SlideShare ist ein Scribd-Unternehmen logo
1 von 115
Downloaden Sie, um offline zu lesen
X X X N 7 . 7 X
STEEL
HEAT TREATING AND ALLOY
SELECTION
INLAIN4D NORTHWEST
METALLURGICAL SERVICES, 1744--
Excellence in Heat 73-eating,* the Northwest
Dan Tabish
President
I6203 E. Marietta Ave. • Spokane, Washington 99216
(509) 922-7663 • 1-800-379-2231 • FAX: (509) 922.-7626
dan4inlandmet,com www.intandmet.corn - cell: (509) 939-1590
What is the difference between
Iron, Steel, and Cast Iron??
► Iron – Elemental Fe
 Limited engineering usefulness
 Allotropic element – exists in more than one crystalline form
Alloying
► Alloying is the intentional addition of elements to a
metal.
 Improvements to properties such as strength, fracture
toughness, corrosion resistance and other properties
 Is steel an alloy?
 What is the base metal?
 What are the different alloying elements?
►Steel – Alloy of Fe and other elements
 Primary ingredient is carbon
 Carbon capitalizes on the allotropic phenomenon of iron
and turns it from mediocrity into the position of the
world’s unique structural material.
 - normally < 1% carbon, but can be as high as 2%.
 - normally < 1% manganese, but can be higher.
Cast Iron– Alloy of Fe and other elements
• Carbon content exceeds the
solubility in the iron and
therefore forms graphite in
various forms within the structure.
• - normally 2.5 % - 4.0 % carbon
• - normally 1.0 % - 3.0 % silicon
Graphite in form of flakes
Engine cylinder blocks, flywheels,
gearbox cases, machine-tool bases
Graphite in form of nodules
Gears, camshafts, crankshafts
 With a lower silicon content (graphitizing agent) and
faster cooling rate, the carbon in white cast
iron precipitates out of the melt as the metastable
phase cementite, Fe3C, rather than graphite
 Too brittle for most structural components, but very useful
in wear applications.
 Plain Carbon Steel
• Typical Composition
 0.05 to 1.0 % Carbon
 ~ 0.25% Silicon
 ~ 0.5% Manganese
 Maximum of 0.04% Sulfur
 Maximum of 0.04% Phosphorus
• Also referred to as “mild steel”
• Examples are 1018, A36
 Alloy Steel
• Plain carbon steel with intentional additions of chromium,
nickel, molybdenum, tungsten, vanadium, etc.
• Examples are 4130, 4140, 4340, 8620
Low Carbon Steels
• 0.05 – 0.25 % Carbon
• Case hardening
Medium Carbon Steels
• 0.30 – 0.65 % Carbon
• Through hardening
High Carbon Steels
• 0.60 – 1.0 % Carbon
• Springs and coils
 Alloy steel with > 12% chromium
 300-series
• Examples are 304, 316, 321 (nickel and chromium)
 400-series
• Examples are 410, 416, 420, 440A, 440B, 440C (no
nickel)
 Precipitation-hardenable
• Examples are 13-8 PH, 17-4 PH, 15-5 PH, and 17-7 PH
(nickel and chrome)
• Generally any steel used
to manufacture tools or
dies.
• Specifically specialized
steels with chemistries
that are balanced for
given applications and
heat treatment.
 Examples are O1, A2,
D2, S7, H13, M2, M4,
M42
ASTM Specifications
AMS Specifications
Unified Numbering System
(UNS)
AISI / SAE Designations
•Dominant system for
identifying steels
 American Society of Testing & Materials
 All of the ASTM specs for steel start with “A”
• ie. ASTM A36, ASTM A514, ASTM A148
 Chronological order of acceptance
 The numbers don’t mean anything
 Most common ASTM steel specs are:
• A36 – structural mild steel – 36,000 psi yield min
• A588 – structural mild steel - 50,000 psi yield min
• A514 – heat treated grade – 100,000 psi yield min
 Also referred to as “T1”
• Except for stress relieving and some carburizing,
these steels are normally not heat treated.
110ANNUAL BOOK OF ASTM STANDARDS
Listed by Section and Volume
Section I— Iron and Steel Products
Volume 01.01 Steel—Piping, Tubing, Fittings
Volume 01.02 Ferrous Castings; Ferroalloys
Volume 01.03 Steel—Plate, Sheet, Strip, Wire; Stainless Steel Bar
Volume 01.04 Steel—Structural, Reinforcing, Pressure Vessel, Railway
Volume 01.05 Steel—Bars, Forgings, Bearing, Chain, Springs
Volume 01.06 Coated Steel Products
Volume 01 07 Ships and Marine Technology
Section 2—Nonferrous Metal Products
Volume 02.01 Copper and Copper Alloys
Volume 02.02 Aluminum and Magnesium Alloys
Volume 02.03 Electrical Conductors
Volume 02.04 Nonferrous Metals—Nickel, Cobalt, Lead, Tin, Zinc, Cadmium, Precious, Reactive, Refractory Metals and
Alloys
Volume 02.05 Metallic and Inorganic Coatings; Metal Powders, Sintered P/M Structural Parts
Section 3— Metals Test Methods and Analytical Procedures
Volume 03.01 Metals—Mechanical Testing; Elevated and Low-Temperature Tests; Metallography
Volume 03.02 Wear and Erosion; Metal Corrosion
Volume 03.03 Nondestructive Testing
Volume 03.04 Magnetic Properties; Materials for Thermostats, Electrical Heating and Resistance, Contacts, and Connectors
Volume 03.05 Analytical Chemistry for Metals, Ores, and Related Materials (I): C 571 7 E 354.
( I D Designation: A 3 6 / 4 36M — 94
Standard Specification for
Carbon Structural Steel'
T h i s standard is issued under the fixed designation A 3 6 / A 361W the number immediately following the designation indicates the year
of original adoption or. In the case o f revision, the year of last revision. A n u m b e r in parentheses indicates the year o f last reapproval.
A superscript epsilon ( ) indicates an editorial change since the last revision o r reapproval.
This .vandarei has been a p p r m e d for use b y agencies o f the Depariment f DIICHNe. C a n s a l l t h e D f i l ) I n / e x ' / Spec 1;4:alums a n d
Standards for the specific year of issue which has been adapted by M c Department rtt Defense.
1. Scope
1.1 T h i s specification' covers carbon steel shapes, plates,
and bars o f structural quality for use i n riveted, bolted, o r
welded construction of bridges and buildings, and for general
structural purposes.
1.2 Supplemental requirements are provided where i m -
proved internal quality and notch toughness are important.
These shall apply only when specified by the purchaser in the
order.
1.3 W h e n the steel is to be welded, it is presupposed that a
welding procedure suitable f o r the grade o f steel a n d i n -
tended use o r service will be utilized. See Appendix X 3 o f
Specification A 6/A 6 M for information on weldabilitv.
1.4 T h e purchaser s h o u l d consider specifying supple-
mental requirements, such as fine austenitic grain size and
Charpy V- N o t c h I m p a c t requirements. w h e n G r o u p 4 o r
Group 5 wide flange shapes are specified f o r use i n other
than column or compression applications.
1.5 T h e values stated i n either inch-pound units o r SI
(metric) units are t o b e regarded separately as standard.
Within the text, t h e SI units are shown i n brackets. T h e
values stated i n each system a r e n o t exact equivalents,
therefore, each system m u s t b e used independent o f the
other. Combining values from the two systems may result in
nonconformance with this specification.
2, Referenced Documents
2.1 A S T M Standards.-
TA B L E 1 A p p u r t e n a n t Material Specifications
NOTE—The specifier should De satisfied o f the suitability of these materials for
true i n t e n d e d application. C o m p o s i t i o n a n d / o r mechanical properties m a y b e
different than specified in A 36/A 36M.
Material A S T M Designation
Steel rivets
Bolts
High-strength bons
Steel nuts
Cast steel
Forgings (carbon steel)
Hot-rolled sheets and strip
Cold-lormed
Hot-formec tubing
A 502, Grade 1
A 307, Grade A or F 568 C l a s s 4.6
A 325 or A 325M
A 563 or A 5 6 3 M
A 27/A 27M. Grade 6 5 - 3 5 [450-2401
A 668, Class D
A 570/A 570M. Grade 36
A 500, Grade B
A 501
A 500 Specification f o r Cold-Formed Welded and Seam-
less Carbon Steel Structural Tu b i n g i n Rounds a n d
Shapes°
A 50 I Specification for Hot-Formed Welded and Seamless
Carbon Steel Structural Tubing6 •
A 502 Specification f o r Steel Structural Rivets5
A 563 Specification f o r Carbon and Alloy Steel Nuts5
A 563M Specification f o r Carbon and A l l o y Steel N u t s
[Metric]5
A 570/A 570M Specification f o r Steel, Sheet and Strip,
Carbon, Hot-Rolled, Structural Quality7
A 668 Specification f o r Steel Forgings, Carbon and Alloy,
for General Industrial Uses
F 568 Specification for Carbon and Alloy Steel Externally
Threaded Metric Fasteners5
Aerospace Materials
Specifications
Chronological order of
acceptance
• The number normally means nothing
-
INITg The Engineering Society
— F o r Advancing Ilitobility
- L a n d Sea Air and Space®
: ) i N T E R N A T I O N A L M A T E R I A L
AEROSPACE
/ t D . g i U •
IsSued
400 Commonwealth Drive, Warrendale, PA 15096-0001
SPECIFICATION
Submitted for recognition as an American National Standard 1
Aluminum Allay Alclad 7075, Plate and Sheet
NOTICE
ANIS-W.-A-250M 3
AUG 1997
UNS A87075
This document has been taken directly from Federal Specification QQ-A-250113E, Amendment 1, and
contains only minor editorial and format changes required to bring it into conformance with the
publishing requirements of SAE technical standards.
The original Federal Specification was adopted as an SAE standard under the provisions of the SAE
Technical Standards Board (TSB) Rules and Regulations (TSB 001) pertaining to accelerated adoption
of government specifications and standards. TSB rules provide for (a) the publication of portions of
unrevised government specifications and standards without consensus voting at the SAE Committee
level, (b) the use of the existing government specification or standard format; and (c) the exclusion of
any qualified product list (QPL) sections.
The complete requirements for procuring 7075 aluminum alloy alclad plate and sheet described herein
shall consist of this document and the latest issue of AMS-QQ-A-250.
1. SCOPE AND CLASSIFICATION:
1.1 S c o p e :
1
 Developed by ASTM, SAE, and several other
technical societies, trade associations, and U.S.
Government agencies.
 Consists of a letter and five numerals.
• The letter indicates the class of alloy
• The numerals define specific alloys within
the class
• Most carbon and alloy steels start with “G”,
stainless steels start with “S”, tool steels start
with “T”.
 Most widely used system.
 Carbon & Alloy Steels – four digits -
numbers actually mean something!!
• First two digits = alloy system
• Second two digits = carbon content in
hundredths percent
• ie. 1018, 1040, 4140, 4340, 8620, 52100
• Other letters are added in for different reasons
 L, B, H, etc
Handout #1
SERIES
D E S I G N AT I O N
10XX
11X
2.xx
5xx
13xx
40xx
41xx
43xx
46xx
47xx
48xx
51xx
51xxx
5'2xxx
61xx
86xx
87xx
88xx
92xx
50Bxx
5lBxx
8lBxx
94Bxx
TYPE A N D A P P R O X I M AT E P E R C E N TA G E S OF
IDENTIFYING E L E M E N T S
Nonresururized, Manganese 1.00 per cent maximum
Resulturized
Rephosphonzed and Resultunzed
Nonresulturized, Margalese maximum over 1 00 per cent
Manganese 1.75
Molybdenum 0.25
Chromium 0.50, 0.80 or 0.95. Molybdenum 0.12, 0,16, 0.20 or 0.30
Nickel 1.83, Chromium 0.50 or 0.80, Molybdenum 0.25
Nickel 0.85 or 1.83, Molybdenum 0.20 or 0.25
Nickel 0.85 or 1.05, Chromium 0.55 or 0.45. Molybdenum 0.20, 0.35 or 0.52
Nickel 3.40, Molybdenum 0.25
Chromium 0.80, 0.88, 0.93, 0.95 or 1.00
Chromium 1.03
Chromium 1.45
Chromium 0.60, or 0.95, Vanadium 0.13 or min. 0.15
Nickel 0.55, Chromium 0.50, Molybdenum 0.20
Nickel 0.55, Chromium 0.50, Molybdenum 0.25
Nickel 0.55, Chromium 0.50, Molybdenum 0.35
Silicon 2.00, Silicon 1.00 or 1.40 8, Chromium 0.55
Chromium 0.28 or 0.50
Chromium 0,80
Nickel 0.30, Chromium 0.45, Molybdenum 0.12
Nickel 0.45, Chromium 0.40, Molybdenum 0.12
B denotes Boron Steel
,..1111F
Handout #2
IRONANDSTEEL
SAE-AISIsystemofdesignations
Numerals T y p e ofsteeland
anddigits n o m i n a l alloy content,%
Carbonsteels
10xx(a) P l a i n carbon(Mn1.00max)
11)0( R e s u l t u r i z e d
12>c<•• Resulfurized andrephosphorized
15xx P l a i n carbon(maxMn1.00-1.65)
Manganesesteels
13xx M n 1.75
Nickel steels
23)0( N i 3.50
25xx N i 5.00
Nickel-chromium steels
31)o( N i 1.25;Cr0,65and0.80
32)0( N i 1 . 7 5 ; Cr1.07
33xx N i 3.50;Cr1.50and1.57
34xx N i 3.00;Cr077
Molybdenum steels
40xx M o 0,20and0.25
44xx M o 0.40and0.52
Chromium-molybdenumsteels
41xx C r 0.50,0.80,and0.95;
Mo012,0.20,025,and0.30
Numerals T y p e ofsteeland
anddigits n o m i n a l alloy content,%
Nickel-chromium-molybdenum steels
43xx N i 1.82;Cr0.50and0.80;Mo0.25
43BVxx N i 1.82;Cr0.50;Mo0.12and
0.25;V0.03min
47)0( N i 1.05;Cr0.45;Mo020and
•0.35
81)0( N i 0.30;Cr0.40;Mo0.12
86xx N i 0.55;Cr0.50;Mo0.20
87xx N i 0.55;Cr0.50;Mo025
88xx N i 0.55;Cr0.50;Mo035
93)0( N i 325;Cr1.20;Mo0.12
94xx N i 0.45;Cr0.40;Mo0.12
97)0( N i 0.55;Cr020;Mo0.20
98xx N i 1.00;Cr0.80;Mo0.25
Nickel-molybdenum steels
46xx N i 0•85and1.82;Mo020and0.25
48xx N i 3,50;Mo0.25
Chromium steels
50xx C r 0.27,0.40,0.50,and0.65
51xx C r 0.80,0.87,0.92,095,1.00,and1.05
(a)Thexxinthelasttwodigitsofthesedesignationsindicatesthatthecarboncontent(inhundredthsofapercent)istobeinserted.
Numerals T y p e ofsteeland
anddigits n o m i n a l alloy content,
Chromium (bearing)steels
50)0(x C r 0.50,C1.00min
51)00( C r 1.02,C1.00min
52)0(x C r 1 . 4 5 , C1.00min
Chromium-vanadiumsteels
61xx Cr 0.60,0.80,0.95;V0.10and0.15min
Tungsten-chromiumsteel
72xx W 1.75;Cr0.75
Silicon-manganesesteels
92xx S i 1.40and2.00;Mn0.65,0.82,
and0.85;Cr0and0.65
High-strength low-alloy steels
9xx V a r i o u s SAEgrades
Boronsteels
)0(Bxx B denotesboronsteel
Leadedsteels
xxLxx L denotesleadedsteel
1
,:oxcccoxccccoxcccox4ccox•xccox•xcco:oxcco:oxcox•xccox•xccox•xccox•xccox•xcco:oxcco:oxcox•xccox•xccox•xccox•xccox•xco:4:
Normally 3 numerals
 Austenitic Stainless Steels – non-magnetic, not heat-
treatable, work-harden only
• Chrome and nickel
• 304, 316, 321
 Ferritic Stainless Steels – magnetic, not heat-treatable
• Chrome, no nickel
• 405, 409, 430
 Martensitic Stainless Steels – magnetic, heat-treatable
• Lower chrome than Ferritic, higher carbon, no nickel
• 410, 416, 420, 440A, 440B, 440C
 Precipitation Hardenable Stainless Steels – magnetic,
heat-treatable.
• Chrome and nickel
• 17-4, 15-5, 13-8, 17-7
• Different hardening mechanism than most steels
•,
.
Table 1 Composition of Standard Grades of Wrought Austenitic Stainless Steels
Type
No.
UNS
No.
Chemical composition(a), %
C M n P 5 Si C r Ni Mo Other elements
201 S20100 0.15 5.50-7.50 0.060 0.030 1.00 16.00-18.00 3.50-5.50 0.'25 N
202 S20200 0.15 7.50-10,00 0.060 0.030 1.00 17.00-19.00 4,00-6,00 0.25 N
205 S20500 0.12-0.25 14.00-15.50 0.060 0.030 1.00 16.50-18.00 1.00-1.75 0.32-0.40N
301 S30100 0.15 2.00 0.045 0.030 1.00 16.00-18.00 6.00-8.00
302 S30200 0.15 2.00 0.045 0.030 1.00 17.00-19.00 8.00 10,00
302B S30215 0.15 2.00 0.045 0.030 2.00-3.00 17.00-19.00 8.00-10.00 ...
303 S30300 0.15 2,00 0.200 0 150111in 1 , 0 0 1 7 . 0 0 - 1 9 . 0 0 8.00-10.00 0.60(6) ....
303Se S30323 0.15 2.00 0.200 0.060 1.00 17.00-19,00 8.00-10.00 0.15 Se min
304 S30400 0.08 2.00 0.045 0.030 1.00 18.00-20.00 8.00-10_50 ...
304H 530409 0.04-0.10 2.00 0.045 0.030 1.00 18.00-20.00 8.00-1050
304L S30403 0.03 2.00 0.045 0.030 1.00 18.00-20.00 8.00-12.00 ...
304LN 530453 0.03 2.00 0.045 0.030 1.00 18.00-20.00 8.00-12.00 0.10-0.16N
304N S30451 0.08 2.00 0.045 0.030 1.00 18.00-20.00 8.00-10.50 0.10-0.16 N
305 S30500 0.12 2.00 0.045 0.030 1.00 17.00-19.00 10.50-13.00 ...
308 S30800 0.08 1,00 0.045 0.030 1.00 19.00-21.00 10.00-12.00
309 S30900 0.20 2.00 0.045 0.030 1.00 22.00-24.00 12.00-15.00
309S S30908 0.08 2.00 0.045 0.030 1.00 22.00-24.00 12.00-15.00
310 S31000 0.25 2.00 0.045 0.030 1.50 24.00-26.00 19.00-22_00
310S S31008 0.08 2.00 0.045 0.030 1.50 24.00-26.00 19.00-22.00
314 S31400 0.25 2.00 0.045 0.030 1.50-3.00 23.00-26.00 19.00-22.00 ...
316 S31600 0.08 2.00 0.045 0.030 1.00 16.00-18.00 10.00-14.00 2.00-3.00
31611 S31620 0.08 2,00 0.200 0 100 min 1.00 16.00-18.00 10.00-14.00 1.75-2.50
316H ... 0.04-0.10 2,00 0.045 0_035 1_00 16.00-18.00 10.00-14.00 2.00-3.00
316L S31 603 0.03 2.00 0.045 0.030 1,00 16.00-18.00 10.00-14.00 2.00-3.00 ...
316LN ... 0.03 2.00 0.045 0.035 1.00 16.00-18.00 10,00-14.00 2.00-3.00 0.10-0.16N
316N S31651 0.08 2.00 0.045 0.030 1.00 16.00-18.00 10.00-14.00 2.00-3.00 0.10-0.16 N
317 S31700 0.08 2,00 0.045 0,030 1.00 18.00-20.00 11.00-15.00 3.00-4.00
317L S31703 0.03 2.00 0.045 0.030 1.00 18.00-20.00 11.00-15.00 3.00-4.00 ...
321 S32100 0.08 2.00 0.045 0.030 1.00 17,00-19.00 9.00-12.00 ... 5 x C T I min
32111 S32109 0.04-0.10 2.00 0.045 0.030 1.00 17.00-19.00 9.00-12.00 ... 5 x % C Ti m i n
329 S32900 0.10 2.00 0.040 0.030 1.00 25.00-30.00 3.00-6.00 1.00-2.00 . -
330 N08330 0.08 2.00 0.040 0.030 0.75-1.50 17.00-20.00 34.00-37.00 ... ...
347 S34700 0.08 2.00 0.045 0.030 1.00 17.00-19.00 9.00-13.00 10 ><CC134-Tamin
347H S34709 0.04-0.10 2.00 0_045 0_030 1,00 I 7.00-19.00 9.00-13_00 8 x %C min to 1.00 max Nb
348 S34800 0.08 2.00 0.045 0.030 1.00 17.00-19.00 9.00-13.00 10 x C O I + Ta min, 0.10 Ta
max, 0.20 Co max
348H S34809 0.04-0.10 2.00 0.045 0.030 1,00 17.00-19.00 9.00-13.00 8 x %C min to 1.0 max Nb,
0.10 Ta
384 S38400 0.08 2.00 0.045 0.030 1.00 15.00-17.00 17.00-19.00
(a) Maximum, unless otherwise noted. (D) May be added at the manufacturer's option. Source: AISI Steel Products Manual
Table 2 C o m p o s i t i o n o f S t a n d a r d G r a d e s o f W r o u g h t F e r r i t i c S t a i n l e s s S t e e l s
TYPe
U N S C h e m i c a l c o m p o s i t i o n t a l , %
N o .
M n
M n S i C r M o O t h e r e l e m e n t s
405 S 4 0 5 0 0 0 . 0 8 1_00 0 . 0 4 0 0 _ 0 3 0 1 . 0 0 11 . 5 0 - 1 4 . 5 0
11 . 5 0 - 1 3 . 0 0
0 . 1 0 - 0 _ 3 0 A l
409 S 4 0 9 0 0 0 . 0 8 1_00 0_045 0 . 0 4 5 1 . 0 0 1 0 . 5 0 - 11 . 7 5
1 , 0 0
6 x C Ti m i n . 0.75 m a x
429 S 4 2 9 0 0 0_ 12 1 . 0 0 0_040 0 . 0 3 0 1 . 0 0 1 4 . 0 0 - 1 6 . 0 0
0 . 0 3 0 1 . 0 0
430 S 4 3 0 0 0 0 . 1 2 1 . 0 0 0 . 0 4 0 0_030 1 . 0 0 1 6 _ 0 0 - 1 8 . 0 0
0 . 0 6 0 0 . 1 5 0 m i n
430F S 4 3 0 2 0 0 . 1 2 1_25 0 . 0 6 0 0 . 1 5 0 m i n 1_00 1 6 . 0 0 - 1 8 . 0 0 0 . 6 0 ( b )
0 . 0 6 0
430FSe S 4 3 0 2 3 0 - 1 2 1.25 0 - 0 6 0 0 . 0 6 0 1_00 1 6 . 0 0 - 1 8 . 0 0
O v e r 0 . 1 5
0 . 1 5 Se m i n
434 S 4 3 4 0 0 0 . 1 2 1 . 0 0 0 _ 0 4 0 0 . 0 3 0 1.00 16_00-18_00 0 _ 7 5 - 1 . 2 5 _ -
436 S 4 3 6 0 0 0 . 1 2 1 . 0 0 0_040 0 . 0 3 0 1_00 1 6 _ 0 0 - 1 8 . 0 0 0 . 7 5 - 1 . 2 5 5 C C b ' F a m i n .
0 . 2 0 - 0 . 2 5 1 . 0 0 0 . 0 2 5 0 . 0 2 5 0-75 11 . 0 0 - 1 3 . 0 0 0 . 5 0 - 1 _ 0 0 0_75-1.25 0 . 1 5 - 0 . 3 0 V
0 . 7 0 m a x
439 S 4 3 0 3 5 0 . 0 7 1_00 0 _ 0 4 0 0 _ 0 3 0 1_00 1 7 . 0 0 - 1 9 . 0 0 0 . 5 0 N1,0_15 A l , 12 x
431 S 4 3 1 0 0 0_20 1 . 0 0 0 . 0 4 0 0 . 0 3 0 1_00 1 5 . 0 0 - 1 7 . 0 0 1 . 2 5 - 2 _ 5 0
% C r u i n - 1 - 1 0 Ti
442 5 4 4 2 0 0 0 . 2 0 1 . 0 0 0 . 0 4 0 0 . 0 3 0 1-00 1 8 . 0 0 - 2 3 . 0 0
1 6 . 0 0 - 1 8 . 0 0 _..
446 5 4 4 6 0 0 0 . 2 0 1 . 5 0 0 . 0 4 0 0 . 0 3 0 1 . 0 0 2 3 . 0 0 - 2 7 _ 0 0
1_00
0 . 2 5 N
Ty-pc
U N S
N o .
C h e m i c a l conap,ositiontal., %
M n S i C r N i M o O t h e r e l e m e n t s
403 S 4 0 3 0 0 0 . 1 5 1 . 0 0 0 . 0 4 0 0 . 0 3 0 0 5 0 11 . 5 0 - 1 3 . 0 0
410 S 4 1 0 0 0 0 . 1 5 1 . 0 0 0 . 0 4 0 0 _ 0 3 0 1 , 0 0 11 . 5 0 - 1 3 . 5 0
414 S 4 1 4 0 0 0_15 1 . 0 0 0 . 0 4 0 0 . 0 3 0 1 . 0 0 1 1 5 0 - 1 3 . 5 0 1 . 2 5 - 2 . 5 0 ...
416 S 4 1 6 0 0 0 . 1 5 1 . 2 5 0 . 0 6 0 0 . 1 5 0 m i n 1 . 0 0 1 2 . 0 0 - 1 4 . 0 0 ... 0.60(1,) ...
416Se S 4 1 6 2 3 0 . 1 5 1.25 0 . 0 6 0 0 . 0 6 0 1 . 0 0 1 2 . 0 0 - 1 4 _ 0 0 0 . 1 5 Se m i n
420 S 4 2 0 0 0 O v e r 0 . 1 5 1 . 0 0 0 . 0 4 0 0 . 0 3 0 1 . 0 0 1 2 . 0 0 - 1 4 . 0 0 _._ ...
420F S 4 2 0 2 0 O v e r 0 . 1 5 1.25 0 . 0 6 0 0 . 1 5 0 m i n 11 ) 0 1 2 . 0 0 - 1 4 . 0 0 0 . 6 0 ( b )
422 S 4 2 2 0 0 0 . 2 0 - 0 . 2 5 1 . 0 0 0 . 0 2 5 0 . 0 2 5 0-75 11 . 0 0 - 1 3 . 0 0 0 . 5 0 - 1 _ 0 0 0_75-1.25 0 . 1 5 - 0 . 3 0 V
0 _ 7 5 - 1 . 2 5 W
431 S 4 3 1 0 0 0_20 1 . 0 0 0 . 0 4 0 0 . 0 3 0 1_00 1 5 . 0 0 - 1 7 . 0 0 1 . 2 5 - 2 _ 5 0
440A S 4 4 0 0 2 0 . 6 0 - 0 . 7 5 1 . 0 0 0 . 0 4 0 0 . 0 3 0 1 . 0 0 1 6 . 0 0 - 1 8 . 0 0 _.. 0 . 7 5
440B S 4 4 0 0 3 0 . 7 5 - 0 . 9 5 1 . 0 0 0 , 0 4 0 0 . 0 3 0 1_00 1 6 . 0 0 - 1 8 . 0 0 0_75
440C S 4 4 0 0 4 0 . 9 5 - 1 . 2 0 1 . 0 0 0 . 0 4 0 0 . 0 3 0 1 . 0 0 1 6 . 0 0 - 1 8 . 0 0 0 . 7 5
3 l a r t , s i I i e t y p e
6l 0
Setnianstenitie t y p e s
A l s i U N S
(a) M a x i m u m , unless o t h e r w i s e n o t e d . ( b ) M a y h e a d d e d at the m a n u f a c t u r e r ' s o p t i o n . S o u r c e : A I S 1 Steel P r o d u c t s M a n u a l
Table 3 C o m p o s i t i o n o f S t a n d a r d W r o u g h t G r a d e s o f M a r t e n s i t i c S t a i n l e s s S t e e l s
Table 4 C o m p o s i t i o n o f S t a n d a r d G r a d e s o f P r e c i p i t a t i o n - H a r d e n i n g S t a i n l e s s S t e e l s
No. N o . C M a S i C r N i M o O t h e r e l e m e n t s
S I 7 4 0 0
(a) M a x i m u m , unless o t h e r w i s e n o t e d
0 . 0 7 1 . 0
C h e m i c a l c o m p o s i t i o n t a l . %
1.0 1 7 . 0 4 . 0 4 _ 0 C u , 0 _ 1 5 - 0 . 4 5 C b T a
631 S 1 7 7 0 0 0 _ 0 9 1 _ 0 1 . 0 1 7 . 0 7 . 0 . . _ 1 . 0 A l
632 S 1 5 7 0 0 0 . 0 9 1 . 0 1 . 0 1 5 . 0 7 . 0 2 _ 2 1 . 2 A l
533 S 3 5 0 0 0 0 _ 0 g 0 _ 8 0 . 2 5 1 6 . 5 4 . 3 2 _ 7 5 0 . 1 N
634 S 3 5 5 0 0 0 _ 1 3 0 _ 9 5 0 . 2 5 1 5 . 5 4 _ 3 2 _ 7 5 0 . 1 N
Austenitic t y p e
660 1 ( 6 6 2 8 6 0 . 0 8 1 . 4 0 . 4 1 5 . 0 2 6 . 0 1 . 3 0 . 3 V . 2 O l t 0.35 A 1 , 0 . 0 0 3 Et
Tool Steels – letter followed by a number
• Letter = application or heat treatment method
• Number = chronological sequence of acceptance
 Water-Hardening W1
 Oil-Hardening O1, 02, 06
 Air-Hardening A2, A6, A10
 High-C, High-Cr D2 (air-harden), D3 (oil-harden)
 Shock Resisting S1, S2, S5, S7
 Hot Working H11, H13
 Plastic Mold P6, P20 (pre-hardened)
 High Speed Tungsten T1,T15
 High Speed Molybdenum M2, M4, M42
There are literally “thousands” of proprietary grades
z44 4 44wr;Nw
08
p p o p p p
88888:L U-8888U•
N i d . - . 0 1 . b
0 0 , A 0 0 0
' 0 ° °
88g E 888t
oN x , 1 ; 4!A•!-• •
88 8 888888 •
9 0 0 0 0 0 0 p p o p p p o o p p o p o
.ifiN.46L4 N i d . - . 0 1 . b
0 0 , A 0 0 0
t 4 , , W w w 4
00(111.40 O V 0 0 - 4 0 , 1OV
x3xxxxx :xxxxxn m.o,roAgrit,. 232N0>>>>>>> q u o , mv2; “ “4 , w w w w w 0 . . , , , . 0 , 0 . - , . . , O N , 1 7 4 ( , ) , 4 , M N , - 0
Z Q - CMJ14,,WW..0 C 4 W W - 0 1 2 . 4
1 u 1 0 7 7 0 7 7 ;
0 ; l i • g = ; ' - '0 I 0 r ; 7 rt o ,
, o o 4 9 0 0 , g 00 0 0
--• 0 0 ' 0 7 E z 0 , , : a,, 9 , v 4 P E ' E e 0n cr F :
1 r % 5 ' , a E ! n of0 r r . . , •
'18 9 c • , , , a$ t 4 E i -
8 n
.-i-i a $ r F
0 J = E , =;jt',,t,,Wjj d d d ; = J d d i d d d Z - J = q
r i 0 F.9,09.9,29, o i ciF, ici oi : ,0,Ofs0,C,C, N N N ' - '0 0 E 4 . Nflo00.)v) r , r , ; i R ? ? ? 2 0 9 0 0 9 0 0 0 5 . „ L t . , „ 8 1 www,a0
cp,.-0,7i.')8,vu,s 8,9R29,2,9t9,5,.82,9,92E
g- 7
0 r o
ro $ o
rt
R , 4
o 2. 7ri
7 ; 7 s r , t h
i0 0 0 0 0
0 ? * N . . . N N . . , . ' 0 0NO!-. . . . . . 0 0 0 00 r 0 0 : . ? ?
....1- 7 i d i m i o i c L,JAblis)04; i J c l id,:p:0 „...„
0 , . L 4 O V I V I O , u 1 0 0 1 A 0 0 0 , u , 0 , - , 1 0 0 O V 1 0 0 0 0 i , 4 , .
R r r c c
A
A -' . -
n
. „ . ,
0
0 0 ( A 0 0 0
• . P N
:88
0 7 ,
?,O1A7'!-,!-', P . P ,•Pt o t o :
,1888888 88H888 o :, N),!.00o
1.
A
, O . .
•0).o
0 0 0
0
: t o
-P•
op
to
!-9PP•
:
Classification and approximate compositions of principal types of tool steels (continued)
UNS Identifying elements, %
AISI N o . Mn Si Cr Mo Co Ni
Tungsten high-speed tool steels
14 T 1 2 0 0 4 0.75 •.., 4.00 1.00 18.00 5.00
T5 T 1 2 0 0 5 0.80 4.00 2.00 18.00 8.00
T6 1 1 2 0 0 6 0.80 4.50 1.50 20.00 12.00
T8 T 1 - 2 0 0 8 0.75 • • • 4,00 2.00 14.00 5.00
T15 T 1 2 0 1 5 1.50 4.00 5.00 12.00 5.00
Molybdenum high-speed tool steels
MI 1 I I 3 0 1 0.80(a) 4.00 1.00 1.50 8.00
M2 1 1 1 3 0 2 0.85-1.00(a) 4.00 2.00 6.00 5.00
M3, class1 T 1 1 3 1 3 1.05 4.00 2.40 6.00 5.00
M3, class 2 T 1 1 3 2 3 1.20 4.00 3.00 6.00 5.00
M4 T I 1304 1.30 4.00 4.00 5.50 4.50
M6 1 1 1 3 0 6 0.80 • • • 4.00 2.00 4.00 5.00 12.00
M7 T 1 1 3 0 7 1.00 4.00 7.00 1.75 8.75
MIO T 1 1 3 1 0 0.85-1.00(a) 4.00 2.00 ... 8.00
M30 T 1 1 3 3 0 0.80 4.00 1.25 2.00 8.00 5.00
M33 1 1 1 3 3 3 0.90 4.00 1.15 1.50 9.50 8.00
M34 T 1 1 3 3 4 0.90 4.00 2.00 2..00 8.00 8,00 ...
M35 1 1 1 3 3 5 0.82-0.88 0.15-0.40 0.20-0.45 3.75-4,50 1.75-2.20 5.50-6.75 ... 4.50-5.50 0.30 max
M36 T 1 1 3 3 6 0.80 ... 4.00 2.00 6.00 5.00 8.00
Ultrahard high-speed tool steels
M41 1 1 1 3 4 1 1.10 ...• 4.25 2.00 6.75 3.75 5,00
M42 T 1 1 3 4 2 1.10 3.75 1.15 1.50 9.50 8.00
M43 T 1 1 3 4 3 1.20 • • • 3.75 1.60 2.75 8.00 8.25
M44 1 1 1 3 4 4 1.15 4.25 2.00 5.25 6.25 12,00
M46 T 1 1 3 4 6 1.25 4.00 3.20 2.00 8.25 8.25
M47 T 1 1 3 4 7 1.10 ... 3.75 1.25 1.50 9.50 5.00 ...
M48 1 1 1 3 4 8 1.42-1.52 0.15-040 0.15-0,40 3.50-4.00 2.75-3,25 9.50-10.50 0.15-0,40 8.00-10.00 0.30 max
M50 1 1 1 3 5 0 0.78-0,88 0.15-0.45 0.20-0,60 3,75-4.50 0.80-1.25 ... 3.90-4.75 0.30 max
M52 1 1 1 3 5 2 0.85-0.95 0.15-0.45 0.20-0.60 3.50-4.30 1.65-2.25 0.75-1,50 4.00-4.90 0.30 max
M62 T 1 1 3 6 2 1.25-1.35 0.15-0.40 0.15-0.40 3.50-4,00 1,80-2.00 5.75-6.50 10.00-11.00 0.30 max
(a) Available with different carbon contents. (b) Contains graphite. (c) Optional
The heating and cooling of a solid
metal or alloy in such a way as to
obtain desired conditions or
properties.
Temperatures and cooling rates are
the main determining factors that
affect properties (ie. annealing,
hardening).
 At room temperature, the iron is body-centered
cubic.
 When we heat it up above a critical
temperature (~1400ºF), it transforms to face-
centered cubic.
If we continue to heat it, it will transform
back to body-centered cubic, and then it
will melt at ~2800ºF.
Because it exists in two forms, it is
considered to be
ALLOTROPIC.
Heat the steel up to convert
the BCC structure to the FCC
structure, then quench it.
Iron-Carbon Phase Diagram Handout #7
Iron/Carbon Alloy P h a s e D i a g r a m
Te m p e r a t u r e (F)
3 0 0 0
2 8 0 2
2 8 0 0
2 7 2 0
2 6 0 0
255-2
2 4 0 0
2 2 0 0
2 0 6 6
2 0 0 0
1 8 0 0
1 6 7 0
1 6 0 0
1 4 0 0
1 3 3 3
1 2 0 0
1 0 0 0
4 1 0
0.50% 0 . 8 3 % 1 % 2 %
4 1 - - - 1 - H y p o - E u t e c t o l d - - - 0 . 1 1 — H y p e r - E u t e c t o i d — o •
S T E E L
C a r b o n C o n t e n t P r e s e n t ( b y w e i g h t )
Temperature (C)
a+
M a g n e t i c P o i n t
( 1 4 1 4 F)
A ,
Austenite Solid Solution of
Carbon in G a m m a Iron
Austenite
in Liquid
, a•••••••; A l
0.025 P e a r l i t e
• a n d
• F e r r i t e
I A o
I
NI- - 1 - I
„....-1-0.008%
Pearlite and Cementite
a+
L = L i q u i d
y = A u s t e n i t e
= F e r r i t e
= D e l t a I r o n
C M = C e m e n t i t e
2055 F
M i r
CM begins #
to solidify - .
1 -
Primary
Austenite  1
0 0 / b e g i n s to ,
solidify
Fe3C
Austentite, Ledeburite
and Cementite
A1.2,3
Austenite to
/ P e a r l i t e
Cementite, Pearlite and
transformed Ledeburite
Fe3C
,•e•—•••• M aan etic C h a r a e o f Fe3C
Fe3C.,„%lik
4.3 6 . 6 7
• • • • • • • • • „ 1 a . . Z • 4 1 a .
Cementite and
Ledeburite
1539
1492
1400
1130
910
760
723
210
3% 4 % 5 % 6 % 6 5 %
C A S T I R O N
The attempt by the steel to get back
to BCC is what creates the hardness.
The carbon atoms create stresses in
the lattice and form a structure
called martensite, which is body-
centered tetragonal, very hard, and
very brittle.
The steel is then tempered to soften
it to a hardness acceptable for the
application.
AS QUENCHED (BCT) STRAINED
0 F e atoms
• C atoms
( R a n g e of
I F e - a t o m
1 i
) displacements
Carbon content determines
achievable hardness (up to a
point).
1018 vs. 1040 vs. 1075 vs.
1095
 As-Quenched
Untempered Martensite
 Quenched &
Tempered
Tempered Martensite
Heat the BCC steel up above
the critical temperature and
transform it to austenite,
creating solid solution, then
slowly cool it down below the
critical temperature.
 Annealed Steel
 Ferrite/Pearlite
Hardness is the material’s resistance to
plastic deformation, usually by
indentation.
• ie. Rockwell, Brinell, Knoop,Vickers
Hardenability is the relative ability of
steel to harden.
• ie. depth of hardness
Brinell Hardness (HBW)
• 3000 Kg load, 10mm tungsten carbide ball, 10 seconds
dwell – standard conditions.
• Also can be used with 1500 Kg and 500 Kg loads,
different sized balls, different dwell times.
• 150 HBW (1500/10/30)
 Stands for 150 brinell hardness using a 1500 Kg load, a 10 mm
tungsten carbide ball, and a dwell time of 30 seconds.
Rockwell Hardness
(HRA, HRB, HRC, etc)
• HRC scale – hard steels
 Diamond indentor – 150 Kg load
• HRB scale – soft steels
 1/16” steel ball indentor – 100 Kg load
• HRA – covers both scales
 Diamond indentor – 60 Kg load
Rockwell Superficial Hardness
(lighter loads)
• HR15N, HR30N, HR45N – hard steels
 Diamond indentor – 15, 30, 45 Kg loads
• HR15T, HR30T, HR45T – soft steels
 1/16” steel ball indentor – 15, 30, 45 Kg loads
• Used for thin parts/materials or thin hard
layers (case hardening) where regular
Rockwell testing will push through.
 Knoop and Vickers
Microhardness (really
light loads)
• Knoop – 25 grams to
1000 grams – diamond
indentor
 500 grams is standard
 Designated as xxxHK500
• Vickers – 25 grams to
1000 grams – diamond
indentor
 500 grams is standard
 Designated as xxxHV500
2
od
U.60.
.R2c2
0 b 1 2 1 '
a tol'
Z
m
1-1,,58z
2 I , h 2 E t
a z z,J.Esc
o 0 0 !
t /
LI)
z
2 v 8
0 , z i Fo4w2iT.,
0 z 3 l A c
0 0 a ,
m 0 -
0
0 i v 8
0AE0z a
o D o !
_
0 . J 0 E
0m c c ( . 0 ' '
S1
4 c
Ic3
mthc
i o m
-m=
0 0 0 0= 0 J M
T o ,
i 0 0
mz
00p0000000900000Q000cz000czcz000 0 0 0 0 0 0 0 0 0 0 0 zNol-oN,omcsiwovoNmmm.tomolcol.e.mon-
C 0 0 0 0 N k 0 0 0 . 4 - / M M O N N , , O C O O ' " n 2 ° ° " C " - " s *
0 0 0 0 N t , r ,
N O M q 0 0 0 2 M , 0 0 , - 0 0 1 V . , - o , ( 0 6 0 0 : 9 4 3 , 7 , 2 1 - - O N O
O M N , - 0 M 0 N w O r m 6 N , 0 0 M 0 M r - N 0 0 0 0 q q , " - - , -
C I M V ) M M N N O 4 N N N N N N N N N
6 6 , 0 0 0 N O O I M N O M 0 k 0 O M N - a M 1 , 0 0 / 0 , - Q 0 0 r , C I M N , O M N 0 W 1 O c N O M
N - 1 , 1 , - N r . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t I / / / / . T / O M O O M M O M n O , I N N N N N N 6 ,
, r . , , o m m , , - 0 / 0 0 N 0 M O O N W I O O N W O O , N 0 1 0 0 N O M O N M , M / O O N C O M O O N M O-: • , • , . , • • • • • , •
6 6 O t t ) Co 6 0 1 C6 CI 0 0 ) 0 1 , , T r C 9 6 0 0 ) OP I , 0 IT 0 1 ' CO C O N - 0 0 0
0 0 0 0 0 0 N N I , • 1 , N N N t , N 1 , 1 , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M 0 0 0 0 0 1 0 , 1 7 / 4 1 / 1 / . . 1 / / /
6 6 L q N 6 I . , - . N N 0 m o n c ) , T 6 1 0 , 0 o o m o o m 4 0 ) 7 q m r - t p 0 0 0 0 ) 0 N 0 0 0 0 1
6 6 0 4 0 4 1 - 1 - 4 - 6 6 0 0 i C 6 6 H , : 6 6 M , 6 6 , - 6 0 6 M 0 ) . 6 h - N W ( 6 0 6 4 ( 6 0 i 6 6 , , - 0 a i 6
0 0 0 0 0 0 0 0 0 ( M M M O M M O D M M C O M M M W O M O O D O W N r , h r , r , N t , N N I N N N 0 0
O O M M . 1 0 n 6 1 , , , , , D O L T . O . V , 0 6 M N r . . . , 0 1 0 0 0 0 . 1 . M t M / 0 6 6 M ( 0 ( 9 0 ) / 0 0 C H T
6 6 1 ' 6 6 , w 0 C 4 6 0 0 r . 6 0 6 0 4 4 6 6 6 6 6 6 6 6 N N 6 C T 0 6 : , t / 6 6 6 , 6
M O W 0 0 0 0 0 0 0 0 1 , 1 , N N N N I , N N N N I , N N N N N 0 0 0 0 0 0 0 0 0 0 w W 0 0 0 0 0 0 0 0
•
0 0 0 0 N M O q N 0 0 ° 0 0 C  I t O W N 0 0 0 0 0 N 0 0 0 / 6 , - 0 0 4 Q , N 1 0 0 , - 1 " N O W N ( p , 0 ,
N o t , . / N M N 0 6 , - m N 0 6 , - M N 0 n 0 1 , - M M O O M N , - O M O N W O 4 O N , , - 0 0 0 M N N W 0 0 0
(I) 0 0) o) t , N • T ) W ET 0 0 0 0 0 0 0 , r 1 - CI COVDCOCO C O ( 1 0 1 0 ( 1 0 . 1 0 3 N C , I N NOJ 0.1
M N 0 0 0 / / 0 0 N C M 0 6 0 N O O N N , M 0 0 , , N M - 1 0 1 , M - , - / 0 0 , / M O N - O N , 0
, M N O M N 0 6 , 1 6 , 0 0 0 0 4 M 6 0 0 0 0 N M 0 / M N , - , - O M O N N . 0 0 0 / 6 M 6 6
. N N 1 , 0 0 0 0 0 0 0 0 0 0 0 1 - 1 q / / t / t / n n 6 M 6 m 6 6 6 0 6 6 N O I N N O I N O I N N N N
T O - 0
C a )
8'4?
O"
0004
8 0 q
D W M
To)0
T,2.3
tuj
P.(1)2
o
T o >
.2tt' 8
= . 0 0
. 0 0
8
t4e
09,2E
2P,!
P.26
2P1
R-g'72DE'e
ma2
O0-,
E
> p D
' t R 5 5
22.'4 -
0.
CCz2.:§5
f.10cc.-E
0m0.,-z-am
m,'nm2
220-.
1%222°
0-c3
'8E00
n i
E,2•60-
7'2S2
P81
0
U.
J
n S P I P C 6 2 . 6 0 6 n 6 6 8 . 1 r U n a a n n E n a n
omo,-omNomol,oGots,o N c o o N N o m m / m w N - 2 0 q 0
(,'271H(J8V48,12Wna=MT2Vaz8M8
N r O Z 0 1 , 0 0 / M N , 0 0 0 1 , , 0 0 l O N , - 0 0 , o , j N , Q 4 4 0 N , O M M N O M I N C O - O m o N o w N - O M O M O / M N , O M o l t , 0 6
1 , 1 , 1 0 0 c 1 ; 0 ( 0 0 0 0 W M 0 0 0 0 0 0 0 4 W / n t v / 7 / / V / M M O N O M M M N M N I N N N I N N N N N I N , , , . . . . .
6 6 , : , ' 6 0 k 6 0 ( 6 6 ) 6 4 6 , - , 0 6 6 6 6 , 6 6 4 1 0 6 0 ) , - , - 0 0 6 6 1 , 6 6 6 1 0 - , 0 0 6 0 6 1 , 6 6 6 1 , i v i 0 - , - 6 0 0 6 c 6
00)0 0 0 M N I N N N N N N N N N N t . N N N O 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 LO0)0O 0 ) 0 ) 0)O 0 w 0 ) 0 4 M 0 t , t 1 I I t , t t / 0 T t I 0 , t 0 ) n 0 ) 0)
, M 1 0 , N O O N O O N I O O N 0 0 ( 1 0 0 M O W M O N , t 1 O N / O N I , M 4 , 0 0 N O O N O O N M O N M 0 1 0 0 0 0 W M O N M O N /
6 6 c , i 6 , — ( 5 6 6 6 6 0 0 6 , 6 0 6 , 6 6 6 6 6 6 6 4 / 4 ( 6 , 2 6 6 6 6 6 0 , 6 6 0 6 1 6 6 6 6 6 L 0 4 i 1 , 4 6 6 c 6 6 6 0 .
01010 ) 010)10)0)0)000)0)0 ) M 0 M O 0 M 0 0 0 0 0 0 0 ) O 0 1 ' 0 0)O 0 M 0 ) MC00 0 ) M M 0 ) M N t , N N t N N N N N I , r , N N N N I , N N . N N N N R
0 0 1 C O M N I - 0 0 0 0 ) 0 ) N
l l l l l l l . . . . . . . . . . . .
6 6 6 , 6 N : 6 0 0 6 1 M r 6 6 1 6 1 1 , 1 , 6 6 0 6 6 0 W W / I M M N N , . . 0 0 0 0 M M N U O 6
C O M O M M M M O N O M O M M M O M O O O M M M M w o u M M C O M O M M N I , O , N N N N N
C D N I O N N , 0 0 1 0 P, N T 9 1 0 . q t - . 7 0 . 0 . M M V O . M O O R C I M M C C . O M M C O 3 1 0 ) , t 0 0 f l O n n , - N N O D . M O M C q l - N M ( > 1 . 0 0 . N I N M M O , N N Q
,cicioio506 u ) , ' l o N N , , 00606 c6t,1,:o(onn,i4t,?(666,,ociOmm64ii,:t,o(66,667,14
W W W O O n n W O M O O M 4 0 0 0 0 0 0 t I V 0 ) I 0 ) 0 I 0 I I I I I < 0 ) I 0 I M O 0 1 0 O N O M 0 M M N O M M 0 M O M M M M N N 1 N N 0 1
' 0 , 4 , 0 , - ( 0 , 0 , - 0 0 1 0 / 0 0 M O N I , M M N O N O c I r M N O M , M N 4 t N O M N O / N , O O M N 0 4 . / M N , - O M M t , 0 0 / M N - 0
0 0 0 0 0 0 0 0 0 0 M 0 0 0 0 w O M M M, 0 0 m o n co cONNN(OnnUnDLO M t / T r , : n 01 C I N C , I N C I N N
N N N N N N N N N N N
0 I O 0 0 0 0 . 0 0 0 0 0 0 0 J 0 4 0 0 ) O 0 0 N t r 0 ) N 0 0 ) 0 1 , 0 0 , - 0 N W I N 0 0 N o t n , g ,
/ C I N N I - 1 - 0 0 M M M O O N . N 0 0 0 W M W W V V V M M M M M N N U I N 0 0 0 0 0 0 . 0
N N N N N N N N
Alloying elements are the ingredients
that improve steel’s hardenability.
Hardenability is measured by standard
Jominy hardenability tests.
Graphs are then developed to signify
data.
Handout #13
Diameters of rounds with
same as-quenched hardness (I-IIRC), in. Location in round Quench
2 4 Surface
Mild
water
quench
1 2 3 4 3/4 radius from center
0.5 1 1 . 5 2 2 , 5 ( I ) 3 . 5 4 Center
1 1 i i 1 --1 1 1
1 2 3 4 Surface
Mild
oil
quench
0.5 1 1 . 5 2 2 . 5 1 3 3 . 5 4 3/4 radius from center
0.5 1 1 . 5 2 2 . 5 0 - ) 3 . 5 4 Center
,, , , , , • • , • • • ,
,, ' ,
„„,,,
,
'.::::..
- _,„,„„,„,„w,..,,.,S
i/ • i i , , , •
i• 1
1
t t
ti
, ,3•F.,333.333- . 3 --1;-'33,,, , , , , - ' - 3 7 - - - - , . . ,
4! l i N p
E
„ i i . •
u . 4 , . . . . . . . . . .
0
V V . . V
zi
33 E l
,,„„,,A1?„,„t,„,„,„,,,,,4„,,,„,„,„,,,„ ,„7„..7,•..„7“4,,,,,,g, ttl.„,„„,,,,,,
---p,-
ii 1 i
rg i i
;E, , F : : •
ik: ' . . ; • -
3333,3.,. 33 i,',333,,333..33M33,V3,33.3,333.3,,4.....,3.•',31.3.392,,,11,
nii , I f i . •
il
13 1 1 1 .
.-3.--13.3313.33.3...c.,,303.3331,531,, , , _ , , , , , , , , , , , m , , , , , 3
fi 1 E
ii I I I ,
u
4
,.; R 1 V ii
. k v i l l , . . 1 . . ,,, r . . . . s i i n s . . . . . . . . . . l i n t r : r t n . ,,, ,,,V:g.,, , ,,,,,,333,3, . . ,
V 1 3 3
d 1 , , . I f i i i !F
P i f : - , • • • q5.
Jfrfft.liu.ti333.33i.1,34553,1,33.33,...., , 33.3.333.3.3 ,333,1333,33.,3333,
L„, 3 . V
. 3 •
i , i,.,., . . : i,.,---,,,,,.„!.,-,,,.„„,,,,..,„,,„,ii,„,.„.,,,,,,,4;,:.,,,.,,.
.- i I i 3 . . .
-Ff t ! E
11 ”
/ ,, " , , ,
'E'..
„ E 4 ! I q
! .tl: : g t i i
'41 d
I, 0 i i . „ , P t
4 q : r i , I f
A•f7,,,,,,,,,,..,p,-,,,,,,-„----,,i,,,,,,,,F,,,,,,,,,r,,t, ,,,,, ,,,,,,-,1
E• i ti!i! i i i t : I E i t
33 , I 1 1
, t :il 1 #
!?' l i E , i . i . ' E 1 ! „ ,
if 3 :,i; ! ! l i ' f
- - ' -.JP,',!,:".4" , : , , - . : , . r . . m t !:1ii'ss...i.s....7..... ,,,,,,,,,," 4,,,,, :3,553.04. i.3,. , • -S.
3, V V ,V 3 3 • •
n : ' 3 : 1
..,: f i i i i 5
ii zla! 40 ! .•• 2 . . l i
,,,,,,,,,,,,,, ,74..t.,,,,,,,,,,,,!! ,z----- , , -i....i2....nrns„74„„„„„„:„„.„„ti.„7,,,,,„,„„,.14,,,, ,,,,,,,,,,,, , r
i-0: I t ! i 1 1 l i
. „ ,!I
E
:,• " P E , ,
, a 3 3 ' ' : , , 1 -
,,, ,' - • • r a a , , a 5 . , , , = • - i r f m t f . k r , A ,,, F t q l • F r q , , , , i 4 7 , , , x i i . 5 . . . , , , , , , , , . . , s , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ..a....,.. , " • , , 4 4 4 , • • , . . . . . . , 4 r , , , . . . . , ,
... i 3 ' V . . . .•p , . ,111 i i , , „ ,., ••
uf.
i/
1 4 0 I 3 1 1 3 i i
3.33.31.33,,F. , iiV,3,3,,.',33i.3,333,33.3 . 3 , - . . ' . . . . . k 3 , 3 1 , , , V . 3 , , t , t , , , , , ' , 3 4 . , . , 3 9 3 3 . , . . . . 3 3 3 1 i 3 S 3 k , 3 3 , i 3 i i , 3 3 1 3 , , t , 3 3 , . . . . . . . . . ,
li a : 4 ; i i t 3 1 P
33 i 3, 3 3 V l i V
53
F11 i l ,E
I i t
, . . . . . 3 3 3 . 3 . 4 3 - t t , , 3 3 3 , 3 4 k . 3 , , , , i 3 . , , , , , , . . „ . , , „ , . . S . , 3 4 2 . . . 3 . 0 f i k 4 i i 3 , ' ,,,Z3,51!„ + . 3 f tt3333,3 , . 4 - . 3 , 3 3 , 3 . 3 p 3 A , , 0
riV i 1 : ' : V
, . , f i V
,c T ! E
ri t , E 4 i i i - T i i r
a , , N
m E l L ' : ' ? - ' 2 ! i i
t i O •4 P i i - i i , - . .
.4,,.....,,333.3...,11,,,,,,,, ,,,,,33.3,3334,,,.,„ 3,3333333,,,„ , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,, V,X55,k,r3S3.3333313,345.313233.9.3.1313.1.,.5.& 3 5 1 4 5 i333.3.13.333.432,3.335525...
V , V - L i ! V
, f i
4; . .,. , , • , , ;,- g f i P
,,ii 1 1 i , ! I t i L , , k ..:iii,".,:=,,,,,,,-if-,,,,-,,,,,,,,:4,,,,,.,,.,..„4„„---,,-16,„.„„„,,,,,,4,:,„,,,„,,,,,,,.,v,, • , --,,,,,k,,,,p,....,,.„•„„4,,i . , , , .
. 1 4 - , „ , , i i ,1, i l • i if, . . I
1 i t E lt! , , 1 L ' 1 1 E
ii t i t ! , , : t i i 5:
65
60
55
50
45
40
35
30
25
20
0 2 4 6 8 1 0 1 2 1 4 1 6 18 2 0
Distance from cluenched end, 1116 in.
22 24 26 28 30 32 34
Hardn
SME International
www.sme.org
SME Spokane
www.sme248.org
 A destructive test to determine strength and
ductility.
 Material is machined into various test bar
configurations.
 Test bar is put into a machine and it is pulled
apart.
 Ultimate Tensile Strength,Yield Strength,
Elongation, and Reduction of Area.
 Strength and ductility contradict one another. As
one goes up, the other goes down.
Stress/Strain Diagrams Handout #14
St r
Strain,e S t r a i n , e
(1)
() 101
" / 0
True
/ k 1)
Nominal
81
7-71
V
Strain,e
(c
Strain,e
Fig.1-2.1 Stress-strain diagrams. (a) Nonductile material with no plastic deformation
(example: cast iron). (b) Ductile material with yield point (example: low-carbon steel).
(c)Ductile material without marked yield point (example: aluminum). (d) True stress-strain
curve versus nominal stress-strain curve. S„ - breaking strength: S, - tensile strength:
S y i e l d strength. ef •-• elongation (strain before fracture) X fracture: YP y i e l d point.
 Ultimate Tensile Strength
• The maximum stress that a material can withstand.
• Direct relationship to hardness. (UTS ~ 1000 x HBW/2)
 Yield Strength
• The stress at which there is a specified deviation from
proportionality of stress and strain.
 Elongation
• Total change in length of a test bar during the test.
(measurement of ductility)
 Reduction of Area
• Total change in diameter of a test bar during the test.
(measurement of ductility)
Most mis-used and mis-understood
material property.
A material’s ability to absorb energy and
deform plastically before fracturing.
Combination of strength and ductility.
Charpy and Izod impact testing.
Also represented by the area under the
stress/strain curve.
Affected by chemistry, microstructure, and
processing history.
Dependent upon chemical composition
of the material.
The “alloying elements” determine the
transformation properties.
T-T-T (time-temperature-transformation)
curves tell the story.
 When steel is heated up above the “critical”
temperature in air, decarb will occur.
 Furnace atmospheres are necessary to
eliminate the oxygen from reacting with the
steel.
 Endothermic
• Separate piece of equipment – endo generator.
• Natural gas & air are mixed and sent through a high
temperature nickel catalyst to create a chemical
reaction creating CO, H2, and N2.
Vacuum
• Air is removed by a series of mechanical and
diffusion pumps.
• Vacuum level capable of <1 micron.
Disassociated Ammonia
Exothermic
Nitrogen or other inert
gasses.
Others
Stainless Steel Foil
• For “redneck” heat treaters!
In addition to the endothermic
carrier gas in the atmosphere,
we must also be able to control
the amount of carbon in the
atmosphere.
Additions of natural gas through
a flow meter allow us to do so.
Performed in a neutral atmosphere.
Through hardening is normally desired.
For endothermic (oil-hardening)
equipment, carbon is controlled in the
atmosphere to be equal to the carbon
content of the steel.
For vacuum equipment, oxygen is not
present at all…no worries!
Quenching can be done with water, oil,
polymer, nitrogen gas, argon gas,
etc….depending upon the alloy.
Always followed by tempering!
 Also referred to as “drawing”.
 Temperatures below transformation (critical)
temperature, so it doesn’t matter how we
cool…normally air or fan cool.
 Tempering is usually only done once, however
some tool steels are tempered twice or three
times…the first time to transform retained
austenite to martensite, the second time to
soften.
 In medium carbon steels,“blue brittleness”
occurs when tempering between 400ºF and
700ºF…toughness is sacrificed in this
region…try to avoid it.
Surface Hardening
Carburizing versus Induction Hardening
Aka:“Case Hardening”
Carburizing = modify the steel so that it
has more carbon at the surface.
Induction = leave the steel alone, but only
heat up the areas you want hardened.
Carburizing
Performed in an endothermic atmosphere
furnace (gas carburizing).
Low carbon steel (<.25%C) placed in a
high-carbon atmosphere (.90%C or
higher)
Carbon diffuses into the surface of the
steel.
ie. 8620 in the core, 8670 on the surface.
Part is quenched, only the area with higher
carbon content will harden.
Should always temper after quenching.
Depths can be as low as .005” deep and
as high as .250” deep.
Case depth is temperature and time
dependent. The deeper the case, the
more expensive the process.
There are different methods for
measuring case depth.
Areas where machining and/or welding
are to be done can be masked.
 Advantages
• Through-hardening equipment can be used.
• Relatively inexpensive.
• No special tooling required.
• Shallow case depths can be achieved.
 Disadvantages
• Entire part must be heated and quenched, core
hardness can not be controlled.
• Carburizing beyond ~0.060” deep can be time
consuming and expensive.
 Use a steel with enough carbon to produce
desired hardness.
 Localized hardening – only one area is heated up
and quenched.
 No chemical changes are made. The carbon that
is already in the steel is sufficient.
Advantages
• Uses less energy
• Causes less distortion
• Allows for stronger core strengths
• Deeper case depths than carburizing
Disadvantages
• Tooling can be expensive.
• Shallow case depths are difficult to achieve.
• Equipment is specialized.
 Annealing
• Heat up to austenite range, let it slowly cool in the furnace at a
specified rate to below critical temp.
• Results in very soft material, softer than stress relieving.
 Normalizing
• Heat up to austenite range, let it cool in still air or fanned air.
 Stress Relieving
• Normally done in the 1000ºF to 1200ºF range.
• Relieves stresses that remain locked in a structure as a
consequence of a manufacturing sequence.
• Rate of heating and cooling only important if you are following
welding code specs.
 Cracking often occurs due to geometry.
 Avoid sharp corners and stress risers.
 Consider using air-hardening vs. oil-hardening.
 Liquid quenchants are more severe and cause more
cracking.
 Parts can be racked, strung, nested, etc.
 Vertical is almost always better.
 Consider using air-hardening vs. oil-hardening.
 Liquid quenchants are more severe and cause more
distortion.
It will either shrink, grow, or stay the
same!
Published data tells us what “should”
happen.
Leave as much material on the part as
economically possible.
 In general, the material most suitable for a given
use will be that material which most nearly
supplies the necessary properties and durability
with a satisfactory appearance at the lowest cost.
 Mechanical Properties – strength, hardness,
ductility
 Design Configuration
 Material availability
 Fabricability
 Corrosion resistance
 Stability
 Cost
Sme spokane heat treating seminar by dan tabish
Sme spokane heat treating seminar by dan tabish
Sme spokane heat treating seminar by dan tabish
Sme spokane heat treating seminar by dan tabish
Sme spokane heat treating seminar by dan tabish

Weitere ähnliche Inhalte

Was ist angesagt?

Heat Treatment Process
Heat Treatment ProcessHeat Treatment Process
Heat Treatment ProcessVikas Barnwal
 
Annealing , normalizing , quenching , martensitic transformation (1)
Annealing , normalizing , quenching , martensitic transformation (1)Annealing , normalizing , quenching , martensitic transformation (1)
Annealing , normalizing , quenching , martensitic transformation (1)thiru1mech
 
Heat tratment bykotkar ss
Heat tratment bykotkar ssHeat tratment bykotkar ss
Heat tratment bykotkar sssuyog kotkar
 
Heat treatment 123
Heat treatment 123Heat treatment 123
Heat treatment 123Tabish Qumar
 
Quenching, tempering, normalizing, annealing, do you know clearly?
Quenching, tempering, normalizing, annealing, do you know clearly?Quenching, tempering, normalizing, annealing, do you know clearly?
Quenching, tempering, normalizing, annealing, do you know clearly?Gud Mould Industry Limited
 
Austempering and Martempering in Metallurgy
Austempering and Martempering in Metallurgy Austempering and Martempering in Metallurgy
Austempering and Martempering in Metallurgy Khushal Hudke
 
Heat treatment 1 dr.sss1
Heat treatment 1 dr.sss1Heat treatment 1 dr.sss1
Heat treatment 1 dr.sss1saravana kumar
 
Thermo Mechanical Treatment
Thermo Mechanical TreatmentThermo Mechanical Treatment
Thermo Mechanical TreatmentAnsar Rizvi
 
Heat treatment Process
Heat treatment ProcessHeat treatment Process
Heat treatment ProcessKeval Patil
 
Engineering matrerials
Engineering matrerialsEngineering matrerials
Engineering matrerialsMSM MUST
 
Effect of martemperig on ductile iron
Effect of martemperig on ductile ironEffect of martemperig on ductile iron
Effect of martemperig on ductile ironPratik Rathod
 

Was ist angesagt? (20)

Heat Treatment Process
Heat Treatment ProcessHeat Treatment Process
Heat Treatment Process
 
Heat treatment
Heat treatmentHeat treatment
Heat treatment
 
Heat Treatment Process
Heat Treatment ProcessHeat Treatment Process
Heat Treatment Process
 
Heat Treatment Of Steel
Heat Treatment Of SteelHeat Treatment Of Steel
Heat Treatment Of Steel
 
Heat treatment
Heat treatmentHeat treatment
Heat treatment
 
Annealing , normalizing , quenching , martensitic transformation (1)
Annealing , normalizing , quenching , martensitic transformation (1)Annealing , normalizing , quenching , martensitic transformation (1)
Annealing , normalizing , quenching , martensitic transformation (1)
 
Heat tratment bykotkar ss
Heat tratment bykotkar ssHeat tratment bykotkar ss
Heat tratment bykotkar ss
 
Heat treatment
Heat treatmentHeat treatment
Heat treatment
 
Heat treatment 123
Heat treatment 123Heat treatment 123
Heat treatment 123
 
Quenching, tempering, normalizing, annealing, do you know clearly?
Quenching, tempering, normalizing, annealing, do you know clearly?Quenching, tempering, normalizing, annealing, do you know clearly?
Quenching, tempering, normalizing, annealing, do you know clearly?
 
Heat treatments
Heat treatmentsHeat treatments
Heat treatments
 
Austempering and Martempering in Metallurgy
Austempering and Martempering in Metallurgy Austempering and Martempering in Metallurgy
Austempering and Martempering in Metallurgy
 
Heat treatment 1 dr.sss1
Heat treatment 1 dr.sss1Heat treatment 1 dr.sss1
Heat treatment 1 dr.sss1
 
Thermo Mechanical Treatment
Thermo Mechanical TreatmentThermo Mechanical Treatment
Thermo Mechanical Treatment
 
Heat Treatment of Steels
Heat Treatment of SteelsHeat Treatment of Steels
Heat Treatment of Steels
 
Heat treatment Process
Heat treatment ProcessHeat treatment Process
Heat treatment Process
 
Engineering matrerials
Engineering matrerialsEngineering matrerials
Engineering matrerials
 
Heat treatments
Heat treatmentsHeat treatments
Heat treatments
 
Effect of martemperig on ductile iron
Effect of martemperig on ductile ironEffect of martemperig on ductile iron
Effect of martemperig on ductile iron
 
heat treatment
heat treatmentheat treatment
heat treatment
 

Ähnlich wie Sme spokane heat treating seminar by dan tabish

Ähnlich wie Sme spokane heat treating seminar by dan tabish (20)

ASME Codes.pdf
ASME Codes.pdfASME Codes.pdf
ASME Codes.pdf
 
Week 1.docx
Week 1.docxWeek 1.docx
Week 1.docx
 
Basics of Engineering Materials.pptx
Basics of Engineering Materials.pptxBasics of Engineering Materials.pptx
Basics of Engineering Materials.pptx
 
IS 2062(2011) Seventh Revision: Hot rolled medium and high tensile structural...
IS 2062(2011) Seventh Revision: Hot rolled medium and high tensile structural...IS 2062(2011) Seventh Revision: Hot rolled medium and high tensile structural...
IS 2062(2011) Seventh Revision: Hot rolled medium and high tensile structural...
 
F568 m
F568 mF568 m
F568 m
 
Mtd4(5005)
Mtd4(5005)Mtd4(5005)
Mtd4(5005)
 
Astm a36
Astm a36Astm a36
Astm a36
 
ASTM_A36.pdf
ASTM_A36.pdfASTM_A36.pdf
ASTM_A36.pdf
 
ASTM A6_03 Planchas y Barras Acero.pdf
ASTM A6_03 Planchas y Barras Acero.pdfASTM A6_03 Planchas y Barras Acero.pdf
ASTM A6_03 Planchas y Barras Acero.pdf
 
Is 2062 (2011)
Is 2062 (2011)Is 2062 (2011)
Is 2062 (2011)
 
A493 09(2013) standard specification for stainless steel wire and wire rods f...
A493 09(2013) standard specification for stainless steel wire and wire rods f...A493 09(2013) standard specification for stainless steel wire and wire rods f...
A493 09(2013) standard specification for stainless steel wire and wire rods f...
 
Alloy Steel
Alloy SteelAlloy Steel
Alloy Steel
 
A240
A240A240
A240
 
Alloy performance-guide
Alloy performance-guideAlloy performance-guide
Alloy performance-guide
 
Technical data handbook_of_tk_corporation
Technical data handbook_of_tk_corporationTechnical data handbook_of_tk_corporation
Technical data handbook_of_tk_corporation
 
Astm bolt-nuts
Astm bolt-nutsAstm bolt-nuts
Astm bolt-nuts
 
Steel classification
Steel classificationSteel classification
Steel classification
 
Piping materials lhk
Piping materials lhkPiping materials lhk
Piping materials lhk
 
Field welding and cutting ductile iron pipe
Field welding and cutting ductile iron pipeField welding and cutting ductile iron pipe
Field welding and cutting ductile iron pipe
 
Astm a213-t5b-asme-sa213-t5b-specification
Astm a213-t5b-asme-sa213-t5b-specificationAstm a213-t5b-asme-sa213-t5b-specification
Astm a213-t5b-asme-sa213-t5b-specification
 

Mehr von Dave Davidson

MFI Mass Finishing Equipment and Media
MFI Mass Finishing Equipment and MediaMFI Mass Finishing Equipment and Media
MFI Mass Finishing Equipment and MediaDave Davidson
 
Centrifugal Iso-Finishing
Centrifugal Iso-FinishingCentrifugal Iso-Finishing
Centrifugal Iso-FinishingDave Davidson
 
Modern machine-shop-apr-18 centrifugal isofinishing crnakshafts
Modern machine-shop-apr-18 centrifugal isofinishing crnakshaftsModern machine-shop-apr-18 centrifugal isofinishing crnakshafts
Modern machine-shop-apr-18 centrifugal isofinishing crnakshaftsDave Davidson
 
Centrifugal Iso-Finishing Technical article as seen in Products Finishing mag...
Centrifugal Iso-Finishing Technical article as seen in Products Finishing mag...Centrifugal Iso-Finishing Technical article as seen in Products Finishing mag...
Centrifugal Iso-Finishing Technical article as seen in Products Finishing mag...Dave Davidson
 
Iso-Finishing sample part finishing application form
Iso-Finishing sample part finishing application formIso-Finishing sample part finishing application form
Iso-Finishing sample part finishing application formDave Davidson
 
MFI full finishing product catalog with technical assistance info
MFI full finishing product catalog with technical assistance infoMFI full finishing product catalog with technical assistance info
MFI full finishing product catalog with technical assistance infoDave Davidson
 
It's the Finish that Counts. Technical Magazine article reprint.
It's the Finish that Counts. Technical Magazine article reprint.It's the Finish that Counts. Technical Magazine article reprint.
It's the Finish that Counts. Technical Magazine article reprint.Dave Davidson
 
Gear Finishing Technical Intewrview
Gear Finishing Technical IntewrviewGear Finishing Technical Intewrview
Gear Finishing Technical IntewrviewDave Davidson
 
BV PRODUCTS - Bowl and Tub Vibratory Finishing Systems
BV PRODUCTS - Bowl and Tub Vibratory Finishing SystemsBV PRODUCTS - Bowl and Tub Vibratory Finishing Systems
BV PRODUCTS - Bowl and Tub Vibratory Finishing SystemsDave Davidson
 
BV PRODUCTS VIBRATORY FINISHING SYSTEMS FOR DEBURRING AND FINISHING
BV PRODUCTS VIBRATORY FINISHING SYSTEMS FOR DEBURRING AND FINISHINGBV PRODUCTS VIBRATORY FINISHING SYSTEMS FOR DEBURRING AND FINISHING
BV PRODUCTS VIBRATORY FINISHING SYSTEMS FOR DEBURRING AND FINISHINGDave Davidson
 
BV Products - Vibratory Finishing machinery for deburring and polishing
BV Products - Vibratory Finishing machinery for deburring and polishingBV Products - Vibratory Finishing machinery for deburring and polishing
BV Products - Vibratory Finishing machinery for deburring and polishingDave Davidson
 
BV Products TECHNOVIBE Series
BV Products TECHNOVIBE Series BV Products TECHNOVIBE Series
BV Products TECHNOVIBE Series Dave Davidson
 
Centrifugal Iso-Finishing for Additive Manufactured Parts
Centrifugal Iso-Finishing for Additive Manufactured PartsCentrifugal Iso-Finishing for Additive Manufactured Parts
Centrifugal Iso-Finishing for Additive Manufactured PartsDave Davidson
 
Centrifugal iso finishing sample processing
Centrifugal iso finishing sample processingCentrifugal iso finishing sample processing
Centrifugal iso finishing sample processingDave Davidson
 
Centrifugal iso finishing contract services
Centrifugal iso finishing contract services Centrifugal iso finishing contract services
Centrifugal iso finishing contract services Dave Davidson
 
Centrifugal iso-Finishing 3D parts
Centrifugal iso-Finishing 3D partsCentrifugal iso-Finishing 3D parts
Centrifugal iso-Finishing 3D partsDave Davidson
 
Centrifugal iso finishing - part dividers
Centrifugal iso finishing - part dividersCentrifugal iso finishing - part dividers
Centrifugal iso finishing - part dividersDave Davidson
 
Final vibratory iso-finishing processes
Final   vibratory iso-finishing processesFinal   vibratory iso-finishing processes
Final vibratory iso-finishing processesDave Davidson
 
Centrifugal Iso-Finishing Equipment
Centrifugal Iso-Finishing EquipmentCentrifugal Iso-Finishing Equipment
Centrifugal Iso-Finishing EquipmentDave Davidson
 
Centrifugal iso finishing - Equipment description
Centrifugal iso finishing - Equipment descriptionCentrifugal iso finishing - Equipment description
Centrifugal iso finishing - Equipment descriptionDave Davidson
 

Mehr von Dave Davidson (20)

MFI Mass Finishing Equipment and Media
MFI Mass Finishing Equipment and MediaMFI Mass Finishing Equipment and Media
MFI Mass Finishing Equipment and Media
 
Centrifugal Iso-Finishing
Centrifugal Iso-FinishingCentrifugal Iso-Finishing
Centrifugal Iso-Finishing
 
Modern machine-shop-apr-18 centrifugal isofinishing crnakshafts
Modern machine-shop-apr-18 centrifugal isofinishing crnakshaftsModern machine-shop-apr-18 centrifugal isofinishing crnakshafts
Modern machine-shop-apr-18 centrifugal isofinishing crnakshafts
 
Centrifugal Iso-Finishing Technical article as seen in Products Finishing mag...
Centrifugal Iso-Finishing Technical article as seen in Products Finishing mag...Centrifugal Iso-Finishing Technical article as seen in Products Finishing mag...
Centrifugal Iso-Finishing Technical article as seen in Products Finishing mag...
 
Iso-Finishing sample part finishing application form
Iso-Finishing sample part finishing application formIso-Finishing sample part finishing application form
Iso-Finishing sample part finishing application form
 
MFI full finishing product catalog with technical assistance info
MFI full finishing product catalog with technical assistance infoMFI full finishing product catalog with technical assistance info
MFI full finishing product catalog with technical assistance info
 
It's the Finish that Counts. Technical Magazine article reprint.
It's the Finish that Counts. Technical Magazine article reprint.It's the Finish that Counts. Technical Magazine article reprint.
It's the Finish that Counts. Technical Magazine article reprint.
 
Gear Finishing Technical Intewrview
Gear Finishing Technical IntewrviewGear Finishing Technical Intewrview
Gear Finishing Technical Intewrview
 
BV PRODUCTS - Bowl and Tub Vibratory Finishing Systems
BV PRODUCTS - Bowl and Tub Vibratory Finishing SystemsBV PRODUCTS - Bowl and Tub Vibratory Finishing Systems
BV PRODUCTS - Bowl and Tub Vibratory Finishing Systems
 
BV PRODUCTS VIBRATORY FINISHING SYSTEMS FOR DEBURRING AND FINISHING
BV PRODUCTS VIBRATORY FINISHING SYSTEMS FOR DEBURRING AND FINISHINGBV PRODUCTS VIBRATORY FINISHING SYSTEMS FOR DEBURRING AND FINISHING
BV PRODUCTS VIBRATORY FINISHING SYSTEMS FOR DEBURRING AND FINISHING
 
BV Products - Vibratory Finishing machinery for deburring and polishing
BV Products - Vibratory Finishing machinery for deburring and polishingBV Products - Vibratory Finishing machinery for deburring and polishing
BV Products - Vibratory Finishing machinery for deburring and polishing
 
BV Products TECHNOVIBE Series
BV Products TECHNOVIBE Series BV Products TECHNOVIBE Series
BV Products TECHNOVIBE Series
 
Centrifugal Iso-Finishing for Additive Manufactured Parts
Centrifugal Iso-Finishing for Additive Manufactured PartsCentrifugal Iso-Finishing for Additive Manufactured Parts
Centrifugal Iso-Finishing for Additive Manufactured Parts
 
Centrifugal iso finishing sample processing
Centrifugal iso finishing sample processingCentrifugal iso finishing sample processing
Centrifugal iso finishing sample processing
 
Centrifugal iso finishing contract services
Centrifugal iso finishing contract services Centrifugal iso finishing contract services
Centrifugal iso finishing contract services
 
Centrifugal iso-Finishing 3D parts
Centrifugal iso-Finishing 3D partsCentrifugal iso-Finishing 3D parts
Centrifugal iso-Finishing 3D parts
 
Centrifugal iso finishing - part dividers
Centrifugal iso finishing - part dividersCentrifugal iso finishing - part dividers
Centrifugal iso finishing - part dividers
 
Final vibratory iso-finishing processes
Final   vibratory iso-finishing processesFinal   vibratory iso-finishing processes
Final vibratory iso-finishing processes
 
Centrifugal Iso-Finishing Equipment
Centrifugal Iso-Finishing EquipmentCentrifugal Iso-Finishing Equipment
Centrifugal Iso-Finishing Equipment
 
Centrifugal iso finishing - Equipment description
Centrifugal iso finishing - Equipment descriptionCentrifugal iso finishing - Equipment description
Centrifugal iso finishing - Equipment description
 

Kürzlich hochgeladen

Secure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech LabsSecure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech Labsamber724300
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating SystemRashmi Bhat
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
A brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProA brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProRay Yuan Liu
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdfCaalaaAbdulkerim
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxStephen Sitton
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdfsahilsajad201
 
STATE TRANSITION DIAGRAM in psoc subject
STATE TRANSITION DIAGRAM in psoc subjectSTATE TRANSITION DIAGRAM in psoc subject
STATE TRANSITION DIAGRAM in psoc subjectGayathriM270621
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptJohnWilliam111370
 
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...gerogepatton
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfalene1
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewsandhya757531
 
KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosVictor Morales
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSneha Padhiar
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfDrew Moseley
 
Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...
Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...
Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...arifengg7
 
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmComputer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmDeepika Walanjkar
 
Substation Automation SCADA and Gateway Solutions by BRH
Substation Automation SCADA and Gateway Solutions by BRHSubstation Automation SCADA and Gateway Solutions by BRH
Substation Automation SCADA and Gateway Solutions by BRHbirinder2
 

Kürzlich hochgeladen (20)

Secure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech LabsSecure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech Labs
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating System
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
A brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProA brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision Pro
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdf
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptx
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdf
 
STATE TRANSITION DIAGRAM in psoc subject
STATE TRANSITION DIAGRAM in psoc subjectSTATE TRANSITION DIAGRAM in psoc subject
STATE TRANSITION DIAGRAM in psoc subject
 
Versatile Engineering Construction Firms
Versatile Engineering Construction FirmsVersatile Engineering Construction Firms
Versatile Engineering Construction Firms
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
 
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overview
 
KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitos
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdf
 
Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...
Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...
Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...
 
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmComputer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
 
Substation Automation SCADA and Gateway Solutions by BRH
Substation Automation SCADA and Gateway Solutions by BRHSubstation Automation SCADA and Gateway Solutions by BRH
Substation Automation SCADA and Gateway Solutions by BRH
 

Sme spokane heat treating seminar by dan tabish

  • 1. X X X N 7 . 7 X STEEL HEAT TREATING AND ALLOY SELECTION INLAIN4D NORTHWEST METALLURGICAL SERVICES, 1744-- Excellence in Heat 73-eating,* the Northwest Dan Tabish President I6203 E. Marietta Ave. • Spokane, Washington 99216 (509) 922-7663 • 1-800-379-2231 • FAX: (509) 922.-7626 dan4inlandmet,com www.intandmet.corn - cell: (509) 939-1590
  • 2. What is the difference between Iron, Steel, and Cast Iron?? ► Iron – Elemental Fe  Limited engineering usefulness  Allotropic element – exists in more than one crystalline form
  • 3. Alloying ► Alloying is the intentional addition of elements to a metal.  Improvements to properties such as strength, fracture toughness, corrosion resistance and other properties  Is steel an alloy?  What is the base metal?  What are the different alloying elements?
  • 4. ►Steel – Alloy of Fe and other elements  Primary ingredient is carbon  Carbon capitalizes on the allotropic phenomenon of iron and turns it from mediocrity into the position of the world’s unique structural material.  - normally < 1% carbon, but can be as high as 2%.  - normally < 1% manganese, but can be higher.
  • 5. Cast Iron– Alloy of Fe and other elements • Carbon content exceeds the solubility in the iron and therefore forms graphite in various forms within the structure. • - normally 2.5 % - 4.0 % carbon • - normally 1.0 % - 3.0 % silicon
  • 6. Graphite in form of flakes Engine cylinder blocks, flywheels, gearbox cases, machine-tool bases
  • 7. Graphite in form of nodules Gears, camshafts, crankshafts
  • 8.  With a lower silicon content (graphitizing agent) and faster cooling rate, the carbon in white cast iron precipitates out of the melt as the metastable phase cementite, Fe3C, rather than graphite  Too brittle for most structural components, but very useful in wear applications.
  • 9.  Plain Carbon Steel • Typical Composition  0.05 to 1.0 % Carbon  ~ 0.25% Silicon  ~ 0.5% Manganese  Maximum of 0.04% Sulfur  Maximum of 0.04% Phosphorus • Also referred to as “mild steel” • Examples are 1018, A36  Alloy Steel • Plain carbon steel with intentional additions of chromium, nickel, molybdenum, tungsten, vanadium, etc. • Examples are 4130, 4140, 4340, 8620
  • 10. Low Carbon Steels • 0.05 – 0.25 % Carbon • Case hardening Medium Carbon Steels • 0.30 – 0.65 % Carbon • Through hardening High Carbon Steels • 0.60 – 1.0 % Carbon • Springs and coils
  • 11.  Alloy steel with > 12% chromium  300-series • Examples are 304, 316, 321 (nickel and chromium)  400-series • Examples are 410, 416, 420, 440A, 440B, 440C (no nickel)  Precipitation-hardenable • Examples are 13-8 PH, 17-4 PH, 15-5 PH, and 17-7 PH (nickel and chrome)
  • 12. • Generally any steel used to manufacture tools or dies. • Specifically specialized steels with chemistries that are balanced for given applications and heat treatment.  Examples are O1, A2, D2, S7, H13, M2, M4, M42
  • 13. ASTM Specifications AMS Specifications Unified Numbering System (UNS) AISI / SAE Designations •Dominant system for identifying steels
  • 14.  American Society of Testing & Materials  All of the ASTM specs for steel start with “A” • ie. ASTM A36, ASTM A514, ASTM A148  Chronological order of acceptance  The numbers don’t mean anything  Most common ASTM steel specs are: • A36 – structural mild steel – 36,000 psi yield min • A588 – structural mild steel - 50,000 psi yield min • A514 – heat treated grade – 100,000 psi yield min  Also referred to as “T1” • Except for stress relieving and some carburizing, these steels are normally not heat treated.
  • 15. 110ANNUAL BOOK OF ASTM STANDARDS Listed by Section and Volume Section I— Iron and Steel Products Volume 01.01 Steel—Piping, Tubing, Fittings Volume 01.02 Ferrous Castings; Ferroalloys Volume 01.03 Steel—Plate, Sheet, Strip, Wire; Stainless Steel Bar Volume 01.04 Steel—Structural, Reinforcing, Pressure Vessel, Railway Volume 01.05 Steel—Bars, Forgings, Bearing, Chain, Springs Volume 01.06 Coated Steel Products Volume 01 07 Ships and Marine Technology Section 2—Nonferrous Metal Products Volume 02.01 Copper and Copper Alloys Volume 02.02 Aluminum and Magnesium Alloys Volume 02.03 Electrical Conductors Volume 02.04 Nonferrous Metals—Nickel, Cobalt, Lead, Tin, Zinc, Cadmium, Precious, Reactive, Refractory Metals and Alloys Volume 02.05 Metallic and Inorganic Coatings; Metal Powders, Sintered P/M Structural Parts Section 3— Metals Test Methods and Analytical Procedures Volume 03.01 Metals—Mechanical Testing; Elevated and Low-Temperature Tests; Metallography Volume 03.02 Wear and Erosion; Metal Corrosion Volume 03.03 Nondestructive Testing Volume 03.04 Magnetic Properties; Materials for Thermostats, Electrical Heating and Resistance, Contacts, and Connectors Volume 03.05 Analytical Chemistry for Metals, Ores, and Related Materials (I): C 571 7 E 354.
  • 16. ( I D Designation: A 3 6 / 4 36M — 94 Standard Specification for Carbon Structural Steel' T h i s standard is issued under the fixed designation A 3 6 / A 361W the number immediately following the designation indicates the year of original adoption or. In the case o f revision, the year of last revision. A n u m b e r in parentheses indicates the year o f last reapproval. A superscript epsilon ( ) indicates an editorial change since the last revision o r reapproval. This .vandarei has been a p p r m e d for use b y agencies o f the Depariment f DIICHNe. C a n s a l l t h e D f i l ) I n / e x ' / Spec 1;4:alums a n d Standards for the specific year of issue which has been adapted by M c Department rtt Defense. 1. Scope 1.1 T h i s specification' covers carbon steel shapes, plates, and bars o f structural quality for use i n riveted, bolted, o r welded construction of bridges and buildings, and for general structural purposes. 1.2 Supplemental requirements are provided where i m - proved internal quality and notch toughness are important. These shall apply only when specified by the purchaser in the order. 1.3 W h e n the steel is to be welded, it is presupposed that a welding procedure suitable f o r the grade o f steel a n d i n - tended use o r service will be utilized. See Appendix X 3 o f Specification A 6/A 6 M for information on weldabilitv. 1.4 T h e purchaser s h o u l d consider specifying supple- mental requirements, such as fine austenitic grain size and Charpy V- N o t c h I m p a c t requirements. w h e n G r o u p 4 o r Group 5 wide flange shapes are specified f o r use i n other than column or compression applications. 1.5 T h e values stated i n either inch-pound units o r SI (metric) units are t o b e regarded separately as standard. Within the text, t h e SI units are shown i n brackets. T h e values stated i n each system a r e n o t exact equivalents, therefore, each system m u s t b e used independent o f the other. Combining values from the two systems may result in nonconformance with this specification. 2, Referenced Documents 2.1 A S T M Standards.- TA B L E 1 A p p u r t e n a n t Material Specifications NOTE—The specifier should De satisfied o f the suitability of these materials for true i n t e n d e d application. C o m p o s i t i o n a n d / o r mechanical properties m a y b e different than specified in A 36/A 36M. Material A S T M Designation Steel rivets Bolts High-strength bons Steel nuts Cast steel Forgings (carbon steel) Hot-rolled sheets and strip Cold-lormed Hot-formec tubing A 502, Grade 1 A 307, Grade A or F 568 C l a s s 4.6 A 325 or A 325M A 563 or A 5 6 3 M A 27/A 27M. Grade 6 5 - 3 5 [450-2401 A 668, Class D A 570/A 570M. Grade 36 A 500, Grade B A 501 A 500 Specification f o r Cold-Formed Welded and Seam- less Carbon Steel Structural Tu b i n g i n Rounds a n d Shapes° A 50 I Specification for Hot-Formed Welded and Seamless Carbon Steel Structural Tubing6 • A 502 Specification f o r Steel Structural Rivets5 A 563 Specification f o r Carbon and Alloy Steel Nuts5 A 563M Specification f o r Carbon and A l l o y Steel N u t s [Metric]5 A 570/A 570M Specification f o r Steel, Sheet and Strip, Carbon, Hot-Rolled, Structural Quality7 A 668 Specification f o r Steel Forgings, Carbon and Alloy, for General Industrial Uses F 568 Specification for Carbon and Alloy Steel Externally Threaded Metric Fasteners5
  • 17. Aerospace Materials Specifications Chronological order of acceptance • The number normally means nothing
  • 18. - INITg The Engineering Society — F o r Advancing Ilitobility - L a n d Sea Air and Space® : ) i N T E R N A T I O N A L M A T E R I A L AEROSPACE / t D . g i U • IsSued 400 Commonwealth Drive, Warrendale, PA 15096-0001 SPECIFICATION Submitted for recognition as an American National Standard 1 Aluminum Allay Alclad 7075, Plate and Sheet NOTICE ANIS-W.-A-250M 3 AUG 1997 UNS A87075 This document has been taken directly from Federal Specification QQ-A-250113E, Amendment 1, and contains only minor editorial and format changes required to bring it into conformance with the publishing requirements of SAE technical standards. The original Federal Specification was adopted as an SAE standard under the provisions of the SAE Technical Standards Board (TSB) Rules and Regulations (TSB 001) pertaining to accelerated adoption of government specifications and standards. TSB rules provide for (a) the publication of portions of unrevised government specifications and standards without consensus voting at the SAE Committee level, (b) the use of the existing government specification or standard format; and (c) the exclusion of any qualified product list (QPL) sections. The complete requirements for procuring 7075 aluminum alloy alclad plate and sheet described herein shall consist of this document and the latest issue of AMS-QQ-A-250. 1. SCOPE AND CLASSIFICATION: 1.1 S c o p e : 1
  • 19.  Developed by ASTM, SAE, and several other technical societies, trade associations, and U.S. Government agencies.  Consists of a letter and five numerals. • The letter indicates the class of alloy • The numerals define specific alloys within the class • Most carbon and alloy steels start with “G”, stainless steels start with “S”, tool steels start with “T”.
  • 20.  Most widely used system.  Carbon & Alloy Steels – four digits - numbers actually mean something!! • First two digits = alloy system • Second two digits = carbon content in hundredths percent • ie. 1018, 1040, 4140, 4340, 8620, 52100 • Other letters are added in for different reasons  L, B, H, etc
  • 21. Handout #1 SERIES D E S I G N AT I O N 10XX 11X 2.xx 5xx 13xx 40xx 41xx 43xx 46xx 47xx 48xx 51xx 51xxx 5'2xxx 61xx 86xx 87xx 88xx 92xx 50Bxx 5lBxx 8lBxx 94Bxx TYPE A N D A P P R O X I M AT E P E R C E N TA G E S OF IDENTIFYING E L E M E N T S Nonresururized, Manganese 1.00 per cent maximum Resulturized Rephosphonzed and Resultunzed Nonresulturized, Margalese maximum over 1 00 per cent Manganese 1.75 Molybdenum 0.25 Chromium 0.50, 0.80 or 0.95. Molybdenum 0.12, 0,16, 0.20 or 0.30 Nickel 1.83, Chromium 0.50 or 0.80, Molybdenum 0.25 Nickel 0.85 or 1.83, Molybdenum 0.20 or 0.25 Nickel 0.85 or 1.05, Chromium 0.55 or 0.45. Molybdenum 0.20, 0.35 or 0.52 Nickel 3.40, Molybdenum 0.25 Chromium 0.80, 0.88, 0.93, 0.95 or 1.00 Chromium 1.03 Chromium 1.45 Chromium 0.60, or 0.95, Vanadium 0.13 or min. 0.15 Nickel 0.55, Chromium 0.50, Molybdenum 0.20 Nickel 0.55, Chromium 0.50, Molybdenum 0.25 Nickel 0.55, Chromium 0.50, Molybdenum 0.35 Silicon 2.00, Silicon 1.00 or 1.40 8, Chromium 0.55 Chromium 0.28 or 0.50 Chromium 0,80 Nickel 0.30, Chromium 0.45, Molybdenum 0.12 Nickel 0.45, Chromium 0.40, Molybdenum 0.12 B denotes Boron Steel ,..1111F
  • 22. Handout #2 IRONANDSTEEL SAE-AISIsystemofdesignations Numerals T y p e ofsteeland anddigits n o m i n a l alloy content,% Carbonsteels 10xx(a) P l a i n carbon(Mn1.00max) 11)0( R e s u l t u r i z e d 12>c<•• Resulfurized andrephosphorized 15xx P l a i n carbon(maxMn1.00-1.65) Manganesesteels 13xx M n 1.75 Nickel steels 23)0( N i 3.50 25xx N i 5.00 Nickel-chromium steels 31)o( N i 1.25;Cr0,65and0.80 32)0( N i 1 . 7 5 ; Cr1.07 33xx N i 3.50;Cr1.50and1.57 34xx N i 3.00;Cr077 Molybdenum steels 40xx M o 0,20and0.25 44xx M o 0.40and0.52 Chromium-molybdenumsteels 41xx C r 0.50,0.80,and0.95; Mo012,0.20,025,and0.30 Numerals T y p e ofsteeland anddigits n o m i n a l alloy content,% Nickel-chromium-molybdenum steels 43xx N i 1.82;Cr0.50and0.80;Mo0.25 43BVxx N i 1.82;Cr0.50;Mo0.12and 0.25;V0.03min 47)0( N i 1.05;Cr0.45;Mo020and •0.35 81)0( N i 0.30;Cr0.40;Mo0.12 86xx N i 0.55;Cr0.50;Mo0.20 87xx N i 0.55;Cr0.50;Mo025 88xx N i 0.55;Cr0.50;Mo035 93)0( N i 325;Cr1.20;Mo0.12 94xx N i 0.45;Cr0.40;Mo0.12 97)0( N i 0.55;Cr020;Mo0.20 98xx N i 1.00;Cr0.80;Mo0.25 Nickel-molybdenum steels 46xx N i 0•85and1.82;Mo020and0.25 48xx N i 3,50;Mo0.25 Chromium steels 50xx C r 0.27,0.40,0.50,and0.65 51xx C r 0.80,0.87,0.92,095,1.00,and1.05 (a)Thexxinthelasttwodigitsofthesedesignationsindicatesthatthecarboncontent(inhundredthsofapercent)istobeinserted. Numerals T y p e ofsteeland anddigits n o m i n a l alloy content, Chromium (bearing)steels 50)0(x C r 0.50,C1.00min 51)00( C r 1.02,C1.00min 52)0(x C r 1 . 4 5 , C1.00min Chromium-vanadiumsteels 61xx Cr 0.60,0.80,0.95;V0.10and0.15min Tungsten-chromiumsteel 72xx W 1.75;Cr0.75 Silicon-manganesesteels 92xx S i 1.40and2.00;Mn0.65,0.82, and0.85;Cr0and0.65 High-strength low-alloy steels 9xx V a r i o u s SAEgrades Boronsteels )0(Bxx B denotesboronsteel Leadedsteels xxLxx L denotesleadedsteel 1 ,:oxcccoxccccoxcccox4ccox•xccox•xcco:oxcco:oxcox•xccox•xccox•xccox•xccox•xcco:oxcco:oxcox•xccox•xccox•xccox•xccox•xco:4:
  • 23. Normally 3 numerals  Austenitic Stainless Steels – non-magnetic, not heat- treatable, work-harden only • Chrome and nickel • 304, 316, 321  Ferritic Stainless Steels – magnetic, not heat-treatable • Chrome, no nickel • 405, 409, 430  Martensitic Stainless Steels – magnetic, heat-treatable • Lower chrome than Ferritic, higher carbon, no nickel • 410, 416, 420, 440A, 440B, 440C  Precipitation Hardenable Stainless Steels – magnetic, heat-treatable. • Chrome and nickel • 17-4, 15-5, 13-8, 17-7 • Different hardening mechanism than most steels
  • 24. •, . Table 1 Composition of Standard Grades of Wrought Austenitic Stainless Steels Type No. UNS No. Chemical composition(a), % C M n P 5 Si C r Ni Mo Other elements 201 S20100 0.15 5.50-7.50 0.060 0.030 1.00 16.00-18.00 3.50-5.50 0.'25 N 202 S20200 0.15 7.50-10,00 0.060 0.030 1.00 17.00-19.00 4,00-6,00 0.25 N 205 S20500 0.12-0.25 14.00-15.50 0.060 0.030 1.00 16.50-18.00 1.00-1.75 0.32-0.40N 301 S30100 0.15 2.00 0.045 0.030 1.00 16.00-18.00 6.00-8.00 302 S30200 0.15 2.00 0.045 0.030 1.00 17.00-19.00 8.00 10,00 302B S30215 0.15 2.00 0.045 0.030 2.00-3.00 17.00-19.00 8.00-10.00 ... 303 S30300 0.15 2,00 0.200 0 150111in 1 , 0 0 1 7 . 0 0 - 1 9 . 0 0 8.00-10.00 0.60(6) .... 303Se S30323 0.15 2.00 0.200 0.060 1.00 17.00-19,00 8.00-10.00 0.15 Se min 304 S30400 0.08 2.00 0.045 0.030 1.00 18.00-20.00 8.00-10_50 ... 304H 530409 0.04-0.10 2.00 0.045 0.030 1.00 18.00-20.00 8.00-1050 304L S30403 0.03 2.00 0.045 0.030 1.00 18.00-20.00 8.00-12.00 ... 304LN 530453 0.03 2.00 0.045 0.030 1.00 18.00-20.00 8.00-12.00 0.10-0.16N 304N S30451 0.08 2.00 0.045 0.030 1.00 18.00-20.00 8.00-10.50 0.10-0.16 N 305 S30500 0.12 2.00 0.045 0.030 1.00 17.00-19.00 10.50-13.00 ... 308 S30800 0.08 1,00 0.045 0.030 1.00 19.00-21.00 10.00-12.00 309 S30900 0.20 2.00 0.045 0.030 1.00 22.00-24.00 12.00-15.00 309S S30908 0.08 2.00 0.045 0.030 1.00 22.00-24.00 12.00-15.00 310 S31000 0.25 2.00 0.045 0.030 1.50 24.00-26.00 19.00-22_00 310S S31008 0.08 2.00 0.045 0.030 1.50 24.00-26.00 19.00-22.00 314 S31400 0.25 2.00 0.045 0.030 1.50-3.00 23.00-26.00 19.00-22.00 ... 316 S31600 0.08 2.00 0.045 0.030 1.00 16.00-18.00 10.00-14.00 2.00-3.00 31611 S31620 0.08 2,00 0.200 0 100 min 1.00 16.00-18.00 10.00-14.00 1.75-2.50 316H ... 0.04-0.10 2,00 0.045 0_035 1_00 16.00-18.00 10.00-14.00 2.00-3.00 316L S31 603 0.03 2.00 0.045 0.030 1,00 16.00-18.00 10.00-14.00 2.00-3.00 ... 316LN ... 0.03 2.00 0.045 0.035 1.00 16.00-18.00 10,00-14.00 2.00-3.00 0.10-0.16N 316N S31651 0.08 2.00 0.045 0.030 1.00 16.00-18.00 10.00-14.00 2.00-3.00 0.10-0.16 N 317 S31700 0.08 2,00 0.045 0,030 1.00 18.00-20.00 11.00-15.00 3.00-4.00 317L S31703 0.03 2.00 0.045 0.030 1.00 18.00-20.00 11.00-15.00 3.00-4.00 ... 321 S32100 0.08 2.00 0.045 0.030 1.00 17,00-19.00 9.00-12.00 ... 5 x C T I min 32111 S32109 0.04-0.10 2.00 0.045 0.030 1.00 17.00-19.00 9.00-12.00 ... 5 x % C Ti m i n 329 S32900 0.10 2.00 0.040 0.030 1.00 25.00-30.00 3.00-6.00 1.00-2.00 . - 330 N08330 0.08 2.00 0.040 0.030 0.75-1.50 17.00-20.00 34.00-37.00 ... ... 347 S34700 0.08 2.00 0.045 0.030 1.00 17.00-19.00 9.00-13.00 10 ><CC134-Tamin 347H S34709 0.04-0.10 2.00 0_045 0_030 1,00 I 7.00-19.00 9.00-13_00 8 x %C min to 1.00 max Nb 348 S34800 0.08 2.00 0.045 0.030 1.00 17.00-19.00 9.00-13.00 10 x C O I + Ta min, 0.10 Ta max, 0.20 Co max 348H S34809 0.04-0.10 2.00 0.045 0.030 1,00 17.00-19.00 9.00-13.00 8 x %C min to 1.0 max Nb, 0.10 Ta 384 S38400 0.08 2.00 0.045 0.030 1.00 15.00-17.00 17.00-19.00 (a) Maximum, unless otherwise noted. (D) May be added at the manufacturer's option. Source: AISI Steel Products Manual
  • 25. Table 2 C o m p o s i t i o n o f S t a n d a r d G r a d e s o f W r o u g h t F e r r i t i c S t a i n l e s s S t e e l s TYPe U N S C h e m i c a l c o m p o s i t i o n t a l , % N o . M n M n S i C r M o O t h e r e l e m e n t s 405 S 4 0 5 0 0 0 . 0 8 1_00 0 . 0 4 0 0 _ 0 3 0 1 . 0 0 11 . 5 0 - 1 4 . 5 0 11 . 5 0 - 1 3 . 0 0 0 . 1 0 - 0 _ 3 0 A l 409 S 4 0 9 0 0 0 . 0 8 1_00 0_045 0 . 0 4 5 1 . 0 0 1 0 . 5 0 - 11 . 7 5 1 , 0 0 6 x C Ti m i n . 0.75 m a x 429 S 4 2 9 0 0 0_ 12 1 . 0 0 0_040 0 . 0 3 0 1 . 0 0 1 4 . 0 0 - 1 6 . 0 0 0 . 0 3 0 1 . 0 0 430 S 4 3 0 0 0 0 . 1 2 1 . 0 0 0 . 0 4 0 0_030 1 . 0 0 1 6 _ 0 0 - 1 8 . 0 0 0 . 0 6 0 0 . 1 5 0 m i n 430F S 4 3 0 2 0 0 . 1 2 1_25 0 . 0 6 0 0 . 1 5 0 m i n 1_00 1 6 . 0 0 - 1 8 . 0 0 0 . 6 0 ( b ) 0 . 0 6 0 430FSe S 4 3 0 2 3 0 - 1 2 1.25 0 - 0 6 0 0 . 0 6 0 1_00 1 6 . 0 0 - 1 8 . 0 0 O v e r 0 . 1 5 0 . 1 5 Se m i n 434 S 4 3 4 0 0 0 . 1 2 1 . 0 0 0 _ 0 4 0 0 . 0 3 0 1.00 16_00-18_00 0 _ 7 5 - 1 . 2 5 _ - 436 S 4 3 6 0 0 0 . 1 2 1 . 0 0 0_040 0 . 0 3 0 1_00 1 6 _ 0 0 - 1 8 . 0 0 0 . 7 5 - 1 . 2 5 5 C C b ' F a m i n . 0 . 2 0 - 0 . 2 5 1 . 0 0 0 . 0 2 5 0 . 0 2 5 0-75 11 . 0 0 - 1 3 . 0 0 0 . 5 0 - 1 _ 0 0 0_75-1.25 0 . 1 5 - 0 . 3 0 V 0 . 7 0 m a x 439 S 4 3 0 3 5 0 . 0 7 1_00 0 _ 0 4 0 0 _ 0 3 0 1_00 1 7 . 0 0 - 1 9 . 0 0 0 . 5 0 N1,0_15 A l , 12 x 431 S 4 3 1 0 0 0_20 1 . 0 0 0 . 0 4 0 0 . 0 3 0 1_00 1 5 . 0 0 - 1 7 . 0 0 1 . 2 5 - 2 _ 5 0 % C r u i n - 1 - 1 0 Ti 442 5 4 4 2 0 0 0 . 2 0 1 . 0 0 0 . 0 4 0 0 . 0 3 0 1-00 1 8 . 0 0 - 2 3 . 0 0 1 6 . 0 0 - 1 8 . 0 0 _.. 446 5 4 4 6 0 0 0 . 2 0 1 . 5 0 0 . 0 4 0 0 . 0 3 0 1 . 0 0 2 3 . 0 0 - 2 7 _ 0 0 1_00 0 . 2 5 N Ty-pc U N S N o . C h e m i c a l conap,ositiontal., % M n S i C r N i M o O t h e r e l e m e n t s 403 S 4 0 3 0 0 0 . 1 5 1 . 0 0 0 . 0 4 0 0 . 0 3 0 0 5 0 11 . 5 0 - 1 3 . 0 0 410 S 4 1 0 0 0 0 . 1 5 1 . 0 0 0 . 0 4 0 0 _ 0 3 0 1 , 0 0 11 . 5 0 - 1 3 . 5 0 414 S 4 1 4 0 0 0_15 1 . 0 0 0 . 0 4 0 0 . 0 3 0 1 . 0 0 1 1 5 0 - 1 3 . 5 0 1 . 2 5 - 2 . 5 0 ... 416 S 4 1 6 0 0 0 . 1 5 1 . 2 5 0 . 0 6 0 0 . 1 5 0 m i n 1 . 0 0 1 2 . 0 0 - 1 4 . 0 0 ... 0.60(1,) ... 416Se S 4 1 6 2 3 0 . 1 5 1.25 0 . 0 6 0 0 . 0 6 0 1 . 0 0 1 2 . 0 0 - 1 4 _ 0 0 0 . 1 5 Se m i n 420 S 4 2 0 0 0 O v e r 0 . 1 5 1 . 0 0 0 . 0 4 0 0 . 0 3 0 1 . 0 0 1 2 . 0 0 - 1 4 . 0 0 _._ ... 420F S 4 2 0 2 0 O v e r 0 . 1 5 1.25 0 . 0 6 0 0 . 1 5 0 m i n 11 ) 0 1 2 . 0 0 - 1 4 . 0 0 0 . 6 0 ( b ) 422 S 4 2 2 0 0 0 . 2 0 - 0 . 2 5 1 . 0 0 0 . 0 2 5 0 . 0 2 5 0-75 11 . 0 0 - 1 3 . 0 0 0 . 5 0 - 1 _ 0 0 0_75-1.25 0 . 1 5 - 0 . 3 0 V 0 _ 7 5 - 1 . 2 5 W 431 S 4 3 1 0 0 0_20 1 . 0 0 0 . 0 4 0 0 . 0 3 0 1_00 1 5 . 0 0 - 1 7 . 0 0 1 . 2 5 - 2 _ 5 0 440A S 4 4 0 0 2 0 . 6 0 - 0 . 7 5 1 . 0 0 0 . 0 4 0 0 . 0 3 0 1 . 0 0 1 6 . 0 0 - 1 8 . 0 0 _.. 0 . 7 5 440B S 4 4 0 0 3 0 . 7 5 - 0 . 9 5 1 . 0 0 0 , 0 4 0 0 . 0 3 0 1_00 1 6 . 0 0 - 1 8 . 0 0 0_75 440C S 4 4 0 0 4 0 . 9 5 - 1 . 2 0 1 . 0 0 0 . 0 4 0 0 . 0 3 0 1 . 0 0 1 6 . 0 0 - 1 8 . 0 0 0 . 7 5 3 l a r t , s i I i e t y p e 6l 0 Setnianstenitie t y p e s A l s i U N S (a) M a x i m u m , unless o t h e r w i s e n o t e d . ( b ) M a y h e a d d e d at the m a n u f a c t u r e r ' s o p t i o n . S o u r c e : A I S 1 Steel P r o d u c t s M a n u a l Table 3 C o m p o s i t i o n o f S t a n d a r d W r o u g h t G r a d e s o f M a r t e n s i t i c S t a i n l e s s S t e e l s Table 4 C o m p o s i t i o n o f S t a n d a r d G r a d e s o f P r e c i p i t a t i o n - H a r d e n i n g S t a i n l e s s S t e e l s No. N o . C M a S i C r N i M o O t h e r e l e m e n t s S I 7 4 0 0 (a) M a x i m u m , unless o t h e r w i s e n o t e d 0 . 0 7 1 . 0 C h e m i c a l c o m p o s i t i o n t a l . % 1.0 1 7 . 0 4 . 0 4 _ 0 C u , 0 _ 1 5 - 0 . 4 5 C b T a 631 S 1 7 7 0 0 0 _ 0 9 1 _ 0 1 . 0 1 7 . 0 7 . 0 . . _ 1 . 0 A l 632 S 1 5 7 0 0 0 . 0 9 1 . 0 1 . 0 1 5 . 0 7 . 0 2 _ 2 1 . 2 A l 533 S 3 5 0 0 0 0 _ 0 g 0 _ 8 0 . 2 5 1 6 . 5 4 . 3 2 _ 7 5 0 . 1 N 634 S 3 5 5 0 0 0 _ 1 3 0 _ 9 5 0 . 2 5 1 5 . 5 4 _ 3 2 _ 7 5 0 . 1 N Austenitic t y p e 660 1 ( 6 6 2 8 6 0 . 0 8 1 . 4 0 . 4 1 5 . 0 2 6 . 0 1 . 3 0 . 3 V . 2 O l t 0.35 A 1 , 0 . 0 0 3 Et
  • 26. Tool Steels – letter followed by a number • Letter = application or heat treatment method • Number = chronological sequence of acceptance  Water-Hardening W1  Oil-Hardening O1, 02, 06  Air-Hardening A2, A6, A10  High-C, High-Cr D2 (air-harden), D3 (oil-harden)  Shock Resisting S1, S2, S5, S7  Hot Working H11, H13  Plastic Mold P6, P20 (pre-hardened)  High Speed Tungsten T1,T15  High Speed Molybdenum M2, M4, M42 There are literally “thousands” of proprietary grades
  • 27. z44 4 44wr;Nw 08 p p o p p p 88888:L U-8888U• N i d . - . 0 1 . b 0 0 , A 0 0 0 ' 0 ° ° 88g E 888t oN x , 1 ; 4!A•!-• • 88 8 888888 • 9 0 0 0 0 0 0 p p o p p p o o p p o p o .ifiN.46L4 N i d . - . 0 1 . b 0 0 , A 0 0 0 t 4 , , W w w 4 00(111.40 O V 0 0 - 4 0 , 1OV x3xxxxx :xxxxxn m.o,roAgrit,. 232N0>>>>>>> q u o , mv2; “ “4 , w w w w w 0 . . , , , . 0 , 0 . - , . . , O N , 1 7 4 ( , ) , 4 , M N , - 0 Z Q - CMJ14,,WW..0 C 4 W W - 0 1 2 . 4 1 u 1 0 7 7 0 7 7 ; 0 ; l i • g = ; ' - '0 I 0 r ; 7 rt o , , o o 4 9 0 0 , g 00 0 0 --• 0 0 ' 0 7 E z 0 , , : a,, 9 , v 4 P E ' E e 0n cr F : 1 r % 5 ' , a E ! n of0 r r . . , • '18 9 c • , , , a$ t 4 E i - 8 n .-i-i a $ r F 0 J = E , =;jt',,t,,Wjj d d d ; = J d d i d d d Z - J = q r i 0 F.9,09.9,29, o i ciF, ici oi : ,0,Ofs0,C,C, N N N ' - '0 0 E 4 . Nflo00.)v) r , r , ; i R ? ? ? 2 0 9 0 0 9 0 0 0 5 . „ L t . , „ 8 1 www,a0 cp,.-0,7i.')8,vu,s 8,9R29,2,9t9,5,.82,9,92E g- 7 0 r o ro $ o rt R , 4 o 2. 7ri 7 ; 7 s r , t h i0 0 0 0 0 0 ? * N . . . N N . . , . ' 0 0NO!-. . . . . . 0 0 0 00 r 0 0 : . ? ? ....1- 7 i d i m i o i c L,JAblis)04; i J c l id,:p:0 „...„ 0 , . L 4 O V I V I O , u 1 0 0 1 A 0 0 0 , u , 0 , - , 1 0 0 O V 1 0 0 0 0 i , 4 , . R r r c c A A -' . - n . „ . , 0 0 0 ( A 0 0 0 • . P N :88 0 7 , ?,O1A7'!-,!-', P . P ,•Pt o t o : ,1888888 88H888 o :, N),!.00o 1. A , O . . •0).o 0 0 0 0 : t o -P• op to !-9PP• :
  • 28. Classification and approximate compositions of principal types of tool steels (continued) UNS Identifying elements, % AISI N o . Mn Si Cr Mo Co Ni Tungsten high-speed tool steels 14 T 1 2 0 0 4 0.75 •.., 4.00 1.00 18.00 5.00 T5 T 1 2 0 0 5 0.80 4.00 2.00 18.00 8.00 T6 1 1 2 0 0 6 0.80 4.50 1.50 20.00 12.00 T8 T 1 - 2 0 0 8 0.75 • • • 4,00 2.00 14.00 5.00 T15 T 1 2 0 1 5 1.50 4.00 5.00 12.00 5.00 Molybdenum high-speed tool steels MI 1 I I 3 0 1 0.80(a) 4.00 1.00 1.50 8.00 M2 1 1 1 3 0 2 0.85-1.00(a) 4.00 2.00 6.00 5.00 M3, class1 T 1 1 3 1 3 1.05 4.00 2.40 6.00 5.00 M3, class 2 T 1 1 3 2 3 1.20 4.00 3.00 6.00 5.00 M4 T I 1304 1.30 4.00 4.00 5.50 4.50 M6 1 1 1 3 0 6 0.80 • • • 4.00 2.00 4.00 5.00 12.00 M7 T 1 1 3 0 7 1.00 4.00 7.00 1.75 8.75 MIO T 1 1 3 1 0 0.85-1.00(a) 4.00 2.00 ... 8.00 M30 T 1 1 3 3 0 0.80 4.00 1.25 2.00 8.00 5.00 M33 1 1 1 3 3 3 0.90 4.00 1.15 1.50 9.50 8.00 M34 T 1 1 3 3 4 0.90 4.00 2.00 2..00 8.00 8,00 ... M35 1 1 1 3 3 5 0.82-0.88 0.15-0.40 0.20-0.45 3.75-4,50 1.75-2.20 5.50-6.75 ... 4.50-5.50 0.30 max M36 T 1 1 3 3 6 0.80 ... 4.00 2.00 6.00 5.00 8.00 Ultrahard high-speed tool steels M41 1 1 1 3 4 1 1.10 ...• 4.25 2.00 6.75 3.75 5,00 M42 T 1 1 3 4 2 1.10 3.75 1.15 1.50 9.50 8.00 M43 T 1 1 3 4 3 1.20 • • • 3.75 1.60 2.75 8.00 8.25 M44 1 1 1 3 4 4 1.15 4.25 2.00 5.25 6.25 12,00 M46 T 1 1 3 4 6 1.25 4.00 3.20 2.00 8.25 8.25 M47 T 1 1 3 4 7 1.10 ... 3.75 1.25 1.50 9.50 5.00 ... M48 1 1 1 3 4 8 1.42-1.52 0.15-040 0.15-0,40 3.50-4.00 2.75-3,25 9.50-10.50 0.15-0,40 8.00-10.00 0.30 max M50 1 1 1 3 5 0 0.78-0,88 0.15-0.45 0.20-0,60 3,75-4.50 0.80-1.25 ... 3.90-4.75 0.30 max M52 1 1 1 3 5 2 0.85-0.95 0.15-0.45 0.20-0.60 3.50-4.30 1.65-2.25 0.75-1,50 4.00-4.90 0.30 max M62 T 1 1 3 6 2 1.25-1.35 0.15-0.40 0.15-0.40 3.50-4,00 1,80-2.00 5.75-6.50 10.00-11.00 0.30 max (a) Available with different carbon contents. (b) Contains graphite. (c) Optional
  • 29. The heating and cooling of a solid metal or alloy in such a way as to obtain desired conditions or properties. Temperatures and cooling rates are the main determining factors that affect properties (ie. annealing, hardening).
  • 30.  At room temperature, the iron is body-centered cubic.
  • 31.  When we heat it up above a critical temperature (~1400ºF), it transforms to face- centered cubic.
  • 32. If we continue to heat it, it will transform back to body-centered cubic, and then it will melt at ~2800ºF.
  • 33. Because it exists in two forms, it is considered to be ALLOTROPIC.
  • 34. Heat the steel up to convert the BCC structure to the FCC structure, then quench it.
  • 35. Iron-Carbon Phase Diagram Handout #7 Iron/Carbon Alloy P h a s e D i a g r a m Te m p e r a t u r e (F) 3 0 0 0 2 8 0 2 2 8 0 0 2 7 2 0 2 6 0 0 255-2 2 4 0 0 2 2 0 0 2 0 6 6 2 0 0 0 1 8 0 0 1 6 7 0 1 6 0 0 1 4 0 0 1 3 3 3 1 2 0 0 1 0 0 0 4 1 0 0.50% 0 . 8 3 % 1 % 2 % 4 1 - - - 1 - H y p o - E u t e c t o l d - - - 0 . 1 1 — H y p e r - E u t e c t o i d — o • S T E E L C a r b o n C o n t e n t P r e s e n t ( b y w e i g h t ) Temperature (C) a+ M a g n e t i c P o i n t ( 1 4 1 4 F) A , Austenite Solid Solution of Carbon in G a m m a Iron Austenite in Liquid , a•••••••; A l 0.025 P e a r l i t e • a n d • F e r r i t e I A o I NI- - 1 - I „....-1-0.008% Pearlite and Cementite a+ L = L i q u i d y = A u s t e n i t e = F e r r i t e = D e l t a I r o n C M = C e m e n t i t e 2055 F M i r CM begins # to solidify - . 1 - Primary Austenite 1 0 0 / b e g i n s to , solidify Fe3C Austentite, Ledeburite and Cementite A1.2,3 Austenite to / P e a r l i t e Cementite, Pearlite and transformed Ledeburite Fe3C ,•e•—•••• M aan etic C h a r a e o f Fe3C Fe3C.,„%lik 4.3 6 . 6 7 • • • • • • • • • „ 1 a . . Z • 4 1 a . Cementite and Ledeburite 1539 1492 1400 1130 910 760 723 210 3% 4 % 5 % 6 % 6 5 % C A S T I R O N
  • 36. The attempt by the steel to get back to BCC is what creates the hardness. The carbon atoms create stresses in the lattice and form a structure called martensite, which is body- centered tetragonal, very hard, and very brittle. The steel is then tempered to soften it to a hardness acceptable for the application.
  • 37. AS QUENCHED (BCT) STRAINED 0 F e atoms • C atoms ( R a n g e of I F e - a t o m 1 i ) displacements
  • 38. Carbon content determines achievable hardness (up to a point). 1018 vs. 1040 vs. 1075 vs. 1095
  • 39.  As-Quenched Untempered Martensite  Quenched & Tempered Tempered Martensite
  • 40. Heat the BCC steel up above the critical temperature and transform it to austenite, creating solid solution, then slowly cool it down below the critical temperature.
  • 41.  Annealed Steel  Ferrite/Pearlite
  • 42. Hardness is the material’s resistance to plastic deformation, usually by indentation. • ie. Rockwell, Brinell, Knoop,Vickers Hardenability is the relative ability of steel to harden. • ie. depth of hardness
  • 43. Brinell Hardness (HBW) • 3000 Kg load, 10mm tungsten carbide ball, 10 seconds dwell – standard conditions. • Also can be used with 1500 Kg and 500 Kg loads, different sized balls, different dwell times. • 150 HBW (1500/10/30)  Stands for 150 brinell hardness using a 1500 Kg load, a 10 mm tungsten carbide ball, and a dwell time of 30 seconds.
  • 44. Rockwell Hardness (HRA, HRB, HRC, etc) • HRC scale – hard steels  Diamond indentor – 150 Kg load • HRB scale – soft steels  1/16” steel ball indentor – 100 Kg load • HRA – covers both scales  Diamond indentor – 60 Kg load
  • 45. Rockwell Superficial Hardness (lighter loads) • HR15N, HR30N, HR45N – hard steels  Diamond indentor – 15, 30, 45 Kg loads • HR15T, HR30T, HR45T – soft steels  1/16” steel ball indentor – 15, 30, 45 Kg loads • Used for thin parts/materials or thin hard layers (case hardening) where regular Rockwell testing will push through.
  • 46.
  • 47.  Knoop and Vickers Microhardness (really light loads) • Knoop – 25 grams to 1000 grams – diamond indentor  500 grams is standard  Designated as xxxHK500 • Vickers – 25 grams to 1000 grams – diamond indentor  500 grams is standard  Designated as xxxHV500
  • 48.
  • 49. 2 od U.60. .R2c2 0 b 1 2 1 ' a tol' Z m 1-1,,58z 2 I , h 2 E t a z z,J.Esc o 0 0 ! t / LI) z 2 v 8 0 , z i Fo4w2iT., 0 z 3 l A c 0 0 a , m 0 - 0 0 i v 8 0AE0z a o D o ! _ 0 . J 0 E 0m c c ( . 0 ' ' S1 4 c Ic3 mthc i o m -m= 0 0 0 0= 0 J M T o , i 0 0 mz 00p0000000900000Q000cz000czcz000 0 0 0 0 0 0 0 0 0 0 0 zNol-oN,omcsiwovoNmmm.tomolcol.e.mon- C 0 0 0 0 N k 0 0 0 . 4 - / M M O N N , , O C O O ' " n 2 ° ° " C " - " s * 0 0 0 0 N t , r , N O M q 0 0 0 2 M , 0 0 , - 0 0 1 V . , - o , ( 0 6 0 0 : 9 4 3 , 7 , 2 1 - - O N O O M N , - 0 M 0 N w O r m 6 N , 0 0 M 0 M r - N 0 0 0 0 q q , " - - , - C I M V ) M M N N O 4 N N N N N N N N N 6 6 , 0 0 0 N O O I M N O M 0 k 0 O M N - a M 1 , 0 0 / 0 , - Q 0 0 r , C I M N , O M N 0 W 1 O c N O M N - 1 , 1 , - N r . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t I / / / / . T / O M O O M M O M n O , I N N N N N N 6 , , r . , , o m m , , - 0 / 0 0 N 0 M O O N W I O O N W O O , N 0 1 0 0 N O M O N M , M / O O N C O M O O N M O-: • , • , . , • • • • • , • 6 6 O t t ) Co 6 0 1 C6 CI 0 0 ) 0 1 , , T r C 9 6 0 0 ) OP I , 0 IT 0 1 ' CO C O N - 0 0 0 0 0 0 0 0 0 N N I , • 1 , N N N t , N 1 , 1 , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M 0 0 0 0 0 1 0 , 1 7 / 4 1 / 1 / . . 1 / / / 6 6 L q N 6 I . , - . N N 0 m o n c ) , T 6 1 0 , 0 o o m o o m 4 0 ) 7 q m r - t p 0 0 0 0 ) 0 N 0 0 0 0 1 6 6 0 4 0 4 1 - 1 - 4 - 6 6 0 0 i C 6 6 H , : 6 6 M , 6 6 , - 6 0 6 M 0 ) . 6 h - N W ( 6 0 6 4 ( 6 0 i 6 6 , , - 0 a i 6 0 0 0 0 0 0 0 0 0 ( M M M O M M O D M M C O M M M W O M O O D O W N r , h r , r , N t , N N I N N N 0 0 O O M M . 1 0 n 6 1 , , , , , D O L T . O . V , 0 6 M N r . . . , 0 1 0 0 0 0 . 1 . M t M / 0 6 6 M ( 0 ( 9 0 ) / 0 0 C H T 6 6 1 ' 6 6 , w 0 C 4 6 0 0 r . 6 0 6 0 4 4 6 6 6 6 6 6 6 6 N N 6 C T 0 6 : , t / 6 6 6 , 6 M O W 0 0 0 0 0 0 0 0 1 , 1 , N N N N I , N N N N I , N N N N N 0 0 0 0 0 0 0 0 0 0 w W 0 0 0 0 0 0 0 0 • 0 0 0 0 N M O q N 0 0 ° 0 0 C I t O W N 0 0 0 0 0 N 0 0 0 / 6 , - 0 0 4 Q , N 1 0 0 , - 1 " N O W N ( p , 0 , N o t , . / N M N 0 6 , - m N 0 6 , - M N 0 n 0 1 , - M M O O M N , - O M O N W O 4 O N , , - 0 0 0 M N N W 0 0 0 (I) 0 0) o) t , N • T ) W ET 0 0 0 0 0 0 0 , r 1 - CI COVDCOCO C O ( 1 0 1 0 ( 1 0 . 1 0 3 N C , I N NOJ 0.1 M N 0 0 0 / / 0 0 N C M 0 6 0 N O O N N , M 0 0 , , N M - 1 0 1 , M - , - / 0 0 , / M O N - O N , 0 , M N O M N 0 6 , 1 6 , 0 0 0 0 4 M 6 0 0 0 0 N M 0 / M N , - , - O M O N N . 0 0 0 / 6 M 6 6 . N N 1 , 0 0 0 0 0 0 0 0 0 0 0 1 - 1 q / / t / t / n n 6 M 6 m 6 6 6 0 6 6 N O I N N O I N O I N N N N T O - 0 C a ) 8'4? O" 0004 8 0 q D W M To)0 T,2.3 tuj P.(1)2 o T o > .2tt' 8 = . 0 0 . 0 0 8 t4e 09,2E 2P,! P.26 2P1 R-g'72DE'e ma2 O0-, E > p D ' t R 5 5 22.'4 - 0. CCz2.:§5 f.10cc.-E 0m0.,-z-am m,'nm2 220-. 1%222° 0-c3 '8E00
  • 50. n i E,2•60- 7'2S2 P81 0 U. J n S P I P C 6 2 . 6 0 6 n 6 6 8 . 1 r U n a a n n E n a n omo,-omNomol,oGots,o N c o o N N o m m / m w N - 2 0 q 0 (,'271H(J8V48,12Wna=MT2Vaz8M8 N r O Z 0 1 , 0 0 / M N , 0 0 0 1 , , 0 0 l O N , - 0 0 , o , j N , Q 4 4 0 N , O M M N O M I N C O - O m o N o w N - O M O M O / M N , O M o l t , 0 6 1 , 1 , 1 0 0 c 1 ; 0 ( 0 0 0 0 W M 0 0 0 0 0 0 0 4 W / n t v / 7 / / V / M M O N O M M M N M N I N N N I N N N N N I N , , , . . . . . 6 6 , : , ' 6 0 k 6 0 ( 6 6 ) 6 4 6 , - , 0 6 6 6 6 , 6 6 4 1 0 6 0 ) , - , - 0 0 6 6 1 , 6 6 6 1 0 - , 0 0 6 0 6 1 , 6 6 6 1 , i v i 0 - , - 6 0 0 6 c 6 00)0 0 0 M N I N N N N N N N N N N t . N N N O 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 LO0)0O 0 ) 0 ) 0)O 0 w 0 ) 0 4 M 0 t , t 1 I I t , t t / 0 T t I 0 , t 0 ) n 0 ) 0) , M 1 0 , N O O N O O N I O O N 0 0 ( 1 0 0 M O W M O N , t 1 O N / O N I , M 4 , 0 0 N O O N O O N M O N M 0 1 0 0 0 0 W M O N M O N / 6 6 c , i 6 , — ( 5 6 6 6 6 0 0 6 , 6 0 6 , 6 6 6 6 6 6 6 4 / 4 ( 6 , 2 6 6 6 6 6 0 , 6 6 0 6 1 6 6 6 6 6 L 0 4 i 1 , 4 6 6 c 6 6 6 0 . 01010 ) 010)10)0)0)000)0)0 ) M 0 M O 0 M 0 0 0 0 0 0 0 ) O 0 1 ' 0 0)O 0 M 0 ) MC00 0 ) M M 0 ) M N t , N N t N N N N N I , r , N N N N I , N N . N N N N R 0 0 1 C O M N I - 0 0 0 0 ) 0 ) N l l l l l l l . . . . . . . . . . . . 6 6 6 , 6 N : 6 0 0 6 1 M r 6 6 1 6 1 1 , 1 , 6 6 0 6 6 0 W W / I M M N N , . . 0 0 0 0 M M N U O 6 C O M O M M M M O N O M O M M M O M O O O M M M M w o u M M C O M O M M N I , O , N N N N N C D N I O N N , 0 0 1 0 P, N T 9 1 0 . q t - . 7 0 . 0 . M M V O . M O O R C I M M C C . O M M C O 3 1 0 ) , t 0 0 f l O n n , - N N O D . M O M C q l - N M ( > 1 . 0 0 . N I N M M O , N N Q ,cicioio506 u ) , ' l o N N , , 00606 c6t,1,:o(onn,i4t,?(666,,ociOmm64ii,:t,o(66,667,14 W W W O O n n W O M O O M 4 0 0 0 0 0 0 t I V 0 ) I 0 ) 0 I 0 I I I I I < 0 ) I 0 I M O 0 1 0 O N O M 0 M M N O M M 0 M O M M M M N N 1 N N 0 1 ' 0 , 4 , 0 , - ( 0 , 0 , - 0 0 1 0 / 0 0 M O N I , M M N O N O c I r M N O M , M N 4 t N O M N O / N , O O M N 0 4 . / M N , - O M M t , 0 0 / M N - 0 0 0 0 0 0 0 0 0 0 0 M 0 0 0 0 w O M M M, 0 0 m o n co cONNN(OnnUnDLO M t / T r , : n 01 C I N C , I N C I N N N N N N N N N N N N N 0 I O 0 0 0 0 . 0 0 0 0 0 0 0 J 0 4 0 0 ) O 0 0 N t r 0 ) N 0 0 ) 0 1 , 0 0 , - 0 N W I N 0 0 N o t n , g , / C I N N I - 1 - 0 0 M M M O O N . N 0 0 0 W M W W V V V M M M M M N N U I N 0 0 0 0 0 0 . 0 N N N N N N N N
  • 51. Alloying elements are the ingredients that improve steel’s hardenability. Hardenability is measured by standard Jominy hardenability tests. Graphs are then developed to signify data.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59. Handout #13 Diameters of rounds with same as-quenched hardness (I-IIRC), in. Location in round Quench 2 4 Surface Mild water quench 1 2 3 4 3/4 radius from center 0.5 1 1 . 5 2 2 , 5 ( I ) 3 . 5 4 Center 1 1 i i 1 --1 1 1 1 2 3 4 Surface Mild oil quench 0.5 1 1 . 5 2 2 . 5 1 3 3 . 5 4 3/4 radius from center 0.5 1 1 . 5 2 2 . 5 0 - ) 3 . 5 4 Center ,, , , , , • • , • • • , ,, ' , „„,,, , '.::::.. - _,„,„„,„,„w,..,,.,S i/ • i i , , , • i• 1 1 t t ti , ,3•F.,333.333- . 3 --1;-'33,,, , , , , - ' - 3 7 - - - - , . . , 4! l i N p E „ i i . • u . 4 , . . . . . . . . . . 0 V V . . V zi 33 E l ,,„„,,A1?„,„t,„,„,„,,,,,4„,,,„,„,„,,,„ ,„7„..7,•..„7“4,,,,,,g, ttl.„,„„,,,,,, ---p,- ii 1 i rg i i ;E, , F : : • ik: ' . . ; • - 3333,3.,. 33 i,',333,,333..33M33,V3,33.3,333.3,,4.....,3.•',31.3.392,,,11, nii , I f i . • il 13 1 1 1 . .-3.--13.3313.33.3...c.,,303.3331,531,, , , _ , , , , , , , , , , , m , , , , , 3 fi 1 E ii I I I , u 4 ,.; R 1 V ii . k v i l l , . . 1 . . ,,, r . . . . s i i n s . . . . . . . . . . l i n t r : r t n . ,,, ,,,V:g.,, , ,,,,,,333,3, . . , V 1 3 3 d 1 , , . I f i i i !F P i f : - , • • • q5. Jfrfft.liu.ti333.33i.1,34553,1,33.33,...., , 33.3.333.3.3 ,333,1333,33.,3333, L„, 3 . V . 3 • i , i,.,., . . : i,.,---,,,,,.„!.,-,,,.„„,,,,..,„,,„,ii,„,.„.,,,,,,,4;,:.,,,.,,. .- i I i 3 . . . -Ff t ! E 11 ” / ,, " , , , 'E'.. „ E 4 ! I q ! .tl: : g t i i '41 d I, 0 i i . „ , P t 4 q : r i , I f A•f7,,,,,,,,,,..,p,-,,,,,,-„----,,i,,,,,,,,F,,,,,,,,,r,,t, ,,,,, ,,,,,,-,1 E• i ti!i! i i i t : I E i t 33 , I 1 1 , t :il 1 # !?' l i E , i . i . ' E 1 ! „ , if 3 :,i; ! ! l i ' f - - ' -.JP,',!,:".4" , : , , - . : , . r . . m t !:1ii'ss...i.s....7..... ,,,,,,,,,," 4,,,,, :3,553.04. i.3,. , • -S. 3, V V ,V 3 3 • • n : ' 3 : 1 ..,: f i i i i 5 ii zla! 40 ! .•• 2 . . l i ,,,,,,,,,,,,,, ,74..t.,,,,,,,,,,,,!! ,z----- , , -i....i2....nrns„74„„„„„„:„„.„„ti.„7,,,,,„,„„,.14,,,, ,,,,,,,,,,,, , r i-0: I t ! i 1 1 l i . „ ,!I E :,• " P E , , , a 3 3 ' ' : , , 1 - ,,, ,' - • • r a a , , a 5 . , , , = • - i r f m t f . k r , A ,,, F t q l • F r q , , , , i 4 7 , , , x i i . 5 . . . , , , , , , , , . . , s , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ..a....,.. , " • , , 4 4 4 , • • , . . . . . . , 4 r , , , . . . . , , ... i 3 ' V . . . .•p , . ,111 i i , , „ ,., •• uf. i/ 1 4 0 I 3 1 1 3 i i 3.33.31.33,,F. , iiV,3,3,,.',33i.3,333,33.3 . 3 , - . . ' . . . . . k 3 , 3 1 , , , V . 3 , , t , t , , , , , ' , 3 4 . , . , 3 9 3 3 . , . . . . 3 3 3 1 i 3 S 3 k , 3 3 , i 3 i i , 3 3 1 3 , , t , 3 3 , . . . . . . . . . , li a : 4 ; i i t 3 1 P 33 i 3, 3 3 V l i V 53 F11 i l ,E I i t , . . . . . 3 3 3 . 3 . 4 3 - t t , , 3 3 3 , 3 4 k . 3 , , , , i 3 . , , , , , , . . „ . , , „ , . . S . , 3 4 2 . . . 3 . 0 f i k 4 i i 3 , ' ,,,Z3,51!„ + . 3 f tt3333,3 , . 4 - . 3 , 3 3 , 3 . 3 p 3 A , , 0 riV i 1 : ' : V , . , f i V ,c T ! E ri t , E 4 i i i - T i i r a , , N m E l L ' : ' ? - ' 2 ! i i t i O •4 P i i - i i , - . . .4,,.....,,333.3...,11,,,,,,,, ,,,,,33.3,3334,,,.,„ 3,3333333,,,„ , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,, V,X55,k,r3S3.3333313,345.313233.9.3.1313.1.,.5.& 3 5 1 4 5 i333.3.13.333.432,3.335525... V , V - L i ! V , f i 4; . .,. , , • , , ;,- g f i P ,,ii 1 1 i , ! I t i L , , k ..:iii,".,:=,,,,,,,-if-,,,,-,,,,,,,,:4,,,,,.,,.,..„4„„---,,-16,„.„„„,,,,,,4,:,„,,,„,,,,,,,.,v,, • , --,,,,,k,,,,p,....,,.„•„„4,,i . , , , . . 1 4 - , „ , , i i ,1, i l • i if, . . I 1 i t E lt! , , 1 L ' 1 1 E ii t i t ! , , : t i i 5: 65 60 55 50 45 40 35 30 25 20 0 2 4 6 8 1 0 1 2 1 4 1 6 18 2 0 Distance from cluenched end, 1116 in. 22 24 26 28 30 32 34 Hardn
  • 61.
  • 62.  A destructive test to determine strength and ductility.  Material is machined into various test bar configurations.  Test bar is put into a machine and it is pulled apart.  Ultimate Tensile Strength,Yield Strength, Elongation, and Reduction of Area.  Strength and ductility contradict one another. As one goes up, the other goes down.
  • 63. Stress/Strain Diagrams Handout #14 St r Strain,e S t r a i n , e (1) () 101 " / 0 True / k 1) Nominal 81 7-71 V Strain,e (c Strain,e Fig.1-2.1 Stress-strain diagrams. (a) Nonductile material with no plastic deformation (example: cast iron). (b) Ductile material with yield point (example: low-carbon steel). (c)Ductile material without marked yield point (example: aluminum). (d) True stress-strain curve versus nominal stress-strain curve. S„ - breaking strength: S, - tensile strength: S y i e l d strength. ef •-• elongation (strain before fracture) X fracture: YP y i e l d point.
  • 64.  Ultimate Tensile Strength • The maximum stress that a material can withstand. • Direct relationship to hardness. (UTS ~ 1000 x HBW/2)  Yield Strength • The stress at which there is a specified deviation from proportionality of stress and strain.  Elongation • Total change in length of a test bar during the test. (measurement of ductility)  Reduction of Area • Total change in diameter of a test bar during the test. (measurement of ductility)
  • 65. Most mis-used and mis-understood material property. A material’s ability to absorb energy and deform plastically before fracturing. Combination of strength and ductility. Charpy and Izod impact testing. Also represented by the area under the stress/strain curve. Affected by chemistry, microstructure, and processing history.
  • 66.
  • 67.
  • 68.
  • 69. Dependent upon chemical composition of the material. The “alloying elements” determine the transformation properties. T-T-T (time-temperature-transformation) curves tell the story.
  • 70.
  • 71.
  • 72.  When steel is heated up above the “critical” temperature in air, decarb will occur.  Furnace atmospheres are necessary to eliminate the oxygen from reacting with the steel.  Endothermic • Separate piece of equipment – endo generator. • Natural gas & air are mixed and sent through a high temperature nickel catalyst to create a chemical reaction creating CO, H2, and N2.
  • 73.
  • 74.
  • 75.
  • 76. Vacuum • Air is removed by a series of mechanical and diffusion pumps. • Vacuum level capable of <1 micron.
  • 77.
  • 78. Disassociated Ammonia Exothermic Nitrogen or other inert gasses. Others Stainless Steel Foil • For “redneck” heat treaters!
  • 79. In addition to the endothermic carrier gas in the atmosphere, we must also be able to control the amount of carbon in the atmosphere. Additions of natural gas through a flow meter allow us to do so.
  • 80. Performed in a neutral atmosphere. Through hardening is normally desired. For endothermic (oil-hardening) equipment, carbon is controlled in the atmosphere to be equal to the carbon content of the steel. For vacuum equipment, oxygen is not present at all…no worries! Quenching can be done with water, oil, polymer, nitrogen gas, argon gas, etc….depending upon the alloy. Always followed by tempering!
  • 81.  Also referred to as “drawing”.  Temperatures below transformation (critical) temperature, so it doesn’t matter how we cool…normally air or fan cool.  Tempering is usually only done once, however some tool steels are tempered twice or three times…the first time to transform retained austenite to martensite, the second time to soften.  In medium carbon steels,“blue brittleness” occurs when tempering between 400ºF and 700ºF…toughness is sacrificed in this region…try to avoid it.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86. Surface Hardening Carburizing versus Induction Hardening Aka:“Case Hardening” Carburizing = modify the steel so that it has more carbon at the surface. Induction = leave the steel alone, but only heat up the areas you want hardened.
  • 87. Carburizing Performed in an endothermic atmosphere furnace (gas carburizing). Low carbon steel (<.25%C) placed in a high-carbon atmosphere (.90%C or higher) Carbon diffuses into the surface of the steel. ie. 8620 in the core, 8670 on the surface. Part is quenched, only the area with higher carbon content will harden. Should always temper after quenching.
  • 88. Depths can be as low as .005” deep and as high as .250” deep. Case depth is temperature and time dependent. The deeper the case, the more expensive the process. There are different methods for measuring case depth. Areas where machining and/or welding are to be done can be masked.
  • 89.
  • 90.
  • 91.
  • 92.  Advantages • Through-hardening equipment can be used. • Relatively inexpensive. • No special tooling required. • Shallow case depths can be achieved.  Disadvantages • Entire part must be heated and quenched, core hardness can not be controlled. • Carburizing beyond ~0.060” deep can be time consuming and expensive.
  • 93.  Use a steel with enough carbon to produce desired hardness.  Localized hardening – only one area is heated up and quenched.  No chemical changes are made. The carbon that is already in the steel is sufficient.
  • 94.
  • 95.
  • 96.
  • 97. Advantages • Uses less energy • Causes less distortion • Allows for stronger core strengths • Deeper case depths than carburizing Disadvantages • Tooling can be expensive. • Shallow case depths are difficult to achieve. • Equipment is specialized.
  • 98.  Annealing • Heat up to austenite range, let it slowly cool in the furnace at a specified rate to below critical temp. • Results in very soft material, softer than stress relieving.  Normalizing • Heat up to austenite range, let it cool in still air or fanned air.  Stress Relieving • Normally done in the 1000ºF to 1200ºF range. • Relieves stresses that remain locked in a structure as a consequence of a manufacturing sequence. • Rate of heating and cooling only important if you are following welding code specs.
  • 99.  Cracking often occurs due to geometry.  Avoid sharp corners and stress risers.  Consider using air-hardening vs. oil-hardening.  Liquid quenchants are more severe and cause more cracking.
  • 100.  Parts can be racked, strung, nested, etc.  Vertical is almost always better.  Consider using air-hardening vs. oil-hardening.  Liquid quenchants are more severe and cause more distortion.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105.
  • 106.
  • 107.
  • 108. It will either shrink, grow, or stay the same! Published data tells us what “should” happen. Leave as much material on the part as economically possible.
  • 109.
  • 110.  In general, the material most suitable for a given use will be that material which most nearly supplies the necessary properties and durability with a satisfactory appearance at the lowest cost.  Mechanical Properties – strength, hardness, ductility  Design Configuration  Material availability  Fabricability  Corrosion resistance  Stability  Cost