>Seigneur des anneaux</title> <title xml:lang=‘en’>Lord of the rings</title> </Book> <Book> title "Seigneur des anneaux"@fr ; title "Lord of the rings"@en . literals with languages and without are disjoint “Fabien”  “Fabien”@en  “Fabien”@fr
  • 38. typing resources using URIs to identify the types <urn://~fgandon> rdf:type <http://www.inria.fr/schema#Person> a resource can have several types <urn://~fgandon> rdf:type <http://www.inria.fr/schema#Person> <urn://~fgandon> rdf:type <http://www.inria.fr/schema#Researcher> <urn://~fgandon> rdf:type <http://www.mit.edu/schema#Lecturer> <rdf:Description rdf:about="urn://~fgandon"> <rdf:type rdf:resource="http://www.inria.fr/schema#Person" /> <name>Fabien</name> </rdf:Description> <in:Person rdf:about="urn://~fgandon"> <name>Fabien</name> </in:Person> <urn://~fgandon> a in:Person ; name "Fabien" .
  • 39. question: <?xml version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:exs="http://example.org/schema#"> <rdf:Description rdf:about="http://example.org/doc.html"> <rdf:type rdf:resource="http://example.org/schema#Report"/> <exs:theme rdf:resource="http://example.org#Music"/> <exs:theme rdf:resource="http://example.org#History"/> <exs:nbPages rdf:datatype="http://www.w3.org/2001/XMLSchema#int">23</exs:nbPages> </rdf:Description> </rdf:RDF> meaning ?
  • 40. question: <?xml version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:exs="http://example.org/schema#"> <rdf:Description rdf:about="http://example.org/doc.html"> <rdf:type rdf:resource="http://example.org/schema#Report"/> <exs:theme rdf:resource="http://example.org#Music"/> <exs:theme rdf:resource="http://example.org#History"/> <exs:nbPages rdf:datatype="http://www.w3.org/2001/XMLSchema#int">23</exs:nbPages> </rdf:Description> </rdf:RDF> exs:Report rdf:type exs:nbPages “23”^^xsd:int exs:theme http://example.org/doc.html http://example.org#Music http://example.org#History exs:theme
  • 41. bags = unordered groups <rdf:Description rdf:about="#"> <author> <rdf:Bag> <rdf:li>Ivan Herman</rdf:li> <rdf:li>Fabien Gandon</rdf:li> </rdf:Bag> </author> </rdf:Description> <#> author _:a _:a rdf:_1 “Ivan Herman” _:a rdf:_2 “Fabien Gandon” <#> author [ a rdf:Bag ; rdf:li "Ivan Herman" ; rdf:li "Fabien Gandon" . ] .
  • 42. sequence ordered group of resources or literals <rdf:Description rdf:about="#partition"> <contains> <rdf:Seq> <rdf:li rdf:about="#C"/> <rdf:li rdf:about="#C"/> <rdf:li rdf:about="#C"/> <rdf:li rdf:about="#D"/> <rdf:li rdf:about="#E"/> </rdf:Seq> </contains> </rdf:Description> <partition> contains [ a rdf:Seq ; rdf:li "C" ; rdf:li "C" ; rdf:li "C" ; rdf:li "D" ; rdf:li "E" . ] .
  • 43. alternativese.g. title of a book in different languages <rdf:Description rdf:about="#book"> <title> <rdf:Alt> <rdf:li xml:lang="fr">l’homme qui prenait sa femme pour un chapeau</rdf:li> <rdf:li xml:lang="en">the man who mistook his wife for a hat</rdf:li> </rdf:Alt> </title> </rdf:Description> <#book> title [ a rdf:Alt ; rdf:li "l’homme…"@fr ; rdf:li "the man…"@en . ] .
  • 44. collectionexhaustive and ordered list <rdf:Description rdf:about="#week"> <dividedIn rdf:parseType="Collection"> <rdf:Description rdf:about="#monday"/> <rdf:Description rdf:about="#tuesday"/> <rdf:Description rdf:about="#wednesday"/> <rdf:Description rdf:about="#thursday"/> <rdf:Description rdf:about="#friday"/> <rdf:Description rdf:about="#saturday"/> <rdf:Description rdf:about="#sunday"/> </devidedIn> </rdf:Description> wednesday friday sunday nil monday tuesday thursday saturday firstrest List _:a _:b _:c _:d _:e _:f _:g <#week> dividedIn ( <#monday> <#tuesday> <#wednesday> <#thursday> <#friday> <#saturday> <#sunday> ) .
  • 45. RDF(named) graphs group triples in graphs named by IRIs
  • 47. TriG @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix inria: <http://inria.fr/schema#> . GRAPH <http://inria.fr/people> { <http://inria.fr/rr/doc.html> inria:author <http://ns.inria.fr/fabien.gandon#me> . } GRAPH <http://inria.fr/topics> { <http://inria.fr/rr/doc.html> inria:theme "Music" . }
  • 50. openmodel • extensible vocabulary based on URIs • anyone can say anything about anything http://my_domain.org/my_path/my_type
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58. ACCESSING DATA ON THE WEB
  • 59. May 2007 April 2008 September 2008 March 2009 September 2010 Linking Open Data Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/ September 2011 0 100 200 300 400 10/10/2006 28/04/2007 14/11/2007 01/06/2008 18/12/2008 06/07/2009 22/01/2010 10/08/2010 26/02/2011 14/09/2011 01/04/2012
  • 60. thematic content Domains Number of datasets Number of Triples % Out links % Media 25 1 841 852 061 5,82 % 50 440 705 10,01 % Geography 31 6145 532 484 19,43 % 35 812 328 7,11 % Government 49 13 315 009 400 42,09 % 19 343 519 3,84 % Publications 87 2 950 720 693 9,33 % 139 925 218 27,76 % Inter-domain 41 4 184 635 715 13,23 % 63 183 065 12,54 % Life Sciences 41 3 036 336 004 9,60 % 191 844 090 38,06 % Users’ content 20 134 127 413 0,42 % 3 449 143 0,68 % 295 31 634 213 770 503 998 829 42% 20% 13% 10% 9% 6% 0% Government Geography Inter-domain Life Sciences Publications Media Users' content
  • 63. linked data principles Use RDF as data format  Use HTTP URIs as names for things so that people can look up those names  When someone looks up a URI, provide useful information (RDF, HTML, etc.) using content negotiation  Include links to other URIs so that related things can be discovered HTTP URI GET HTML,RDF,… GET 303
  • 64. DNShe who controls the name controls the access ex. bit.ly & Libya .fr * .inria isicil
  • 66. query with SPARQL SPARQL Protocol and RDF Query Language
  • 67. SPARQL in 3 parts part 1: query language part 2: result format part 3: access protocol
  • 68. SPARQL query SELECT ... FROM ... WHERE { ... }
  • 69. examplepersons at least 18-year old PREFIX ex: <http://inria.fr/schema#> SELECT ?person ?name WHERE { ?person rdf:type ex:Person . ?person ex:name ?name . ?person ex:age ?age . FILTER (?age > 17) }
  • 71. graph mapping / projection classical three clauses: – Select: clause to select the values to be returned – Where: triple/graph pattern to match – Filter: constraints expressed using test functions (XPath 2.0 or external)
  • 72. SPARQL triples • triples and question marks for variables: ?x rdf:type ex:Person • graph patterns to match: SELECT ?subject ?proprerty ?value WHERE {?subject ?proprerty ?value} • a pattern is, by default, a conjunction of triples SELECT ?x WHERE { ?x rdf:type ex:Person . ?x ex:name ?name . }
  • 73. question: • Query: SELECT ?name WHERE { ?x name ?name . ?x email ?email . } • Base: _:a name "Fabien" _:b name "Thomas" _:c name "Lincoln" _:d name "Aline" _:b email <mailto:thom@chaka.sn> _:a email <mailto:Fabien.Gandon@inria.fr> _:d email <mailto:avalandre@pachinko.jp> _:a email <mailto:bafien@fabien.info> • Results ? x2
  • 74. prefixes to use namespaces: PREFIX mit: <http://www.mit.edu#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> SELECT ?student WHERE { ?student mit:registeredAt ?x . ?x foaf:homepage <http://www.mit.edu> . } Base namespace : BASE <…>
  • 76. result formats • a binding i.e. list of all the selected values (SELECT) for each answer found; (stable XML format ; e.g. for XSLT transformations) • RDF sub-graphs for each answer found (RDF/XML format ; e.g. for application integration) • JSON (eg. ajax web applications) • CSV/TSV (eg. export)
  • 77. example of binding results for previous query in XML <?xml version="1.0"?> <sparql xmlns="http://www.w3.org/2005/sparql-results#"> <head> <variable name="student"/> </head> <results ordered="false" distinct="false"> <result> <binding name="student"> <uri>http//www.mit.edu/data.rdf#ndieng</uri></binding> </result> <result> <binding name="student"> <uri>http//www.mit.edu/data.rdf#jdoe</uri></binding> </result> </sparql>
  • 78. simplified syntax triples with a common subject: SELECT ?name ?fname WHERE { ?x a Person; name ?name ; firstname ?fname ; author ?y . } list of values ?x firstname "Fabien", "Lucien" . blank node [firstname "Fabien"] or [] firstname "Fabien" SELECT ?name ?fname WHERE { ?x rdf:type Person . ?x name ?name . ?x firstname ?fname . ?x author ?y . }
  • 79. source PREFIX mit: <http://www.mit.edu#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> FROM http//www.mit.edu/data.rdf SELECT ?student WHERE { ?student mit:registeredAt ?x . ?x foaf:homepage <http://www.mit.edu> . }
  • 80. optional part PREFIX mit: <http://www.mit.edu#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> SELECT ?student ?name WHERE { ?student mit:registeredAt ?x . ?x foaf:homepage <http://www.mit.edu> . OPTIONAL {? student foaf:name ?name . } } possibly unbound
  • 81. union alternative graph patterns PREFIX mit: <http://www.mit.edu#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> SELECT ?student ?name WHERE { ?student mit:registeredAt ?x . { { ?x foaf:homepage <http://www.mit.edu> . } UNION { ?x foaf:homepage <www.stanford.edu/> . } } }
  • 82. sort, filter and limit answers PREFIX mit: <http://www.mit.edu#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> SELECT ?student ?name WHERE { ?student mit:registeredAt ?x . ?x foaf:homepage <http://www.mit.edu> . ?student foaf:name ?name . ? student foaf:age ?age . FILTER (?age > 22) } ORDER BY ?name LIMIT 20 OFFSET 20 students older than 22 years sorted by name results from number #21 to #40
  • 83. operators • Inside the FILTER: – Comparators: <, >, =, <=, >=, != – Tests on variables : isURI(?x), isBlank(?x), isLiteral(?x), bound(?x) – Regular expression regex(?x, "A.*") – Attributes and values: lang(), datatype(), str() – Casting: xsd:integer(?x) – External functions and extensions – Boolean combinations: &&, || • In the where WHERE: @fr , ^^xsd:integer • In the SELECT: distinct
  • 84. other functions (v 1.1) isNumeric(Val) test it is a numeric value coalesce(val,…, val) first valid value IRI(Str)/URI(Str) to build an iri/uri from a string BNODE(ID) to build a blank node RAND() random value between 0 and 1 ABS(Val) absolute value CEIL(Val), FLOOR(Val), ROUND(Val) NOW() today’s date DAY(Date), HOURS(Date), MINUTES(Date), MONTH(Date), SECONDS(Date), TIMEZONE(Date), TZ(Date), YEAR(Date) to access different parts of a date MD5(Val), SHA1(Val), SHA256(Val), SHA384(Val), SHA512(Val) hash functions
  • 85. string / literal functions (v1.1) STRDT(value, type) build a typed literal STRLANG(value, lang) build a literal with a language CONCAT(lit1,…,litn) concatenate a list of literal CONTAINS(lit1,lit2), STRSTARTS(lit1,lit2), STRENDS(lit1,lit2) to test string inclusion SUBSTR(lit, start [,length]) extract a sub string ENCODE_FOR_URI (Str) encodes a string as URI UCASE (Str), LCASE (Str) uppercase and lowercase STRLEN (Str) length of the string
  • 86. aggregates group by + count, sum, min, max, avg, group_concat, or sample ex. average scores, grouped by the subject, but only where the mean is greater than 10 SELECT (AVG(?score) AS ?average) WHERE { ?student score ?score . } GROUP BY ?student HAVING(AVG(?score) > 10)
  • 87. question: PREFIX ex: <http://www.exemple.abc#> SELECT ?person WHERE { ?person rdf:type ?type . FILTER(! ( ?type = ex:Man )) }
  • 88. minussubstract a pattern PREFIX ex: <http://www.exemple.abc#> SELECT ?person WHERE { { ?x rdf:type ex:Person } minus {?x rdf:type ex:Man} }
  • 89. not existcheck the absence of a pattern PREFIX ex: <http://www.exemple.abc#> SELECT ?person WHERE { ?x ex:memberOf ?org . filter (not exists {?y ex:memberOf <Hell>}) }
  • 90. if… then… else prefix foaf: <http://xmlns.com/foaf/0.1/> select * where { ?x foaf:name ?name ; foaf:age ?age . filter ( if (langMatches( lang(?name), "FR"), ?age>=18, ?age>=21) ) }
  • 91. test a value is in / not in a list prefix foaf: <http://xmlns.com/foaf/0.1/> select * where { ?x foaf:name ?n . filter (?n in ("fabien", "olivier", "catherine") ) }
  • 92. valuespre-defined bindings select ?person where { ?person name ?name . VALUES (?name) { "Peter" "Pedro" "Pierre" } }
  • 93. paths prefix foaf: <http://xmlns.com/foaf/0.1/> select ?friends_fab where { ?x foaf:name "Fabien Gandon" ; foaf:knows+ ?friends_fab ; } / : sequence | : alternative + : one or several * : zero or several ? : optional ^ : reverse ! : negation {min,max} : length
  • 94. select expression select ?x (year(?date) as ?year) where { ?x birthdate ?date . }
  • 95. subquery / nested query select ?name where { {select (max(?age) as ?max) where { ?person age ?age } } ?senior age ?max ?senior name ?name }
  • 96. construct RDF as result PREFIX mit: <http://www.mit.edu#> PREFIX corp: <http://mycorp.com/schema#> CONSTRUCT { ?student rdf:type corp:FuturExecutive . } WHERE { ?student rdf:type mit:Student . }
  • 97. free description PREFIX mit: <http://www.mit.edu#> DESCRIBE ?student { ?student rdf:type mit:Student . } or DESCRIBE <…URI…>
  • 98. SPARQL protocol exchange queries and their results through the web
  • 99.
  • 101. QAKIS
  • 103.
  • 104.
  • 106. publication process demo • one-click setup • import raw data • transform to RDF • publish on the web • query online
  • 107.
  • 108. Test on DBpedia • Connect to: http://dbpedia.org/snorql/ or http://fr.dbpedia.org/sparql or … http://wiki.dbpedia.org/Internationalization/Chapters • Query: SELECT * WHERE { ?x rdfs:label "Paris"@fr . ?x ?p ?v . } LIMIT 10
  • 109.
  • 111. Linked Data Platform HTTP access to LD resources & containers get, post, put, delete resources from LD servers. GET /people/fab HTTP/1.1 Host: data.inria.fr PUT http://data.inria.fr/people/fab HTTP/1.1 Host: data.inria.fr Content-Type: text/turtle <fab> a foaf:Person ; rdfs:label "Fabien" ; foaf:mbox <fabien.gandon@inria.fr> . ? !
  • 113. semantic web: linked data and semantics of schemas a little semantics in a world of links
  • 114.
  • 115. had typed links… the original web
  • 116. publish the data schemas 180°C+ = ?  + = 
  • 117. what is the last document you read?
  • 119. your answer relies on a shared ontology we infer from it we all understood
  • 122. #21  #12 #48  #21#47  #21 ontological knowledge formalized #12 #21 #47 #48
  • 125. RDFS means RDF Schema
  • 126. RDFS provides primitives to Write lightweight ontologies
  • 127. RDFS to define classes of resources and organize their hierarchy Document Report
  • 128. RDFS to define relations between resources, their signature and organize their hierarchy creator author Document Person
  • 129. FO  R  GF  GRmapping modulo an ontology car vehicle car(x)vehicle(x) GF GRvehicle car O
  • 130. an old schema of RDFS W3C http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
  • 131. example of RDFS schema <rdf:RDF xml:base ="http://inria.fr/2005/humans.rdfs" xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns ="http://www.w3.org/2000/01/rdf-schema#> <Class rdf:ID="Man"> <subClassOf rdf:resource="#Person"/> <subClassOf rdf:resource="#Male"/> <label xml:lang="en">man</label> <comment xml:lang="en">an adult male person</comment> </Class> <Man> a Class ; subClassOf <Person>, <Male> .
  • 132. example of RDFS properties <rdf:RDF xml:base ="http://inria.fr/2005/humans.rdfs" xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns ="http://www.w3.org/2000/01/rdf-schema#> <rdf:Property rdf:ID="hasMother"> <subPropertyOf rdf:resource="#hasParent"/> <range rdf:resource="#Female"/> <domain rdf:resource="#Human"/> <label xml:lang="en">has for mother</label> <comment xml:lang="en">to have for parent a female. </comment> </rdf:Property> <hasMother> a rdf:Property ; subPropertyOf <hasParent> ; range <Female> ; domain <Human> .
  • 133. example of RDF using this schema <rdf:RDF xmlns:rdf ="http://www.w3.org/1999/02/22-rdf- syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns="http://inria.fr/2005/humans.rdfs#" xml:base=" http://inria.fr/2005/humans.rdfs-instances" > <rdf:Description rdf:ID="Lucas"> <rdf:type rdf:resource="http://inria.fr/2005/humans.rdfs#Man"/> <hasMother rdf:resource="#Laura"/> </rdf:Description> <Man rdf:ID="Lucas"> <hasMother rdf:resource="#Laura"/> </Man> <Luca> a Man; hasMother <Laura> .
  • 134. rdfs:label a resource may have one or more labels in one or more natural language <rdf:Property rdf:ID='name'> <rdfs:domain rdf:resource='Person'/> <rdfs:range rdf:resource='&rdfs;Literal'/> <rdfs:label xml:lang='fr'>nom</rdfs:label> <rdfs:label xml:lang='fr'>nom de famille</rdfs:label> <rdfs:label xml:lang='en'>name</rdfs:label> </rdf:Property> <name> a rdf:Property ; range rdfs:Literal ; domain <Person> ; label "nom"@fr, "nom de famille"@fr, "name"@en .
  • 135. rdfs:comment & rdfs:seeAlso comments provide definitions and explanations in natural language <rdfs:Class rdf:about=‘#Woman’> <rdfs:subClassOf rdf:resource="#Person"/> <rdfs:comment xml:lang=‘fr’>une personne adulte du sexe féminin</rdfs:comment> <rdfs:comment xml:lang=‘en’>a female adult person </rdfs:comment> </rdfs:Class> see also… <rdfs:Class rdf:about=‘#Man’> <rdfs:seeAlso rdf:resource=‘#Woman’/> </rdfs:Class> <Woman> a rdfs:Class ; rdfs:subClassOf <Person> ; rdfs:comment "adult femal person"@en ; rdfs:comment "une adulte de sexe féminin"@fr . <Man> a rdfs:Class ; rdfs:seeAlso <Woman> .
  • 138. OWLin one… enumeration intersection union complement  disjunction restriction! cardinality 1..1 algebraic properties equivalence [>18] disjoint union value restrict. disjoint properties qualified cardinality 1..1 ! individual prop. neg chained prop.   keys …
  • 139. enumerated class define a class by providing all its members <owl:Class rdf:id="EyeColor"> <owl:oneOf rdf:parseType="Collection"> <owl:Thing rdf:ID="Blue"/> <owl:Thing rdf:ID="Green"/> <owl:Thing rdf:ID="Brown"/> <owl:Thing rdf:ID="Black"/> </owl:oneOf> </owl:Class> {a,b,c,d,e}
  • 140. classes defined by union of other classes <owl:Class> <owl:unionOf rdf:parseType="Collection"> <owl:Class rdf:about="#Person"/> <owl:Class rdf:about="#Group"/> </owl:unionOf> </owl:Class>
  • 141. classes defined by intersection of other classes <owl:Class rdf:ID="Man"> <owl:intersectionOf rdf:parseType="Collection"> <owl:Class rdf:about="#Male"/> <owl:Class rdf:about="#Person"/> </owl:intersectionOf> </owl:Class>
  • 142. complement and disjunction complement class <owl:Class rdf:ID="Male"> <owl:complementOf rdf:resource="#Female"/> </owl:Class> declare a disjunction <owl:Class rdf:ID="Square"> <owl:disjointWith rdf:resource="#Round"/> </owl:Class> 
  • 143. restriction on all values <owl:Class rdf:ID="Herbivore"> <subClassOf rdf:resource="#Animal"/> <subClassOf> <owl:Restriction> <owl:onProperty rdf:resource="#eats" /> <owl:allValuesFrom rdf:resource="#Plant" /> </owl:Restriction> </subClassOf> </owl:Class> !
  • 144. restriction on some values <owl:Class rdf:ID="Sportive"> <owl:equivalentClass> <owl:Restriction> <owl:onProperty rdf:resource="#hobby" /> <owl:someValuesFrom rdf:resource="#Sport" /> </owl:Restriction> </owl:equivalentClass> </owl:Class> !
  • 145. restriction to an exact value <owl:Class rdf:ID="Bike"> <subClassOf> <owl:Restriction> <owl:onProperty rdf:resource="#nbWheels" /> <owl:hasValue>2</owl:hasValue> </owl:Restriction> </subClassOf> </owl:Class> !
  • 146. restriction on cardinality how many times a property is used for a same subject but with different values • Constraints: minimum, maximum, exact number • Exemple <owl:Class rdf:ID="Person"> <subClassOf> <owl:Restriction> <owl:onProperty rdf:resource="#name" /> <owl:maxCardinality>1</owl:maxCardinality> </owl:Restriction> </subClassOf> </owl:Class> 1..1
  • 147. types of properties • ObjectProperty are relations between resources only e.g. hasParent(#thomas,#stephan) • DatatypeProperty have a literal value possibly typed ex:hasAge(#thomas,16^^xsd:int) • AnnotationProperty are ignored in inferences and used for documentation and extensions
  • 148. algebraic properties • Symmetric property, xRy  yRx <owl:SymmetricProperty rdf:ID="hasSpouse" /> • Inverse property, xR1y  yR2x <rdf:Property rdf:ID="hasChild"> <owl:inverseOf rdf:resource="#hasParent"/> </rdf:Property> • Transitive property, xRy & yRz  xRz <owl:TransitiveProperty rdf:ID="hasAncestor" /> • Functional property, xRy & xRz  y=z <owl:FunctionalProperty rdf:ID="hasMother" /> • Inverse functional property, xRy & zRy  x=z <owl:InverseFunctionalProperty rdf:ID="hasSocialSecurityNumber" /> ! !
  • 149. equivalencies and alignment • equivalent classes : owl:equivalentClass • equivalent properties: owl:equivalentProperty • identical or different resources: owl:sameAs, owl:differentFrom 
  • 150. document the schemas description of the ontology owl:Ontology, owl:imports, owl:versionInfo, owl:priorVersion, owl:backwardCompatibleWith, owl:incompatibleWith versions of classes and properties owl:DeprecatedClass, owl:DeprecatedProperty
  • 151. OWL profiles EL: large numbers of properties and/or classes and polynomial time. QL: large volumes of instance data, and conjunctive query answering using conventional relational database in LOGSPACE RL: scalable reasoning without sacrificing too much expressive power using rule-based reasoning in polynomial time
  • 152.
  • 153.
  • 155. semantic waste separation the web is a garbage can, the semantic web will be a semantic garbage can.
  • 156.
  • 157.
  • 159.
  • 160. Rule Interchange Format (RIF) core and extensions
  • 161. e.g. infer new relations rule: if a member of a team is interested in a topic then the team as a whole is interested in that topic ?person interestedBy ?topic ?person member ?team  ?team interestedBy ?topic interestedByPerson ?person Topic ?topic member Team ?team interestedBy
  • 162. question: forward chaining ex:Fabien ex:activity ex:Research ex:Fabien ex:in ex:WimmicsTeam ex:WimmicsTeam ex:in ex:INRIASophia ex:INRIASophia ex:in ex:INRIA ex:WimmicsTeam ex:activity ex:Research ex:INRIASophia ex:activity ex:Research ex:INRIA ex:activity ex:Research IF ?x ex:activity ?y ?x ex:in ?z THEN ?z ex:activity ?y
  • 163. RIF Core subset shared by most systems: add only employee1 [function-> “executive” bonus -> 10 ] ForAll ?emp (?emp [ bonus -> 15 ] :- ?emp [ function -> “executive” ] ) employee1 [function -> “executive” bonus -> 10 bonus -> 15 ]
  • 164. RIF Core monotonic Horn clause on frames conclusion :- hyp1 and hyp2 and hyp3 … • IRI as constants • frames as triplets • lists • existential quantification in condition • class membership and equality in condition
  • 165. RIF BLD (Basic Logic Dialect) still monotonic : no changes. • conjunction in conclusion • fonctions, predicates and named arguments f(?x) Maganer(?e) :- Exists ?g (manage(?e ?g)) • disjunction in condition • equality in conclusion • sub-classes
  • 166. RIF PRD (Production Rules Dialect) full production rules in forward chaining • add, delete, modify, run • instantiate frames (new) • negation as failure (ineg) • no longer monotonic Forall ?customer ?purchasesYTD (If And( ?customer#ex:Customer ?customer[ex:purchasesYTD->?purchasesYTD] External(pred:numeric-greater-than(?purchasesYTD 5000)) ) Then Do( Modify(?customer[ex:status->"Gold"]) ) ) (from PRD Rec. Doc.)
  • 167. RIF, RIF, RIF,… • DTB (Datatypes and Built-Ins) : data types with their predicates and functions • FLD: how to specify new dialects extending BLD • SWC : syntax and semantics to combine RIF, RDF graphs, RDFS and OWL (RL)
  • 169. natural language expressions to refer to concepts 169 inria:CorporateSemanticWeb skos:prefLabel "corporate semantic web"@en; skos:prefLabel "web sémantique d'entreprise"@fr; skos:altLabel "corporate SW"@en; skos:altLabel "CSW"@en; skos:hiddenLabel "web semantique d'entreprise"@fr. labels
  • 170. between conceptsinria:CorporateSemanticWeb skos:broader w3c:SemanticWeb; skos:narrower inria:CorporateSemanticWiki; skos:related inria:KnowledgeManagement. relations
  • 171. inria:CorporateSemanticWeb skos:scopeNote "only within KM community"; skos:definition "a semantic web on an intranet"; skos:example "Nokia's internal use of RDF gateway"; skos:historyNote "semantic intranet until 2006"; skos:editorialNote "keep wikipedia def. uptodate"; skos:changeNote "acronym added by fabien".
  • 172. EXTENDING TO OTHER SOURCES
  • 173. toward all forms of data on the web
  • 174. many databuried and dormant in web pages
  • 175. R2RML a standard transformation of a relationnal database in RDF schema mapping
  • 176. direct mapping • cells of a line  triples with a shared subject • names of columns  names of properties • each value of a cell  one object • links between tables name fname age doe john 34 did sandy 45 #s1 :name "doe" #s1 :fname "john" #s1 :age "34" #s2 :name "did" #s2 :fname "sandy" #s2 :age "45" #s3 …
  • 177. example of mapping ISBN Author Title Year 0006511409X id_xyz The Glass Palace 2000 ID Name Homepage id_xyz Ghosh, Amitav http://www.amitavghosh.com http://…isbn/000651409X Ghosh, Amitav http://www.amitavghosh.com The Glass Palace 2000 a:name a:homepage a:author
  • 178. (1) transforming table of persons ISBN Author Title Year 0006511409X id_xyz The Glass Palace 2000 ID Name Homepage id_xyz Ghosh, Amitav http://www.amitavghosh.com http://…isbn/000651409X Ghosh, Amitav http://www.amitavghosh.com The Glass Palace 2000 a:name a:homepage a:author :P_Table rdf:type rr:TriplesMap ; rr:subjectMap [ rr:termtype "BlankNode" ; rr:column "ID" ; ] ; rr:predicateObjectMap [ rr:predicateMap [ rr:predicate a:name ]; rr:objectMap [ rr:column "Name" ] ] ; rr:predicateObjectMap [ rr:predicateMap [ rr:predicate a:homepage ]; rr:objectMap [ rr:column "Homepage" ; rr:termtype "IRI" ] ] ;
  • 179. (2) transforming table of books ISBN Author Title Year 0006511409X id_xyz The Glass Palace 2000 ID Name Homepage id_xyz Ghosh, Amitav http://www.amitavghosh.com http://…isbn/000651409X Ghosh, Amitav http://www.amitavghosh.com The Glass Palace 2000 a:name a:homepage a:author :B_Table rdf:type rr:TriplesMap ; rr:subjectMap [ rr:template "http://...isbn/{ISBN}"; ]; rr:predicateObjectMap [ rr:predicateMap [ rr:predicate a:title ]; rr:objectMap [ rr:column "Title" ] ] ; rr:predicateObjectMap [ rr:predicateMap [ rr:predicate a:year ]; rr:objectMap [ rr:column "Year" ; ] ] ;
  • 180. (3) linking tables ISBN Author Title Year 0006511409X id_xyz The Glass Palace 2000 ID Name Homepage id_xyz Ghosh, Amitav http://www.amitavghosh.com http://…isbn/000651409X Ghosh, Amitav http://www.amitavghosh.com The Glass Palace 2000 a:name a:homepage a:author :B_Table a rr:TriplesMap ; ... rr:refPredicateObjectMap [ rr:refPredicateMap [ rr:predicate a:author ]; rr:refObjectMap [ rr:parentTriplesMap :P_Table ; rr:joinCondition "{child}.Author = {parent}.ID" ] ] ].
  • 181. schema.org schemas to improve index, search and display e.g: • Creative works, Book, Movie, MusicRecording, Recipe, TVSeries ... • Embedded non-text objects, AudioObject, ImageObject, VideoObject • Event • Organization • Person • Place, LocalBusiness, Restaurant ... • Product, Offer, AggregateOffer • Review, AggregateRating = + + +
  • 182. RDFa 1.1: example on schema.org <div vocab="http://schema.org/" typeof="Product"> <img rel="image" src="dell-30in-lcd.jpg" /> <span property="name">Dell UltraSharp 30" LCD Monitor</span> <div rel="hasAggregateRating" > <div typeof="http://schema.org/AggregateRating"> <span property="ratingValue">87</span> out of <span property="bestRating">100</span> based on <span property="ratingCount">24</span> user ratings </div> </div> <div rel="offers" > <div typeof="http://schema.org/AggregateOffer"> <span property="lowPrice">$1250</span> to <span property="highPrice">$1495</span> from <span property="offerCount">8</span> sellers </div> </div> (…) PS: RDFa Lite = vocab + typeof + property + about + prefix.
  • 183. GRDDL opens formats by allowing us to declare RDF extraction algorithms inside XML documents <head profile="http://www.w3.org/2003/g/data-view"> <title>The man who mistook his wife for a hat</title> <link rel="transformation" href="http://www.w3.org/2000/06/ dc-extract/dc-extract.xsl" /> <meta name="DC.Subject" content="clinical tales" /> …
  • 184.
  • 185.
  • 186.
  • 187.
  • 188.
  • 189.
  • 190. code inside the page <html xmlns="http://www.w3.org/1999/xhtml" dir="ltr" lang="en-US" xmlns:fb="https://www.facebook.com/2008/fbml"> <head prefix="og: http://ogp.me/ns# fb: http://ogp.me/ns# YOUR_NAMESPACE: http://ogp.me/ns/apps/YOUR_NAMESPACE#"> <meta property="fb:app_id" content="YOUR_APP_ID" /> <meta property="og:type" content="YOUR_NAMESPACE:recipe" /> <meta property="og:title" content="Stuffed Cookies" /> <meta property="og:image" content="http://example.com/cookie.jpg" /> <meta property="og:description" content="The Turducken of Cookies" /> <meta property="og:url" content="http://example.com/cookie.html"> <script type="text/javascript"> function postCook() { FB.api('/me/YOUR_NAMESPACE:cook' + '?recipe=http://example.com/cookie.html','post', (…) }); } </script> </head> <body> (…) <form> <input type="button" value="Cook" onclick="postCook()" /> </form> </body> </html>
  • 191.
  • 192. VoID: describing RDF datasets/linksets
  • 193. :DBpedia a void:Dataset; void:sparqlEndpoint <http://dbpedia.org/sparql>; void:feature :RDFXML ; void:subset :DBpedia2Geonames ; void:uriLookupEndpoint <http://lookup.dbpedia.org/api/search.asmx/KeywordSearch? QueryString=> ; dcterms:modified "2008-11-17"^^xsd:date; dcterms:title "DBPedia"; dcterms:description "RDF data extracted from Wikipedia"; dcterms:publisher :DBpedia_community; dcterms:license <http://creativecommons.org/licenses/by-sa/3.0/>; dcterms:source <http://dbpedia.org/resource/Wikipedia>. :Geonames a void:Dataset; void:sparqlEndpoint <http://geosparql.appspot.com/query>; void:triples "107983838"^^xsd:integer ; dcterms:subject <http://dbpedia.org/resource/Location> . :DBpedia2Geonames a void:Linkset ; void:linkPredicate owl:sameAs ; void:target :DBpedia ; void:target :Geonames . e.g. DBpedia dataset
  • 195. Data Cube: publish multi-dimensional data (statistics)
  • 196. CSV-LD & Linked CSV • contexts to interpret and generate CSV • conventions for CSV to be linked in RDF
  • 197. SAWSDLsemantic annotation of WSDL (W3C Rec. 2007)
  • 199. semantically services annotated and searched providerserviceclientrequester directory 3 12
  • 200. a (too) fast three-tier summary RDFa, microdata,… LDP, HTTP, JSON-LD, … R2RML, SPARQL, RDF, … presentation logic data
  • 202. Provenance: PROV-DM & PROV-O describe entities and activities involved in providing a resource
  • 205. PROV-DM & PROV-O: primer example ex:compose prov:used ex:dataSet1 ; prov:used ex:regionList . ex:composition prov:wasGeneratedBy ex:compose . ex:illustrate prov:used ex:composition . ex:chart1 prov:wasGeneratedBy ex:illustrate .
  • 206. PROV primer full example
  • 207. annotating multimédia elements • semantic description of multimedia resources [Media Annotation] • pointing to internal elements of multimedia resources [Media Fragment]
  • 208. multimedia fragment • part of the URL after the # http://www.example.com/example.ogv#track=audio&t=10,20 • dimensions: – temporal: t=10,20 / t=npt:,0:02:01.5 / t=clock:2009-07-26T11:19:01Z – spatial: xywh=pixel:160,120,320,240 / xywh=percent:25,25,50,50 – track: track=1 / track=video&track=subtitle / track=Wide – named: id=chapter-1 • fragment are not sent with the URL but encoded in the HTTP request
  • 209. ontologies for multimedia descriptions ontology for Media Resources 1.0 <video.ogv> a ma:MediaResource ; ma:hasTrack <video.ogv#track=audio>, <video.ogv#track=subtitle>; ma:hasSubtitling <video.ogv#track=subtitle> ; ma:hasSigning <video.ogv#xywh=percent:70,70,90,90> . <video.ogv#track=audio> a ma:AudioTrack ; ma:hasLanguage [ rdfs:label "en-GB" ] ; ma:hasFragment <video.ogv#track=audio&t=10,20> . <video.ogv#track=audio&t=10,20> a ma:MediaFragment ; ma:hasLanguage [ rdfs:label "fr" ] . <video.ogv#track=subtitle> a ma:DataTrack ; ma:hasLanguage [ rdfs:label "es" ] . <video.ogv#xywh=percent:70,70,90,90> a ma:MediaFragment ; ma:hasLanguage [ rdfs:label "bfi" ] .
  • 211. some pointers• W3C standards http://www.w3.org/standards/semanticweb/ • SW Tools http://www.w3.org/2001/sw/wiki/Tools • Linked Data Book http://linkeddatabook.com/editions/1.0/ • W3DevCampus http://www.w3devcampus.com/ • EUCLID material http://www.euclid-project.eu/
  • 218. open your data to those who could use them
  • 220. 66 FOAF primitives 3 475 908 348 references (2) x 52 millions “a small tree ruling a big graph”(1) (1) Franck Van Harmelen, ISWC 2011 (2) Libby Miller, 2009
  • 221. “semantic web” and not “semanticweb” [C. Welty, ISWC 2007] “a lightweight ontology allows us to do lightweight reasoning” [J. Hendler, ISWC 2007]
  • 222. data data bases data models open data linked data closed data enterprise data linked enterprise data linked open data data schemas semantic web of data data structures linked data schemas web of data big data big data streams data streams linked data streams web of sensors, things, … VELOCITY big linked data VOLUME VARIETY VVeb data linked healthcare data VICINITY VISIBILITY personal data data mining data type
  • 225. identify describe & link query reasoning trace URI RDF HTTP, SPARQL, LDP RDFS & OWL PROV-O GOALS AND MEANS
  • 226. identify describe & link query reasoning trace http://fabien.fr#me #me type man select * {?r type ?t} man subClassOf male wasAttributedTo #me GOALS AND MEANS
  • 228. he who controls metadata, controls the web and through the world-wide web many things in our world. fabien, gandon, @fabien_gandon, http://fabien.info WWW 2014