SlideShare ist ein Scribd-Unternehmen logo
1 von 66
Downloaden Sie, um offline zu lesen
19|	
  Oxida*ve	
  Phosphoryla*on	
  and	
  Photophosphoryla*on	
  
© 2013 W. H. Freeman and Company
Energy	
  from	
  reduced	
  fuels	
  is	
  used	
  to	
  
synthesize	
  ATP	
  in	
  animals	
  
•  Carbohydrates,	
  lipids,	
  and	
  amino	
  acids	
  are	
  the	
  main	
  
reduced	
  fuels	
  for	
  the	
  cell	
  
•  Their	
  oxida9ve	
  steps	
  converge	
  in	
  the	
  final	
  stage	
  of	
  
cellular	
  respira9on	
  
•  Electrons	
  from	
  reduced	
  fuels	
  are	
  transferred	
  to	
  
reduced	
  cofactors	
  NADH	
  or	
  FADH2	
  
•  In	
  oxida*ve	
  phosphoryla*on,	
  energy	
  from	
  NADH	
  
and	
  FADH2	
  are	
  used	
  to	
  make	
  ATP	
  
Oxida*ve	
  Phosphoryla*on	
  
•  Electrons	
  from	
  the	
  reduced	
  cofactors	
  NADH	
  and	
  FADH2	
  
are	
  passed	
  to	
  proteins	
  in	
  the	
  respiratory	
  chain	
  
•  In	
  eukaryotes,	
  oxygen	
  is	
  the	
  ul9mate	
  electron	
  acceptor	
  
for	
  these	
  electrons	
  
•  Energy	
  of	
  oxida9on	
  is	
  used	
  to	
  phosphorylate	
  ADP	
  
Photophosphoryla*on	
  
•  In	
  photosynthe9c	
  organisms	
  light	
  causes	
  charge	
  
separa9on	
  between	
  a	
  pair	
  of	
  chlorophyll	
  molecules	
  
•  Energy	
  of	
  the	
  oxidized	
  and	
  reduced	
  chlorophyll	
  
molecules	
  is	
  used	
  to	
  drive	
  synthesis	
  of	
  ATP	
  
•  Water	
  is	
  the	
  source	
  of	
  electrons	
  that	
  are	
  passed	
  via	
  a	
  
chain	
  of	
  protein	
  transporters	
  to	
  the	
  ul9mate	
  electron	
  
acceptor,	
  NADP+	
  	
  
•  Oxygen	
  is	
  the	
  byproduct	
  of	
  water	
  oxida9on	
  
•  Both	
  processes:	
  
1.  Involve	
  the	
  flow	
  of	
  e–s	
  through	
  a	
  chain	
  
2.  Coupled	
  to	
  an	
  endergonic	
  “uphill”	
  transport	
  of	
  protons	
  
3.  Flow	
  back	
  of	
  protons	
  provides	
  energy	
  for	
  making	
  ATP	
  
Chemiosmo*c	
  Theory	
  
Ø 	
  	
  	
  ADP	
  +	
  Pi	
  à	
  ATP	
  is	
  Highly	
  Thermodynamically	
  Unfavorable	
  
•  How	
  do	
  we	
  make	
  it	
  possible?	
  
•  Peter	
  Mitchell	
  proposed	
  the	
  chemiosmo(c	
  theory	
  (Noble	
  
prize	
  in	
  chemistry,	
  1978)	
  
•  Phosphoryla9on	
  of	
  ADP	
  is	
  not	
  a	
  result	
  of	
  a	
  direct	
  reac9on	
  
between	
  ADP	
  and	
  some	
  high-­‐energy	
  phosphate	
  carrier	
  
(substrate-­‐level	
  phosphoryla9on)	
  
•  Energy	
  needed	
  to	
  phosphorylate	
  ADP	
  is	
  provided	
  by	
  the	
  
flow	
  of	
  protons	
  down	
  the	
  electrochemical	
  gradient	
  
•  The	
  energy	
  released	
  by	
  electron	
  transport	
  is	
  used	
  to	
  
transport	
  protons	
  against	
  the	
  electrochemical	
  gradient	
  
Chemiosmo*c	
  energy	
  coupling	
  	
  
requires	
  membranes	
  
•  The	
  proton	
  gradient	
  needed	
  for	
  ATP	
  synthesis	
  can	
  be	
  stably	
  
established	
  across	
  a	
  membrane	
  that	
  is	
  impermeable	
  to	
  ions	
  
–  Plasma	
  membrane	
  in	
  bacteria	
  
–  Inner	
  membrane	
  in	
  mitochondria	
  
–  Thylakoid	
  membrane	
  in	
  chloroplasts	
  	
  
•  Membrane	
  must	
  contain	
  proteins	
  that	
  couple	
  the	
  “downhill”	
  
flow	
  of	
  electrons	
  in	
  the	
  electron-­‐transfer	
  chain	
  with	
  the	
  
“uphill”	
  flow	
  of	
  protons	
  across	
  the	
  membrane	
  
•  Membrane	
  must	
  contain	
  a	
  protein	
  that	
  couples	
  the	
  
“downhill”	
  flow	
  of	
  protons	
  to	
  the	
  phosphoryla9on	
  of	
  ADP	
  	
  
(oxida9ve	
  phosphoryla9on)	
  
Chemiosmo*c	
  Theory	
  
e–s move through a chain spontaneously, driven by the high reduction
potential of O2 and the low reduction potentials of the reduced
substrates
Flow	
  of	
  Protons:	
  	
  
Mitochondria,	
  Chloroplasts,	
  Bacteria	
  	
  	
  
• According	
  to	
  endosymbio9c	
  theory,	
  mitochondria	
  and	
  chloroplasts	
  
arose	
  from	
  entrapped	
  bacteria	
  
• Bacterial	
  cytosol	
  became	
  mitochondrial	
  matrix	
  and	
  chloroplast	
  stroma	
  
Structure	
  of	
  a	
  Mitochondrion	
  
Double	
  membrane	
  leads	
  to	
  four	
  dis9nct	
  compartments:	
  
1. Outer	
  Membrane:	
  	
  
–  Rela9vely	
  porous	
  membrane	
  allows	
  passage	
  of	
  metabolites	
  
–  Permeable	
  to	
  solutes	
  <5000	
  Da	
  
2. Intermembrane	
  Space	
  (IMS):	
  	
  
–  similar	
  environment	
  to	
  cytosol	
  
–  higher	
  proton	
  concentra9on	
  (lower	
  pH)	
  
3. Inner	
  Membrane	
  
–  Rela9vely	
  impermeable,	
  with	
  proton	
  gradient	
  across	
  it	
  
–  Loca9on	
  of	
  electron	
  transport	
  chain	
  complexes	
  
–  Convolu9ons	
  called	
  Cristae	
  serve	
  to	
  increase	
  the	
  surface	
  area	
  (9ssues	
  
with	
  high	
  demand	
  for	
  aerobic	
  respira9on	
  contain	
  thousands	
  of	
  mito	
  
and	
  their	
  cristae	
  are	
  more	
  densely	
  packed)	
  
4. Matrix	
  
–  Loca9on	
  of	
  the	
  citric	
  acid	
  cycle	
  and	
  parts	
  of	
  lipid	
  and	
  amino	
  acid	
  
metabolism	
  (all	
  fuel	
  oxida8on	
  pathways	
  except	
  glycolysis)	
  
–  Lower	
  proton	
  concentra9on	
  (higher	
  pH)	
  
Structure	
  of	
  a	
  Mitochondrion	
  
Defects	
  in	
  mito	
  func9on	
  have	
  
serious	
  medical	
  consequences:	
  	
  
-­‐  Neurodegenera9ve	
  diseases	
  
-­‐  Cancer	
  
-­‐  Diabetes	
  
-­‐  Obesity	
  
	
  
ATP	
  produc9on	
  is	
  not	
  the	
  only	
  
func9on	
  of	
  mito	
  
-­‐  Thermogenesis	
  
-­‐  Steroid	
  synthesis	
  
-­‐  Apoptosis	
  	
  Divide	
  by	
  fission	
  
Electron-­‐transport	
  chain	
  complexes	
  
contain	
  a	
  series	
  of	
  electron	
  carriers	
  
•  Nico*namide	
  nucleo*de-­‐linked	
  dehydrogenases	
  
use	
  NAD+	
  or	
  NADP+	
  (NAD+	
  in	
  catabolism	
  and	
  NADPH	
  
in	
  anabolism)	
  
-­‐	
  Remove	
  2	
  e–s	
  and	
  	
  hydrogen	
  atom	
  from	
  their	
  
substrates	
  (:H–	
  to	
  NAD+	
  and	
  H+)	
  
•  Each	
  complex	
  contains	
  mul9ple	
  redox	
  centers	
  
consis9ng	
  of:	
  
–  Flavin	
  Mononucleo*de	
  (FMN)	
  or	
  Flavin	
  Adenine	
  
Dinucleo*de	
  (FAD)	
  
•  Ini9al	
  electron	
  acceptors	
  for	
  Complex	
  I	
  and	
  Complex	
  II	
  
•  Can	
  carry	
  two	
  electrons	
  by	
  transferring	
  one	
  at	
  a	
  8me	
  
–  Cytochromes	
  a,	
  b	
  or	
  c	
  
–  Iron-­‐sulfur	
  clusters	
  
Cytochromes	
  
•  One	
  electron	
  carriers	
  
•  a,	
  b	
  or	
  c	
  differ	
  by	
  ring	
  addi9ons	
  (light	
  absorp9on)	
  
•  Iron	
  coordina9ng	
  porphyrin	
  ring	
  deriva9ves	
  (9ghtly	
  
but	
  not	
  covalently	
  bound	
  in	
  a	
  and	
  b	
  but	
  covalent	
  in	
  c)	
  
	
  
Iron-­‐Sulfur	
  Clusters	
  
•  One	
  electron	
  carriers	
  
•  Coordina9on	
  by	
  cysteines	
  in	
  the	
  protein	
  
•  Containing	
  equal	
  number	
  of	
  iron	
  and	
  sulfur	
  atoms	
  
•  Rieske	
  Fe-­‐S	
  proteins	
  –	
  1	
  Fe	
  is	
  coordinated	
  to	
  two	
  His	
  
instead	
  of	
  2	
  Cys)	
  
•  At	
  least	
  8	
  Fe-­‐S	
  proteins	
  func9on	
  in	
  mitochondrial	
  ETC	
  
	
  
Coenzyme	
  Q	
  or	
  Ubiquinone	
  
•  Ubiquinone	
  (Q)	
  is	
  a	
  lipid-­‐soluble	
  
conjugated	
  dicarbonyl	
  compound	
  
that	
  readily	
  accepts	
  electrons	
  	
  
•  Upon	
  accep9ng	
  two	
  electrons,	
  it	
  
picks	
  up	
  two	
  protons	
  to	
  produce	
  
an	
  alcohol,	
  ubiquinol	
  (QH2)	
  
•  Ubiquinol	
  can	
  freely	
  diffuse	
  in	
  the	
  
membrane,	
  carrying	
  electrons	
  with	
  
protons	
  from	
  one	
  side	
  of	
  the	
  
membrane	
  to	
  another	
  side	
  
•  Coenzyme	
  Q	
  is	
  a	
  mobile	
  electron	
  
carrier	
  transpor9ng	
  electrons	
  from	
  
Complexes	
  I	
  and	
  II	
  to	
  Complex	
  III	
  
Free	
  Energy	
  of	
  Electron	
  Transport	
  
Reduc9on	
  Poten9al	
  (E)	
  
∆Eʹ′o	
  =	
  Eʹ′o	
  
(e-­‐	
  acceptor)	
  –	
  Eʹ′o	
  
(e-­‐	
  donor)	
  
	
  
∆G’o	
  =	
  –nF∆E’o	
  
For	
  nega9ve	
  ΔG	
  need	
  posi9ve	
  ΔE	
  
E(acceptor)	
  >	
  E(donor)	
  
	
  
Electrons	
  are	
  transferred	
  from	
  lower	
  (more	
  nega9ve)	
  
to	
  higher	
  (more	
  posi9ve)	
  reduc9on	
  poten9al.	
  	
  
	
  
Free	
  Energy	
  released	
  is	
  used	
  to	
  pump	
  proton,	
  storing	
  
this	
  energy	
  as	
  the	
  electrochemical	
  gradient	
  
Recall: reduction potential is the relative tendency of a given
chemical species to accept electrons in a redox reaction (the
higher the reduction potential the more oxidized the species)
We	
  would	
  expect	
  the	
  carriers	
  to	
  func9on	
  in	
  order	
  of	
  increasing	
  
reduc9on	
  poten9al	
  (e–s	
  flow	
  spontaneously):	
  
NADH	
  à	
  Q	
  à	
  cyt	
  b	
  à	
  cyt	
  c1	
  à	
  cyt	
  c	
  à	
  cyt	
  a	
  à	
  cyt	
  a3	
  à	
  O2	
  
Not	
  necessarily	
  the	
  same	
  as	
  the	
  order	
  of	
  the	
  actual	
  reduc9on	
  
poten9al,	
  but	
  this	
  sequence	
  was	
  confirmed	
  by	
  other	
  experiments	
  
Flow	
  of	
  Electrons	
  from	
  Biological	
  Fuels	
  
into	
  the	
  Electron-­‐Transport	
  Chain	
  
Ubiquinone (Q) is the point of
entry for electrons derived from
reactions in the cytosol, from fatty
acid oxidation, and from succinate
oxidation (in the citric acid cycle).
Electron	
  carriers	
  func*on	
  in	
  mul*enzyme	
  complexes	
  
 NADH	
  dehydrogenase	
  (Complex	
  I)	
  
•  One	
  of	
  the	
  largest	
  macro-­‐molecular	
  assemblies	
  in	
  the	
  
mammalian	
  cell	
  
•  Over	
  40	
  different	
  polypep9de	
  chains,	
  encoded	
  by	
  both	
  
nuclear	
  and	
  mitochondrial	
  genes	
  
•  NADH	
  binding	
  site	
  in	
  the	
  matrix	
  side	
  
•  Non-­‐covalently	
  bound	
  flavin	
  mononucleo9de	
  (FMN)	
  
accepts	
  two	
  electrons	
  from	
  NADH	
  
•  Several	
  iron-­‐sulfur	
  centers	
  pass	
  one	
  electron	
  at	
  a	
  9me	
  
toward	
  the	
  ubiquinone	
  binding	
  site	
  
•  A	
  vectorial	
  proton	
  pump	
  (in	
  one	
  direc9on	
  only):	
  
	
   	
  	
  	
  	
  	
  	
  NADH	
  +	
  5H+
N	
  +	
  Q	
  à	
  NAD+	
  +	
  QH2	
  +	
  4H+
P	
  
	
  	
  	
  	
  	
  P	
  =	
  posi9ve	
  (IMS);	
  N	
  =	
  nega9ve	
  (matrix)	
  
Complex	
  I	
  
Succinate	
  Dehydrogenase	
  (Complex	
  II)	
  
•  Smaller	
  and	
  simpler	
  than	
  complex	
  I	
  
•  FAD	
  accepts	
  two	
  electrons	
  from	
  succinate	
  
•  Electrons	
  are	
  passed,	
  one	
  at	
  a	
  9me,	
  via	
  iron-­‐sulfur	
  
centers	
  to	
  ubiquinone,	
  which	
  becomes	
  reduced	
  QH2	
  
•  Does	
  not	
  transport	
  protons	
  
Complex	
  II	
  
3	
  2Fe-­‐2S	
  
Bound	
  FAD	
  
Heme	
  b	
  
Q	
  binding	
  site	
  
Succinate	
  binding	
  site	
  
C	
  and	
  D	
  
(integral	
  proteins)	
  A	
  and	
  B	
  
(matrix)	
  
Ubiquinone:Cytochrome	
  c	
  Oxidoreductase,	
  	
  
(Complex	
  III)	
  
•  Uses	
  two	
  electrons	
  from	
  QH2	
  to	
  reduce	
  two	
  
molecules	
  of	
  cytochrome	
  c	
  
•  Addi9onally	
  contains	
  iron-­‐sulfur	
  clusters,	
  
cytochrome	
  b’s,	
  and	
  cytochrome	
  c’s	
  
•  The	
  Q	
  cycle	
  results	
  in	
  four	
  addi9onal	
  protons	
  
being	
  transported	
  to	
  the	
  IMS	
  
Complex	
  III	
  
The	
  Q	
  Cycle	
  
•  Experimentally,	
  four	
  protons	
  are	
  transported	
  across	
  
the	
  membrane	
  per	
  two	
  electrons	
  that	
  reach	
  cyt	
  c	
  
•  Two	
  of	
  the	
  four	
  protons	
  come	
  from	
  QH2	
  
•  The	
  Q	
  cycle	
  provides	
  a	
  good	
  model	
  that	
  explains	
  how	
  
two	
  addi9onal	
  protons	
  are	
  picked	
  up	
  from	
  the	
  matrix	
  
•  Two	
  molecules	
  of	
  QH2	
  become	
  oxidized,	
  releasing	
  
protons	
  into	
  the	
  IMS	
  
•  One	
  molecule	
  becomes	
  re-­‐reduced,	
  thus	
  a	
  net	
  transfer	
  
of	
  four	
  protons	
  per	
  reduced	
  Coenzyme	
  Q	
  
The	
  Q	
  Cycle:	
  Cycle	
  1	
  
The	
  Q	
  Cycle:	
  Cycle	
  2	
  
•  The	
  second	
  mobile	
  electron	
  carrier	
  
•  A	
  soluble	
  heme-­‐containing	
  protein	
  
in	
  the	
  intermembrane	
  space	
  
•  Heme	
  iron	
  can	
  be	
  either	
  ferric	
  
(Fe3+,	
  oxidized)	
  or	
  ferrous	
  (Fe2+,	
  
reduced)	
  
•  Cytochrome	
  c	
  carries	
  a	
  single	
  
electron	
  from	
  the	
  cytochrome	
  bc1	
  
complex	
  to	
  cytochrome	
  oxidase	
  	
  
(to	
  a	
  binuclear	
  copper	
  center)	
  
Cytochrome	
  c	
  
Cytochrome	
  Oxidase	
  (Complex	
  IV)	
  
•  Mammalian	
  cytochrome	
  oxidase	
  is	
  a	
  membrane	
  
protein	
  with	
  13	
  subunits	
  
•  Contains	
  two	
  heme	
  groups:	
  a	
  and	
  a3	
  
•  Contains	
  copper	
  ions	
  
–  CuA:	
  two	
  ions	
  that	
  accept	
  electrons	
  from	
  cyt	
  c	
  
–  CuB:	
  bonded	
  to	
  heme	
  a3	
  forming	
  a	
  binuclear	
  center	
  
that	
  transfers	
  four	
  electrons	
  to	
  oxygen	
  
Cytochrome	
  oxidase	
  	
  
passes	
  electrons	
  to	
  O2	
  
•  Four	
  electrons	
  are	
  used	
  to	
  reduce	
  one	
  oxygen	
  molecule	
  
into	
  two	
  water	
  molecules	
  (coming	
  from	
  4	
  cyt	
  c	
  molecules)	
  
•  Four	
  protons	
  are	
  picked	
  up	
  from	
  the	
  matrix	
  in	
  this	
  process	
  
•  Four	
  addi9onal	
  protons	
  are	
  passed	
  from	
  the	
  matrix	
  to	
  the	
  
intermembrane	
  space	
  
Electron	
  flow	
  through	
  Complex	
  IV	
  
Summary	
  of	
  the	
  Electron	
  Flow	
  	
  
in	
  the	
  Respiratory	
  Chain	
  
Mul*ple	
  complexes	
  associate	
  together	
  	
  
to	
  form	
  a	
  respirasome	
  
Substrate channeling à efficiency
Summary	
  of	
  Electron	
  Transport	
  
•  Complex	
  I	
  à	
  Complex	
  IV	
  
1NADH	
  +	
  11H+
(N)	
  +	
  ½O2	
  	
  ——>	
  	
  NAD+	
  +	
  10H+
(P)	
  +	
  H2O	
  
	
  
•  Complex	
  II	
  à	
  Complex	
  IV	
  
FADH2	
  +	
  6H+
(N)	
  +	
  ½O2	
  	
  ——>	
  	
  FAD	
  +	
  6H+
(P)	
  +	
  H2O	
  
	
  
Difference	
  in	
  number	
  of	
  protons	
  transported	
  reflects	
  the	
  
amount	
  of	
  synthesized	
  ATP.	
  
	
  
Energy	
  of	
  electron	
  transfer	
  is	
  efficiently	
  
conserved	
  in	
  a	
  proton	
  gradient	
  
NADH	
  +	
  H+	
  +	
  ½	
  O2	
  à	
  NAD+	
  +	
  H2O	
  (Net)	
  
∆Eʹ′o	
  =	
  Eʹ′o	
  
(e-­‐	
  acceptor)	
  –	
  Eʹ′o	
  
(e-­‐	
  donor)	
  =	
  0.816	
  –	
  (-­‐0.32)	
  =	
  1.14	
  V	
  
∆Gʹ′o	
  =	
  –	
  nF∆Eʹ′o	
  =	
  –	
  2	
  x	
  96.5	
  x	
  1.14	
  =	
  –	
  220	
  kJ/mol	
  of	
  NADH	
  
	
  
Succinate	
  to	
  fumarate	
  oxida9on	
  yields	
  ~	
  –	
  150	
  kJ/mol	
  	
  	
  	
  
	
  
Much	
  of	
  this	
  energy	
  is	
  used	
  to	
  pump	
  protons	
  (proton-­‐mo*ve	
  
force)	
  
	
  
	
  
Proton-­‐Mo*ve	
  Force	
  
•  2	
  components:	
  
1.  Concentra9on	
  gradient	
  (of	
  protons)	
  
2.  Electrical	
  gradient	
  (+	
  and	
  –	
  ions	
  are	
  segregated)	
  
•  The	
  proteins	
  in	
  the	
  electron-­‐transport	
  chain	
  created	
  
the	
  electrochemical	
  proton	
  gradient	
  by	
  one	
  of	
  three	
  
means:	
  
–  Ac9vely	
  transport	
  protons	
  across	
  the	
  membrane	
  	
  
•  Complex	
  I	
  and	
  Complex	
  IV	
  
–  Chemically	
  remove	
  protons	
  from	
  the	
  matrix	
  	
  
•  Reduc9on	
  of	
  CoQ	
  and	
  reduc9on	
  of	
  oxygen	
  
–  Release	
  protons	
  into	
  the	
  intermembrane	
  space	
  
•  Oxida9on	
  of	
  QH2	
  
Proton-­‐Mo*ve	
  Force	
  
In	
  ac9vely	
  respiring	
  mito:	
  
Δψ	
  ~0.15	
  V	
  and	
  the	
  
matrix	
  is	
  0.75x	
  more	
  
alkaline	
  
	
  
ΔG	
  =	
  (5.7x0.75)	
  +	
  
(96.5x0.15)	
  =	
  19	
  kJ/mol	
  
	
  
Since	
  2	
  e–s	
  from	
  NADH	
  
leads	
  to	
  pumping	
  of	
  10	
  
protons	
  è	
  roughly	
  190	
  
kJ	
  of	
  the	
  220	
  kJ	
  released	
  
by	
  NADH	
  oxida8on	
  is	
  
conserved	
  in	
  the	
  proton	
  
gradient!	
  	
  
Reac*ve	
  oxygen	
  species	
  (ROS)	
  can	
  
damage	
  biological	
  macromolecules	
  
When	
  the	
  rate	
  of	
  e–	
  entry	
  into	
  
the	
  RC	
  and	
  the	
  rate	
  of	
  e–	
  
transfer	
  through	
  the	
  chain	
  are	
  
mismatched	
  è	
  superoxide	
  
radical	
  (•O2
–)	
  produc9on	
  
increases	
  (par9ally	
  reduced	
  
ubiquinone	
  radical	
  (•Q–)	
  
donates	
  an	
  electron	
  to	
  O2)	
  
è	
  forma9on	
  of	
  the	
  highly	
  
reac9ve	
  hydroxyl	
  free	
  radical	
  
(•OH)	
  è	
  damaging	
  enzymes,	
  
lipids	
  and	
  DNA	
  
To	
  prevent:	
  superoxide	
  
dismutase	
  &	
  glutathione	
  
peroxidase	
  
Chemiosmo*c	
  Model	
  for	
  ATP	
  Synthesis	
  
• 	
  Electron	
  transport	
  sets	
  up	
  a	
  proton-­‐mo9ve	
  force	
  	
  
• 	
  Energy	
  of	
  proton-­‐mo9ve	
  force	
  (~190	
  kJ)	
  drives	
  
synthesis	
  of	
  ATP	
  (requires	
  52	
  kJ)	
  see	
  worked	
  example	
  13-­‐2	
  
ADP + Pi + nH+
P à ATP + H2O + nH+
N
Consequently,	
  electron	
  transport	
  is	
  
coupled	
  to	
  ATP	
  synthesis	
  
Coupling:	
  
• Electron	
  transport	
  requires	
  ATP	
  synthesis	
  
• ATP	
  synthesis	
  requires	
  electron	
  transport	
  
• Obligate!	
  Neither	
  process	
  can	
  proceed	
  
without	
  the	
  other	
  
	
  
Coupling	
  
• O2	
  consump9on	
  and	
  ATP	
  synthesis	
  depends	
  on	
  the	
  
presence	
  of	
  ADP	
  +	
  Pi	
  and	
  an	
  oxidizable	
  substrate	
  
• Blocking	
  the	
  passage	
  of	
  e–s	
  to	
  O2	
  will	
  inhibit	
  ATP	
  
produc9on	
  
Addition of cyanide (CN-), which
blocks electron transfer between
cytochrome oxidase (Complex IV)
and O2, inhibits both respiration
and ATP synthesis.	
  
Coupling	
  
• If	
  ADP	
  is	
  not	
  available	
  succinate	
  cannot	
  be	
  oxidized	
  
• Inhibi9ng	
  ATP	
  synthesis	
  will	
  inhibit	
  e–	
  transfer	
  to	
  O2	
  
• Chemical	
  uncouplers	
  of	
  ATP	
  synthesis	
  from	
  e–	
  transport	
  
dissipate	
  proton	
  gradients	
  (weak	
  hydrophobic	
  acids)	
  
	
  
inhibitors of
ATP synthase
Mitochondrial	
  ATP	
  Synthase	
  Complex	
  	
  
•  Mitochondrial	
  ATP	
  synthase	
  (complex	
  V)	
  is	
  an	
  F-­‐type	
  
ATPase	
  
•  Contains	
  two	
  func9onal	
  units:	
  
–  F1	
  
•  Peripheral	
  membrane	
  protein	
  complex	
  in	
  the	
  matrix	
  
•  On	
  its	
  own	
  catalyzes	
  the	
  hydrolysis	
  of	
  ATP	
  
–  Fo	
  
•  Integral	
  membrane	
  complex,	
  a	
  channel	
  
•  Oligomycin-­‐sensi9ve	
  
•  Transports	
  protons	
  from	
  IMS	
  to	
  matrix,	
  dissipa9ng	
  
the	
  proton	
  gradient	
  
•  Energy	
  transferred	
  to	
  F1	
  to	
  catalyze	
  phosphoryla9on	
  
of	
  ADP	
  
Mitochondrial	
  ATP	
  Synthase	
  Complex	
  	
  
•  On	
  the	
  enzyme	
  surface,	
  ADP	
  +	
  Pi	
  ßà	
  ATP	
  +	
  H2O	
  is	
  readily	
  
reversible	
  with	
  ΔG’	
  ~	
  0!!	
  Why?	
  
•  The	
  enzyme	
  stabilizes	
  ATP	
  much	
  more	
  than	
  ADP,	
  more	
  
9ghtly	
  bound	
  (Kd(ATP)	
  <	
  10–12	
  M;	
  Kd(ADP)	
  ~	
  10–5	
  M)	
  
•  Binding	
  energy	
  of	
  ~	
  40	
  kJ/mol	
  drives	
  the	
  synthesis	
  of	
  ATP	
  
•  If	
  no	
  proton	
  gradient	
  is	
  present,	
  ATP	
  cannot	
  leave	
  the	
  
enzyme	
  surface	
  
•  To	
  con8nually	
  synthesize	
  ATP	
  the	
  enzyme	
  cycles	
  between	
  a	
  
conforma8on	
  that	
  binds	
  ATP	
  very	
  8ghtly	
  (to	
  drive	
  synthesis)	
  
and	
  a	
  conforma8on	
  that	
  releases	
  ATP	
  
The	
  F1	
  catalyzes	
  ADP	
  +	
  Pi	
  	
  	
  	
  	
  	
  ATP	
  
•  9	
  subunits	
  α3β3γδε
•  The	
  head	
  is	
  a	
  hexamer	
  arranged	
  in	
  three	
  αβ	
  dimers	
  	
  
•  β	
  has	
  the	
  cataly9c	
  ac9vity	
  and	
  can	
  exist	
  in	
  three	
  
different	
  conforma9ons	
  (γ	
  binds	
  	
  
only	
  one	
  of	
  the	
  3	
  β)	
  
–  Open:	
  empty	
  
–  Loose:	
  binding	
  ADP	
  and	
  Pi	
  	
  	
  
–  Tight:	
  catalyzes	
  ATP	
  forma9on	
  	
  
and	
  binds	
  product	
  
Binding-­‐Change	
  Model	
  (rota*onal	
  catalysis)	
  
The	
  3	
  ac9ve	
  sites	
  
take	
  turn	
  catalyzing	
  
the	
  reac9on	
  driven	
  
by	
  proton	
  entering	
  
A	
  subunit	
  starts	
  with	
  
β-­‐ADP	
  conforma9on	
  
It	
  changes	
  
conforma9on	
  to	
  
β-­‐ATP,	
  stabilizing	
  
ATP	
  on	
  enzyme	
  
surface	
  
Subunit	
  changes	
  to	
  
β-­‐empty	
  which	
  is	
  a	
  
very	
  low	
  affinity	
  
conforma9on	
  
The position of γ
Coupling	
  Proton	
  Transloca*on	
  	
  
to	
  ATP	
  Synthesis	
  
•  Proton	
  transloca9on	
  causes	
  a	
  rota9on	
  of	
  the	
  Fo	
  subunit	
  
and	
  the	
  central	
  sha{	
  γ	
  
•  This	
  causes	
  a	
  conforma9onal	
  change	
  within	
  all	
  the	
  
three	
  αβ	
  pairs	
  
•  The	
  conforma9onal	
  change	
  in	
  one	
  of	
  the	
  three	
  pairs	
  
promotes	
  condensa9on	
  of	
  ADP	
  and	
  Pi	
  into	
  ATP	
  
Evidence	
  of	
  Rota*on	
  
Stoichiometry	
  of	
  O2	
  consump*on	
  and	
  ATP	
  Synthesis	
  
•  xADP	
  +	
  xPi	
  +	
  ½	
  O2	
  +	
  H+	
  +	
  NADH	
  à	
  xATP	
  +	
  H2O	
  +	
  NAD+	
  
•  x	
  (P/O	
  ra*o)	
  =	
  number	
  of	
  ATP	
  molecules	
  synthesized	
  
per	
  ½	
  O2	
  (thought	
  to	
  be	
  an	
  integer)	
  
•  Switched	
  the	
  ques9on	
  to	
  how	
  many	
  protons	
  are	
  
pumped	
  outward	
  and	
  how	
  many	
  protons	
  must	
  flow	
  
back	
  in	
  to	
  make	
  ATP	
  
•  10	
  H+	
  (from	
  NADH)	
  and	
  6	
  H+	
  (from	
  succinate)	
  are	
  
pumped	
  out	
  per	
  electron	
  pair	
  
•  4	
  H+	
  are	
  needed	
  to	
  flow	
  back	
  to	
  make	
  1	
  ATP	
  
	
  (3	
  to	
  turn	
  the	
  Fo	
  and	
  1	
  to	
  transport	
  Pi,	
  ATP	
  and	
  ADP)	
  è	
  
proton-­‐based	
  P/O	
  ra9os	
  are:	
  
2.5	
  ATP/NADH	
  and	
  1.5	
  ATP/succinate	
  
Transport	
  of	
  ADP	
  and	
  Pi	
  into	
  the	
  Matrix	
  
Proton-motive force drives
the translocation of ADP in
and ATP out (net transport
of 1 –ve charge into the
+ve IMS Proton-motive force drives
the inward movement of
phosphate into the matrixAll three of these transport
systems can be isolated as a single
membrane-bound complex (ATP synthasome)
Malate-­‐Aspartate	
  Shuale	
  
In liver, kidney and heart mitochondria
Glycerol-­‐3-­‐Phosphate	
  Shuale	
  
In brain and skeletal muscles
Regula*on	
  of	
  Oxida*ve	
  Phosphoryla*on	
  
•  Primarily	
  regulated	
  by	
  substrate	
  availability	
  
–  Acceptor	
  control	
  ra*o	
  –	
  maximal	
  rate	
  of	
  ADP-­‐induced	
  O2	
  
consump9on/basal	
  rate	
  (without	
  ADP)	
  ~	
  >10	
  in	
  many	
  cells	
  
–  Mass	
  ac*on	
  ra*o	
  –	
  [ATP]/[ADP][Pi]	
  is	
  normally	
  very	
  high.	
  When	
  
the	
  rate	
  of	
  energy-­‐requiring	
  processes	
  é,	
  mass	
  ac9on	
  ra9oê	
  
èéADP	
  available	
  for	
  OxPhos	
  è	
  respira9on	
  rateé
–  ATP	
  is	
  formed	
  only	
  as	
  fast	
  as	
  it’s	
  used	
  in	
  energy-­‐requiring	
  ac8vi8es	
  
•  Inhibitor	
  of	
  F1	
  (IF1)	
  
–  Prevents	
  hydrolysis	
  of	
  ATP	
  during	
  low	
  oxygen	
  
–  Binds	
  to	
  2	
  ATP	
  synthases	
  and	
  inhibits	
  their	
  ATPase	
  ac9vi9es	
  
–  Only	
  ac9ve	
  at	
  lower	
  pH,	
  encountered	
  when	
  electron	
  transport	
  is	
  
slowed	
  (i.e.,	
  low	
  oxygen).	
  Recall	
  lac8c	
  acid	
  fermenta8on!	
  
•  Inhibi9on	
  of	
  OxPhos	
  leads	
  to	
  accumula9on	
  of	
  NADH	
  	
  
–  Causes	
  feedback	
  inhibi9on	
  cascade	
  up	
  to	
  PFK-­‐1	
  in	
  glycolysis	
  
Regula*on	
  of	
  ATP-­‐producing	
  pathways	
  
All four pathways are
accelerated when the use of
ATP and the formation of ADP,
AMP, and Pi increase.
HIF	
  
•  Hypoxic	
  cells	
  è	
  Imbalance	
  
between	
  e–	
  input	
  and	
  e–	
  
transfer	
  to	
  O2	
  è	
  éROS	
  
•  Countered	
  by:	
  
1.  Increase	
  in	
  glycolysis	
  
2.  Inac9va9on	
  of	
  PDH	
  
3.  Replacement	
  of	
  COX	
  subunit	
  	
  
Brown	
  Adipose	
  Tissue	
  has	
  uncoupled	
  mito	
  
•  In	
  newborn	
  mammals,	
  BAT	
  serves	
  as	
  heat-­‐genera9ng	
  9ssue	
  
•  Large	
  number	
  of	
  mito	
  è	
  large	
  number	
  of	
  cytochromes	
  è	
  looks	
  
brown	
  
•  BAT	
  mito	
  have	
  an	
  uncoupling	
  protein	
  in	
  their	
  inner	
  membrane	
  
(thermogenin)	
  which	
  is	
  a	
  proton	
  channel	
  
•  Path	
  for	
  protons	
  to	
  the	
  matrix	
  without	
  passing	
  through	
  FoF1	
  
complex	
  è	
  short-­‐circui9ng	
  of	
  protons	
  è	
  energy	
  is	
  not	
  conserved	
  
as	
  ATP	
  by	
  lost	
  as	
  heat	
  
•  Also	
  in	
  hiberna9ng	
  	
  
animals	
  
Steroidogenesis	
  
•  Steroids	
  are	
  synthesized	
  from	
  cholesterol	
  in	
  a	
  series	
  of	
  
hydroxyla9ons	
  catalyzed	
  by	
  cytochrome	
  P-­‐450	
  	
  
•  R-­‐H	
  +	
  O2	
  +	
  NADPH	
  +	
  H+	
  à	
  R-­‐OH	
  +	
  H2O	
  +	
  NADP+	
  
•  Steroidogenic	
  cells	
  (e.g.	
  adrenal	
  glands)	
  are	
  packed	
  with	
  
specialized	
  mitochondria	
  for	
  steroid	
  synthesis	
  î	
  
•  P-­‐450	
  are	
  also	
  found	
  in	
  ER,	
  responsible	
  for	
  
metabolism	
  of	
  xenobio*cs	
  
•  Hydroxyla9on	
  è	
  more	
  water	
  soluble	
  	
  
è	
  more	
  excre9on	
  in	
  urine	
  
•  Many	
  prescrip9on	
  drugs	
  are	
  substrates	
  	
  
for	
  P-­‐450	
  è	
  P-­‐450	
  ac9vity	
  limits	
  the	
  	
  
drugs’	
  life9me	
  and	
  efficacy	
  
•  Humans	
  differ	
  in	
  their	
  P-­‐450	
  contents	
  and	
  
ac9vi9es	
  in	
  their	
  cells	
  è	
  an	
  individual’s	
  gene9cs	
  and	
  personal	
  
history	
  could	
  have	
  a	
  say	
  in	
  determining	
  therapeu9c	
  drug	
  dose	
  
or	
  form	
  
Mitochondrial	
  damage	
  ini*ates	
  apoptosis	
  
•  Apoptosis	
  –	
  Individual	
  cells	
  die	
  for	
  the	
  benefit	
  of	
  the	
  organism	
  
•  Ini9ated	
  by	
  external	
  signals	
  or	
  internal	
  events	
  
•  Early	
  consequence	
  of	
  death	
  signals	
  in	
  the	
  increase	
  in	
  MOM	
  
permeability	
  to	
  proteins	
  
•  What	
  causes	
  this	
  permeability?	
  (My	
  Ph.D.	
  research	
  J)	
  
•  Cytochrome	
  c	
  (and	
  others)	
  is	
  released	
  into	
  the	
  cytosol	
  
•  7	
  molecules	
  of	
  cyt	
  c	
  form	
  an	
  apoptosome	
  with	
  7	
  Apaf-­‐1	
  
•  Allow	
  the	
  docking	
  and	
  ac9va9on	
  of	
  procaspase-­‐9	
  	
  
•  Cleaves	
  procaspase-­‐9	
  (inac9ve)	
  to	
  caspase-­‐9	
  (ac9ve)	
  which	
  
cleaves	
  and	
  ac9vates	
  procaspase-­‐3	
  and	
  7	
  (into	
  caspase-­‐3	
  and	
  
caspase-­‐7)	
  which	
  is	
  an	
  execu9oner	
  caspase	
  (breaks	
  down	
  the	
  
macromolecular	
  contents	
  of	
  cells)	
  	
  
•  Caspase	
  cascade	
  
•  Cytochrome	
  c	
  is	
  another	
  moonlightling	
  protein	
  
Mitochondrial	
  genes	
  
•  Circular	
  double	
  stranded	
  mtDNA	
  
•  Each	
  mito	
  has	
  ~	
  5	
  copies	
  
•  Human	
  mt	
  genome	
  contains	
  37	
  genes:	
  	
  
13	
  encode	
  subunits	
  of	
  respiratory	
  chain	
  proteins	
  
24	
  encode	
  for	
  tRNA	
  and	
  rRNA	
  
•  The	
  majority	
  of	
  mito’s	
  1100	
  proteins	
  
are	
  encoded	
  by	
  nuclear	
  genes	
  and	
  	
  
translated	
  on	
  cytosolic	
  ribosomes	
  
Muta*ons	
  in	
  mtDNA	
  accumulate	
  
•  Mito	
  are	
  exposed	
  the	
  most	
  to	
  ROS	
  
•  mtDNA	
  replica9on	
  and	
  repair	
  are	
  less	
  effec9ve	
  than	
  nuclear	
  DNA	
  
replica9on	
  è	
  Defects	
  in	
  mtDNA	
  occur	
  over	
  8me	
  
•  Animals	
  inherit	
  their	
  mito	
  from	
  mothers	
  
•  105-­‐106	
  mito/egg	
  and	
  102-­‐103	
  mito/	
  
sperm.	
  Also	
  eggs	
  target	
  sperm	
  mito	
  
for	
  degrada9on	
  
•  Heteroplasmy	
  and	
  homoplasmy	
  
	
  
wt cells – blue
Mutant COX – brown
Different cells in the same tissue are
affected differently by mito mutation
Muta*ons	
  in	
  mtDNA	
  cause	
  disease	
  
•  Mitochondrial	
  encephalomyopathies	
  
•  affect	
  brain	
  and	
  skeletal	
  muscles	
  
•  Leber’s	
  hereditary	
  op*c	
  neuropathy	
  (LHON)	
  affects	
  the	
  central	
  
nervous	
  system	
  (leads	
  to	
  loss	
  of	
  vision)	
  
•  Point	
  muta9on	
  in	
  mitochondrial	
  gene	
  ND4	
  à	
  mito	
  par9ally	
  
defec9ve	
  in	
  electron	
  transfer	
  through	
  complex	
  I	
  
•  Mito	
  can	
  produce	
  ATP	
  from	
  complex	
  II	
  but	
  apparently	
  cannot	
  
supply	
  enough	
  ATP	
  to	
  support	
  the	
  very	
  ac9ve	
  metabolism	
  of	
  
neurons	
  à	
  damage	
  to	
  op9c	
  nerve	
  à	
  blindness	
  
•  Diabetes	
  	
  
•  Defec9ve	
  OxPhos	
  in	
  pancrea9c	
  β	
  cells	
  blocks	
  insulin	
  secre9on	
  
•  In	
  normal	
  β	
  cells,	
  glc	
  is	
  taken	
  in	
  and	
  oxidized	
  to	
  raise	
  [ATP]	
  above	
  
threshold.	
  ATP	
  blocks	
  K+	
  channel	
  à	
  depolariza9on	
  of	
  membrane	
  
à	
  opening	
  of	
  voltage-­‐gated	
  Ca2+	
  channels	
  à	
  Ca2+	
  influx	
  into	
  
cytoplasm	
  leads	
  to	
  the	
  release	
  of	
  insulin	
  into	
  blood	
  	
  
Ques*on	
  6	
  (Take	
  home	
  exam)	
  	
  
Due:	
  NEXT	
  WEEK	
  (js*ban@birzeit.edu)	
  
•  Please	
  solve	
  ques*ons:	
  
1.  6	
  (uncouplers)	
  
2.  17	
  (ATP	
  turnover)	
  
3.  22	
  (alanine)	
  
4.  24	
  (diabetes)	
  
For	
  wriZen	
  answers,	
  I	
  prefer	
  to	
  have	
  them	
  typed	
  in	
  Word.	
  I	
  
can	
  accept	
  the	
  assignment	
  in	
  one	
  file	
  sent	
  to	
  my	
  email.	
  For	
  
answers	
  that	
  require	
  solving	
  mathema8cally,	
  you	
  can	
  either	
  
type	
  them	
  or	
  write	
  them	
  down	
  and	
  scan	
  them.	
  

Weitere ähnliche Inhalte

Was ist angesagt?

BIOSYNTHESIS OF AMINOACIDS
BIOSYNTHESIS OF AMINOACIDSBIOSYNTHESIS OF AMINOACIDS
BIOSYNTHESIS OF AMINOACIDSArchana Shaw
 
Fate of pyruvate - A quick review
Fate of pyruvate - A quick reviewFate of pyruvate - A quick review
Fate of pyruvate - A quick reviewNamrata Chhabra
 
Oxidative phosphorylation
Oxidative phosphorylationOxidative phosphorylation
Oxidative phosphorylationsadaf farooq
 
Pentose phosphate pathway (Hexose Monophosphate Pathway)
Pentose phosphate pathway (Hexose Monophosphate Pathway)Pentose phosphate pathway (Hexose Monophosphate Pathway)
Pentose phosphate pathway (Hexose Monophosphate Pathway)Anup Bajracharya
 
Biochemistry _ amino acid oxidation
Biochemistry _ amino acid oxidationBiochemistry _ amino acid oxidation
Biochemistry _ amino acid oxidationPrabesh Raj Jamkatel
 
Chapter 8 nucleotides Biochemistry
Chapter 8 nucleotides BiochemistryChapter 8 nucleotides Biochemistry
Chapter 8 nucleotides BiochemistryAreej Abu Hanieh
 
Biochemistry lecture notes metabolism_tca cycle; glyoxalate cycle
Biochemistry lecture notes metabolism_tca cycle; glyoxalate cycleBiochemistry lecture notes metabolism_tca cycle; glyoxalate cycle
Biochemistry lecture notes metabolism_tca cycle; glyoxalate cycleRengesh Balakrishnan
 
Electron transport chain( Oxidative phosphorylation)
Electron transport chain( Oxidative phosphorylation)Electron transport chain( Oxidative phosphorylation)
Electron transport chain( Oxidative phosphorylation)Anup Shamsher Budhathoki
 
PYRIMIDINE DEGRADATION & DISORDERS
PYRIMIDINE DEGRADATION & DISORDERSPYRIMIDINE DEGRADATION & DISORDERS
PYRIMIDINE DEGRADATION & DISORDERSYESANNA
 
De novo and salvage pathway of purines
De novo and salvage pathway of purinesDe novo and salvage pathway of purines
De novo and salvage pathway of purinesPRADIP HIRAPURE
 
Bioenergetics and thermodynamics
Bioenergetics and thermodynamicsBioenergetics and thermodynamics
Bioenergetics and thermodynamicsFatima Fizan
 
PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)
PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)
PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)YESANNA
 
Transamination & deamination
Transamination & deaminationTransamination & deamination
Transamination & deaminationKamalesh Gupta B
 
Gluconeogenesis- Steps, Regulation and clinical significance
Gluconeogenesis- Steps, Regulation and clinical significanceGluconeogenesis- Steps, Regulation and clinical significance
Gluconeogenesis- Steps, Regulation and clinical significanceNamrata Chhabra
 

Was ist angesagt? (20)

BIOSYNTHESIS OF AMINOACIDS
BIOSYNTHESIS OF AMINOACIDSBIOSYNTHESIS OF AMINOACIDS
BIOSYNTHESIS OF AMINOACIDS
 
Fate of pyruvate - A quick review
Fate of pyruvate - A quick reviewFate of pyruvate - A quick review
Fate of pyruvate - A quick review
 
Chemiosmotic Theory
Chemiosmotic TheoryChemiosmotic Theory
Chemiosmotic Theory
 
Oxidative phosphorylation
Oxidative phosphorylationOxidative phosphorylation
Oxidative phosphorylation
 
Mechanism of enzyme action
Mechanism of enzyme actionMechanism of enzyme action
Mechanism of enzyme action
 
Pentose phosphate pathway (Hexose Monophosphate Pathway)
Pentose phosphate pathway (Hexose Monophosphate Pathway)Pentose phosphate pathway (Hexose Monophosphate Pathway)
Pentose phosphate pathway (Hexose Monophosphate Pathway)
 
Biochemistry _ amino acid oxidation
Biochemistry _ amino acid oxidationBiochemistry _ amino acid oxidation
Biochemistry _ amino acid oxidation
 
Chapter 8 nucleotides Biochemistry
Chapter 8 nucleotides BiochemistryChapter 8 nucleotides Biochemistry
Chapter 8 nucleotides Biochemistry
 
Biochemistry lecture notes metabolism_tca cycle; glyoxalate cycle
Biochemistry lecture notes metabolism_tca cycle; glyoxalate cycleBiochemistry lecture notes metabolism_tca cycle; glyoxalate cycle
Biochemistry lecture notes metabolism_tca cycle; glyoxalate cycle
 
Electron transport chain( Oxidative phosphorylation)
Electron transport chain( Oxidative phosphorylation)Electron transport chain( Oxidative phosphorylation)
Electron transport chain( Oxidative phosphorylation)
 
PYRIMIDINE DEGRADATION & DISORDERS
PYRIMIDINE DEGRADATION & DISORDERSPYRIMIDINE DEGRADATION & DISORDERS
PYRIMIDINE DEGRADATION & DISORDERS
 
De novo and salvage pathway of purines
De novo and salvage pathway of purinesDe novo and salvage pathway of purines
De novo and salvage pathway of purines
 
Bioenergetics and thermodynamics
Bioenergetics and thermodynamicsBioenergetics and thermodynamics
Bioenergetics and thermodynamics
 
Fate of pyruvate under anaerobic condition
Fate of pyruvate under anaerobic conditionFate of pyruvate under anaerobic condition
Fate of pyruvate under anaerobic condition
 
Enzyme regulation
Enzyme regulationEnzyme regulation
Enzyme regulation
 
Oxidation of fatty acids
Oxidation of fatty acidsOxidation of fatty acids
Oxidation of fatty acids
 
Enzyme catalysis
Enzyme catalysisEnzyme catalysis
Enzyme catalysis
 
PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)
PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)
PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)
 
Transamination & deamination
Transamination & deaminationTransamination & deamination
Transamination & deamination
 
Gluconeogenesis- Steps, Regulation and clinical significance
Gluconeogenesis- Steps, Regulation and clinical significanceGluconeogenesis- Steps, Regulation and clinical significance
Gluconeogenesis- Steps, Regulation and clinical significance
 

Ähnlich wie Chapter 19 - Oxidative Phosphorylation and Photophosphorylation- Biochemistry

Electron transport chain & oxidative phosphorylation
Electron transport chain & oxidative phosphorylationElectron transport chain & oxidative phosphorylation
Electron transport chain & oxidative phosphorylationGovernment college university
 
Mitochondrial and bacterial electron transport, oxidation reduction by Akshay...
Mitochondrial and bacterial electron transport, oxidation reduction by Akshay...Mitochondrial and bacterial electron transport, oxidation reduction by Akshay...
Mitochondrial and bacterial electron transport, oxidation reduction by Akshay...HNGU
 
Oxidative phosphorylation and electron transport chain
Oxidative phosphorylation and electron transport chainOxidative phosphorylation and electron transport chain
Oxidative phosphorylation and electron transport chainDipesh Tamrakar
 
ETC and Phosphorylation by Salman Saeed
ETC and Phosphorylation by Salman SaeedETC and Phosphorylation by Salman Saeed
ETC and Phosphorylation by Salman SaeedSalman Saeed
 
Electron Transport Chain - By Muntaha-Iqbal.pptx
Electron Transport Chain - By Muntaha-Iqbal.pptxElectron Transport Chain - By Muntaha-Iqbal.pptx
Electron Transport Chain - By Muntaha-Iqbal.pptxMUHAMMADHASNAIN42413
 
B.Sc Micro II Microbial physiology Unit 2 Bacterial Respiration
B.Sc Micro II Microbial physiology Unit 2 Bacterial RespirationB.Sc Micro II Microbial physiology Unit 2 Bacterial Respiration
B.Sc Micro II Microbial physiology Unit 2 Bacterial RespirationRai University
 
chemobioenergetics.pptx
chemobioenergetics.pptxchemobioenergetics.pptx
chemobioenergetics.pptxAjishaSBabu
 
Biochem Respiratory chain and Oxidative phosphorylation
Biochem Respiratory chain and Oxidative phosphorylationBiochem Respiratory chain and Oxidative phosphorylation
Biochem Respiratory chain and Oxidative phosphorylationBlazyInhumang
 
microbial_metabolism11.pptx
microbial_metabolism11.pptxmicrobial_metabolism11.pptx
microbial_metabolism11.pptxextfirozahmed
 
Biological oxidation
Biological oxidationBiological oxidation
Biological oxidationIAU Dent
 
Electron transport chain
Electron transport chainElectron transport chain
Electron transport chainSurender Rawat
 
Biochemical energy production BIOCHEM.pptx
Biochemical energy production BIOCHEM.pptxBiochemical energy production BIOCHEM.pptx
Biochemical energy production BIOCHEM.pptxJemimahJoyGuarin1
 
Etc and-oxd-phos-n-substrate-level-phos
Etc and-oxd-phos-n-substrate-level-phosEtc and-oxd-phos-n-substrate-level-phos
Etc and-oxd-phos-n-substrate-level-phosKamal Singh Khadka
 

Ähnlich wie Chapter 19 - Oxidative Phosphorylation and Photophosphorylation- Biochemistry (20)

Electron transport chain & oxidative phosphorylation
Electron transport chain & oxidative phosphorylationElectron transport chain & oxidative phosphorylation
Electron transport chain & oxidative phosphorylation
 
Mitochondrial and bacterial electron transport, oxidation reduction by Akshay...
Mitochondrial and bacterial electron transport, oxidation reduction by Akshay...Mitochondrial and bacterial electron transport, oxidation reduction by Akshay...
Mitochondrial and bacterial electron transport, oxidation reduction by Akshay...
 
Oxidative phosphorylation and electron transport chain
Oxidative phosphorylation and electron transport chainOxidative phosphorylation and electron transport chain
Oxidative phosphorylation and electron transport chain
 
ETC and Phosphorylation by Salman Saeed
ETC and Phosphorylation by Salman SaeedETC and Phosphorylation by Salman Saeed
ETC and Phosphorylation by Salman Saeed
 
Electron Transport Chain - By Muntaha-Iqbal.pptx
Electron Transport Chain - By Muntaha-Iqbal.pptxElectron Transport Chain - By Muntaha-Iqbal.pptx
Electron Transport Chain - By Muntaha-Iqbal.pptx
 
B.Sc Micro II Microbial physiology Unit 2 Bacterial Respiration
B.Sc Micro II Microbial physiology Unit 2 Bacterial RespirationB.Sc Micro II Microbial physiology Unit 2 Bacterial Respiration
B.Sc Micro II Microbial physiology Unit 2 Bacterial Respiration
 
ELECTRON TRANSPORT CHAIN
ELECTRON TRANSPORT CHAINELECTRON TRANSPORT CHAIN
ELECTRON TRANSPORT CHAIN
 
chemobioenergetics.pptx
chemobioenergetics.pptxchemobioenergetics.pptx
chemobioenergetics.pptx
 
Biochem Respiratory chain and Oxidative phosphorylation
Biochem Respiratory chain and Oxidative phosphorylationBiochem Respiratory chain and Oxidative phosphorylation
Biochem Respiratory chain and Oxidative phosphorylation
 
Bioenergetics
BioenergeticsBioenergetics
Bioenergetics
 
electron transport chain.pptx
electron transport chain.pptxelectron transport chain.pptx
electron transport chain.pptx
 
microbial_metabolism11.pptx
microbial_metabolism11.pptxmicrobial_metabolism11.pptx
microbial_metabolism11.pptx
 
Biological oxidation
Biological oxidationBiological oxidation
Biological oxidation
 
Electron transport chain
Electron transport chainElectron transport chain
Electron transport chain
 
Biochemical energy production BIOCHEM.pptx
Biochemical energy production BIOCHEM.pptxBiochemical energy production BIOCHEM.pptx
Biochemical energy production BIOCHEM.pptx
 
Etc and-oxd-phos-n-substrate-level-phos
Etc and-oxd-phos-n-substrate-level-phosEtc and-oxd-phos-n-substrate-level-phos
Etc and-oxd-phos-n-substrate-level-phos
 
Electron Transport Chain
Electron Transport ChainElectron Transport Chain
Electron Transport Chain
 
Microbial metabolism
Microbial metabolismMicrobial metabolism
Microbial metabolism
 
Oxphos
OxphosOxphos
Oxphos
 
Respiration
RespirationRespiration
Respiration
 

Mehr von Areej Abu Hanieh

Announcement about my previous presentations - Thank you
Announcement about my previous presentations - Thank youAnnouncement about my previous presentations - Thank you
Announcement about my previous presentations - Thank youAreej Abu Hanieh
 
Hospital acquired pneumonia
Hospital acquired pneumoniaHospital acquired pneumonia
Hospital acquired pneumoniaAreej Abu Hanieh
 
catheter related blood stream infection
catheter related blood stream infection catheter related blood stream infection
catheter related blood stream infection Areej Abu Hanieh
 
Community acquired pneumonia - Pharmacotherapy
Community acquired pneumonia - Pharmacotherapy Community acquired pneumonia - Pharmacotherapy
Community acquired pneumonia - Pharmacotherapy Areej Abu Hanieh
 
Carbapenems - Pharmacology
Carbapenems - PharmacologyCarbapenems - Pharmacology
Carbapenems - PharmacologyAreej Abu Hanieh
 
Cephalosporins - Pharmacology
Cephalosporins - Pharmacology Cephalosporins - Pharmacology
Cephalosporins - Pharmacology Areej Abu Hanieh
 
Hypertensive urgencies and emergencies
Hypertensive urgencies and emergenciesHypertensive urgencies and emergencies
Hypertensive urgencies and emergenciesAreej Abu Hanieh
 
Asthma and COPD exacerbation - Emergency
Asthma and COPD exacerbation - Emergency  Asthma and COPD exacerbation - Emergency
Asthma and COPD exacerbation - Emergency Areej Abu Hanieh
 
Acute decompensated heart failure
Acute decompensated heart failureAcute decompensated heart failure
Acute decompensated heart failureAreej Abu Hanieh
 
Glycemic Control - Diabetes Mellitus
Glycemic Control - Diabetes Mellitus Glycemic Control - Diabetes Mellitus
Glycemic Control - Diabetes Mellitus Areej Abu Hanieh
 
Deep Vein Thrombosis - DVT
Deep Vein Thrombosis  - DVTDeep Vein Thrombosis  - DVT
Deep Vein Thrombosis - DVTAreej Abu Hanieh
 

Mehr von Areej Abu Hanieh (20)

Announcement about my previous presentations - Thank you
Announcement about my previous presentations - Thank youAnnouncement about my previous presentations - Thank you
Announcement about my previous presentations - Thank you
 
Infection - penicillins
Infection - penicillinsInfection - penicillins
Infection - penicillins
 
Hospital acquired pneumonia
Hospital acquired pneumoniaHospital acquired pneumonia
Hospital acquired pneumonia
 
catheter related blood stream infection
catheter related blood stream infection catheter related blood stream infection
catheter related blood stream infection
 
Community acquired pneumonia - Pharmacotherapy
Community acquired pneumonia - Pharmacotherapy Community acquired pneumonia - Pharmacotherapy
Community acquired pneumonia - Pharmacotherapy
 
Cellulitis - Treatment
Cellulitis - TreatmentCellulitis - Treatment
Cellulitis - Treatment
 
Carbapenems - Pharmacology
Carbapenems - PharmacologyCarbapenems - Pharmacology
Carbapenems - Pharmacology
 
Cephalosporins - Pharmacology
Cephalosporins - Pharmacology Cephalosporins - Pharmacology
Cephalosporins - Pharmacology
 
Sickle cell anemia
Sickle cell anemia Sickle cell anemia
Sickle cell anemia
 
Poisoning - Treatment
Poisoning - TreatmentPoisoning - Treatment
Poisoning - Treatment
 
Hypertensive urgencies and emergencies
Hypertensive urgencies and emergenciesHypertensive urgencies and emergencies
Hypertensive urgencies and emergencies
 
Diabetic ketoacidosis DKA
Diabetic ketoacidosis DKADiabetic ketoacidosis DKA
Diabetic ketoacidosis DKA
 
Asthma and COPD exacerbation - Emergency
Asthma and COPD exacerbation - Emergency  Asthma and COPD exacerbation - Emergency
Asthma and COPD exacerbation - Emergency
 
Acute decompensated heart failure
Acute decompensated heart failureAcute decompensated heart failure
Acute decompensated heart failure
 
Acute Coronary syndrome
Acute Coronary syndrome Acute Coronary syndrome
Acute Coronary syndrome
 
Glycemic Control - Diabetes Mellitus
Glycemic Control - Diabetes Mellitus Glycemic Control - Diabetes Mellitus
Glycemic Control - Diabetes Mellitus
 
Stress ulcer prophylaxis
Stress ulcer prophylaxis Stress ulcer prophylaxis
Stress ulcer prophylaxis
 
Pain in the ICU
Pain in the ICUPain in the ICU
Pain in the ICU
 
Deep Vein Thrombosis - DVT
Deep Vein Thrombosis  - DVTDeep Vein Thrombosis  - DVT
Deep Vein Thrombosis - DVT
 
Anti - Coagulants agents
Anti - Coagulants agentsAnti - Coagulants agents
Anti - Coagulants agents
 

Kürzlich hochgeladen

Role of Gibberellins, mode of action and external applications.pptx
Role of Gibberellins, mode of action and external applications.pptxRole of Gibberellins, mode of action and external applications.pptx
Role of Gibberellins, mode of action and external applications.pptxjana861314
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfGABYFIORELAMALPARTID1
 
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary MicrobiologyLAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary MicrobiologyChayanika Das
 
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Christina Parmionova
 
lect1 introduction.pptx microbiology ppt
lect1 introduction.pptx microbiology pptlect1 introduction.pptx microbiology ppt
lect1 introduction.pptx microbiology pptzbyb6vmmsd
 
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPRPirithiRaju
 
The Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and FunctionThe Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and FunctionJadeNovelo1
 
Advances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerAdvances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerLuis Miguel Chong Chong
 
Interpreting SDSS extragalactic data in the era of JWST
Interpreting SDSS extragalactic data in the era of JWSTInterpreting SDSS extragalactic data in the era of JWST
Interpreting SDSS extragalactic data in the era of JWSTAlexander F. Mayer
 
Loudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxLoudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxpriyankatabhane
 
Pests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPirithiRaju
 
Timeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
Timeless Cosmology: Towards a Geometric Origin of Cosmological CorrelationsTimeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
Timeless Cosmology: Towards a Geometric Origin of Cosmological CorrelationsDanielBaumann11
 
Harry Coumnas Thinks That Human Teleportation May Ensure Humanity's Survival
Harry Coumnas Thinks That Human Teleportation May Ensure Humanity's SurvivalHarry Coumnas Thinks That Human Teleportation May Ensure Humanity's Survival
Harry Coumnas Thinks That Human Teleportation May Ensure Humanity's Survivalkevin8smith
 
Speed Breeding in Vegetable Crops- innovative approach for present era of cro...
Speed Breeding in Vegetable Crops- innovative approach for present era of cro...Speed Breeding in Vegetable Crops- innovative approach for present era of cro...
Speed Breeding in Vegetable Crops- innovative approach for present era of cro...jana861314
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxGiDMOh
 
Total Legal: A “Joint” Journey into the Chemistry of Cannabinoids
Total Legal: A “Joint” Journey into the Chemistry of CannabinoidsTotal Legal: A “Joint” Journey into the Chemistry of Cannabinoids
Total Legal: A “Joint” Journey into the Chemistry of CannabinoidsMarkus Roggen
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptxpallavirawat456
 
Food_safety_Management_pptx.pptx in microbiology
Food_safety_Management_pptx.pptx in microbiologyFood_safety_Management_pptx.pptx in microbiology
Food_safety_Management_pptx.pptx in microbiologyHemantThakare8
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxfarhanvvdk
 

Kürzlich hochgeladen (20)

Role of Gibberellins, mode of action and external applications.pptx
Role of Gibberellins, mode of action and external applications.pptxRole of Gibberellins, mode of action and external applications.pptx
Role of Gibberellins, mode of action and external applications.pptx
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
 
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary MicrobiologyLAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
 
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
 
lect1 introduction.pptx microbiology ppt
lect1 introduction.pptx microbiology pptlect1 introduction.pptx microbiology ppt
lect1 introduction.pptx microbiology ppt
 
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
 
The Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and FunctionThe Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and Function
 
Advances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerAdvances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of Cancer
 
Interpreting SDSS extragalactic data in the era of JWST
Interpreting SDSS extragalactic data in the era of JWSTInterpreting SDSS extragalactic data in the era of JWST
Interpreting SDSS extragalactic data in the era of JWST
 
Interferons.pptx.
Interferons.pptx.Interferons.pptx.
Interferons.pptx.
 
Loudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxLoudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptx
 
Pests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPR
 
Timeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
Timeless Cosmology: Towards a Geometric Origin of Cosmological CorrelationsTimeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
Timeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
 
Harry Coumnas Thinks That Human Teleportation May Ensure Humanity's Survival
Harry Coumnas Thinks That Human Teleportation May Ensure Humanity's SurvivalHarry Coumnas Thinks That Human Teleportation May Ensure Humanity's Survival
Harry Coumnas Thinks That Human Teleportation May Ensure Humanity's Survival
 
Speed Breeding in Vegetable Crops- innovative approach for present era of cro...
Speed Breeding in Vegetable Crops- innovative approach for present era of cro...Speed Breeding in Vegetable Crops- innovative approach for present era of cro...
Speed Breeding in Vegetable Crops- innovative approach for present era of cro...
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptx
 
Total Legal: A “Joint” Journey into the Chemistry of Cannabinoids
Total Legal: A “Joint” Journey into the Chemistry of CannabinoidsTotal Legal: A “Joint” Journey into the Chemistry of Cannabinoids
Total Legal: A “Joint” Journey into the Chemistry of Cannabinoids
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptx
 
Food_safety_Management_pptx.pptx in microbiology
Food_safety_Management_pptx.pptx in microbiologyFood_safety_Management_pptx.pptx in microbiology
Food_safety_Management_pptx.pptx in microbiology
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptx
 

Chapter 19 - Oxidative Phosphorylation and Photophosphorylation- Biochemistry

  • 1. 19|  Oxida*ve  Phosphoryla*on  and  Photophosphoryla*on   © 2013 W. H. Freeman and Company
  • 2. Energy  from  reduced  fuels  is  used  to   synthesize  ATP  in  animals   •  Carbohydrates,  lipids,  and  amino  acids  are  the  main   reduced  fuels  for  the  cell   •  Their  oxida9ve  steps  converge  in  the  final  stage  of   cellular  respira9on   •  Electrons  from  reduced  fuels  are  transferred  to   reduced  cofactors  NADH  or  FADH2   •  In  oxida*ve  phosphoryla*on,  energy  from  NADH   and  FADH2  are  used  to  make  ATP  
  • 3. Oxida*ve  Phosphoryla*on   •  Electrons  from  the  reduced  cofactors  NADH  and  FADH2   are  passed  to  proteins  in  the  respiratory  chain   •  In  eukaryotes,  oxygen  is  the  ul9mate  electron  acceptor   for  these  electrons   •  Energy  of  oxida9on  is  used  to  phosphorylate  ADP  
  • 4. Photophosphoryla*on   •  In  photosynthe9c  organisms  light  causes  charge   separa9on  between  a  pair  of  chlorophyll  molecules   •  Energy  of  the  oxidized  and  reduced  chlorophyll   molecules  is  used  to  drive  synthesis  of  ATP   •  Water  is  the  source  of  electrons  that  are  passed  via  a   chain  of  protein  transporters  to  the  ul9mate  electron   acceptor,  NADP+     •  Oxygen  is  the  byproduct  of  water  oxida9on   •  Both  processes:   1.  Involve  the  flow  of  e–s  through  a  chain   2.  Coupled  to  an  endergonic  “uphill”  transport  of  protons   3.  Flow  back  of  protons  provides  energy  for  making  ATP  
  • 5.
  • 6. Chemiosmo*c  Theory   Ø       ADP  +  Pi  à  ATP  is  Highly  Thermodynamically  Unfavorable   •  How  do  we  make  it  possible?   •  Peter  Mitchell  proposed  the  chemiosmo(c  theory  (Noble   prize  in  chemistry,  1978)   •  Phosphoryla9on  of  ADP  is  not  a  result  of  a  direct  reac9on   between  ADP  and  some  high-­‐energy  phosphate  carrier   (substrate-­‐level  phosphoryla9on)   •  Energy  needed  to  phosphorylate  ADP  is  provided  by  the   flow  of  protons  down  the  electrochemical  gradient   •  The  energy  released  by  electron  transport  is  used  to   transport  protons  against  the  electrochemical  gradient  
  • 7. Chemiosmo*c  energy  coupling     requires  membranes   •  The  proton  gradient  needed  for  ATP  synthesis  can  be  stably   established  across  a  membrane  that  is  impermeable  to  ions   –  Plasma  membrane  in  bacteria   –  Inner  membrane  in  mitochondria   –  Thylakoid  membrane  in  chloroplasts     •  Membrane  must  contain  proteins  that  couple  the  “downhill”   flow  of  electrons  in  the  electron-­‐transfer  chain  with  the   “uphill”  flow  of  protons  across  the  membrane   •  Membrane  must  contain  a  protein  that  couples  the   “downhill”  flow  of  protons  to  the  phosphoryla9on  of  ADP     (oxida9ve  phosphoryla9on)  
  • 8. Chemiosmo*c  Theory   e–s move through a chain spontaneously, driven by the high reduction potential of O2 and the low reduction potentials of the reduced substrates
  • 9. Flow  of  Protons:     Mitochondria,  Chloroplasts,  Bacteria       • According  to  endosymbio9c  theory,  mitochondria  and  chloroplasts   arose  from  entrapped  bacteria   • Bacterial  cytosol  became  mitochondrial  matrix  and  chloroplast  stroma  
  • 10. Structure  of  a  Mitochondrion   Double  membrane  leads  to  four  dis9nct  compartments:   1. Outer  Membrane:     –  Rela9vely  porous  membrane  allows  passage  of  metabolites   –  Permeable  to  solutes  <5000  Da   2. Intermembrane  Space  (IMS):     –  similar  environment  to  cytosol   –  higher  proton  concentra9on  (lower  pH)   3. Inner  Membrane   –  Rela9vely  impermeable,  with  proton  gradient  across  it   –  Loca9on  of  electron  transport  chain  complexes   –  Convolu9ons  called  Cristae  serve  to  increase  the  surface  area  (9ssues   with  high  demand  for  aerobic  respira9on  contain  thousands  of  mito   and  their  cristae  are  more  densely  packed)   4. Matrix   –  Loca9on  of  the  citric  acid  cycle  and  parts  of  lipid  and  amino  acid   metabolism  (all  fuel  oxida8on  pathways  except  glycolysis)   –  Lower  proton  concentra9on  (higher  pH)  
  • 11. Structure  of  a  Mitochondrion   Defects  in  mito  func9on  have   serious  medical  consequences:     -­‐  Neurodegenera9ve  diseases   -­‐  Cancer   -­‐  Diabetes   -­‐  Obesity     ATP  produc9on  is  not  the  only   func9on  of  mito   -­‐  Thermogenesis   -­‐  Steroid  synthesis   -­‐  Apoptosis    Divide  by  fission  
  • 12. Electron-­‐transport  chain  complexes   contain  a  series  of  electron  carriers   •  Nico*namide  nucleo*de-­‐linked  dehydrogenases   use  NAD+  or  NADP+  (NAD+  in  catabolism  and  NADPH   in  anabolism)   -­‐  Remove  2  e–s  and    hydrogen  atom  from  their   substrates  (:H–  to  NAD+  and  H+)   •  Each  complex  contains  mul9ple  redox  centers   consis9ng  of:   –  Flavin  Mononucleo*de  (FMN)  or  Flavin  Adenine   Dinucleo*de  (FAD)   •  Ini9al  electron  acceptors  for  Complex  I  and  Complex  II   •  Can  carry  two  electrons  by  transferring  one  at  a  8me   –  Cytochromes  a,  b  or  c   –  Iron-­‐sulfur  clusters  
  • 13. Cytochromes   •  One  electron  carriers   •  a,  b  or  c  differ  by  ring  addi9ons  (light  absorp9on)   •  Iron  coordina9ng  porphyrin  ring  deriva9ves  (9ghtly   but  not  covalently  bound  in  a  and  b  but  covalent  in  c)    
  • 14. Iron-­‐Sulfur  Clusters   •  One  electron  carriers   •  Coordina9on  by  cysteines  in  the  protein   •  Containing  equal  number  of  iron  and  sulfur  atoms   •  Rieske  Fe-­‐S  proteins  –  1  Fe  is  coordinated  to  two  His   instead  of  2  Cys)   •  At  least  8  Fe-­‐S  proteins  func9on  in  mitochondrial  ETC    
  • 15. Coenzyme  Q  or  Ubiquinone   •  Ubiquinone  (Q)  is  a  lipid-­‐soluble   conjugated  dicarbonyl  compound   that  readily  accepts  electrons     •  Upon  accep9ng  two  electrons,  it   picks  up  two  protons  to  produce   an  alcohol,  ubiquinol  (QH2)   •  Ubiquinol  can  freely  diffuse  in  the   membrane,  carrying  electrons  with   protons  from  one  side  of  the   membrane  to  another  side   •  Coenzyme  Q  is  a  mobile  electron   carrier  transpor9ng  electrons  from   Complexes  I  and  II  to  Complex  III  
  • 16. Free  Energy  of  Electron  Transport   Reduc9on  Poten9al  (E)   ∆Eʹ′o  =  Eʹ′o   (e-­‐  acceptor)  –  Eʹ′o   (e-­‐  donor)     ∆G’o  =  –nF∆E’o   For  nega9ve  ΔG  need  posi9ve  ΔE   E(acceptor)  >  E(donor)     Electrons  are  transferred  from  lower  (more  nega9ve)   to  higher  (more  posi9ve)  reduc9on  poten9al.       Free  Energy  released  is  used  to  pump  proton,  storing   this  energy  as  the  electrochemical  gradient  
  • 17. Recall: reduction potential is the relative tendency of a given chemical species to accept electrons in a redox reaction (the higher the reduction potential the more oxidized the species) We  would  expect  the  carriers  to  func9on  in  order  of  increasing   reduc9on  poten9al  (e–s  flow  spontaneously):   NADH  à  Q  à  cyt  b  à  cyt  c1  à  cyt  c  à  cyt  a  à  cyt  a3  à  O2   Not  necessarily  the  same  as  the  order  of  the  actual  reduc9on   poten9al,  but  this  sequence  was  confirmed  by  other  experiments  
  • 18. Flow  of  Electrons  from  Biological  Fuels   into  the  Electron-­‐Transport  Chain   Ubiquinone (Q) is the point of entry for electrons derived from reactions in the cytosol, from fatty acid oxidation, and from succinate oxidation (in the citric acid cycle).
  • 19. Electron  carriers  func*on  in  mul*enzyme  complexes  
  • 20.  NADH  dehydrogenase  (Complex  I)   •  One  of  the  largest  macro-­‐molecular  assemblies  in  the   mammalian  cell   •  Over  40  different  polypep9de  chains,  encoded  by  both   nuclear  and  mitochondrial  genes   •  NADH  binding  site  in  the  matrix  side   •  Non-­‐covalently  bound  flavin  mononucleo9de  (FMN)   accepts  two  electrons  from  NADH   •  Several  iron-­‐sulfur  centers  pass  one  electron  at  a  9me   toward  the  ubiquinone  binding  site   •  A  vectorial  proton  pump  (in  one  direc9on  only):                NADH  +  5H+ N  +  Q  à  NAD+  +  QH2  +  4H+ P            P  =  posi9ve  (IMS);  N  =  nega9ve  (matrix)  
  • 22. Succinate  Dehydrogenase  (Complex  II)   •  Smaller  and  simpler  than  complex  I   •  FAD  accepts  two  electrons  from  succinate   •  Electrons  are  passed,  one  at  a  9me,  via  iron-­‐sulfur   centers  to  ubiquinone,  which  becomes  reduced  QH2   •  Does  not  transport  protons  
  • 23. Complex  II   3  2Fe-­‐2S   Bound  FAD   Heme  b   Q  binding  site   Succinate  binding  site   C  and  D   (integral  proteins)  A  and  B   (matrix)  
  • 24. Ubiquinone:Cytochrome  c  Oxidoreductase,     (Complex  III)   •  Uses  two  electrons  from  QH2  to  reduce  two   molecules  of  cytochrome  c   •  Addi9onally  contains  iron-­‐sulfur  clusters,   cytochrome  b’s,  and  cytochrome  c’s   •  The  Q  cycle  results  in  four  addi9onal  protons   being  transported  to  the  IMS  
  • 26. The  Q  Cycle   •  Experimentally,  four  protons  are  transported  across   the  membrane  per  two  electrons  that  reach  cyt  c   •  Two  of  the  four  protons  come  from  QH2   •  The  Q  cycle  provides  a  good  model  that  explains  how   two  addi9onal  protons  are  picked  up  from  the  matrix   •  Two  molecules  of  QH2  become  oxidized,  releasing   protons  into  the  IMS   •  One  molecule  becomes  re-­‐reduced,  thus  a  net  transfer   of  four  protons  per  reduced  Coenzyme  Q  
  • 27. The  Q  Cycle:  Cycle  1  
  • 28. The  Q  Cycle:  Cycle  2  
  • 29. •  The  second  mobile  electron  carrier   •  A  soluble  heme-­‐containing  protein   in  the  intermembrane  space   •  Heme  iron  can  be  either  ferric   (Fe3+,  oxidized)  or  ferrous  (Fe2+,   reduced)   •  Cytochrome  c  carries  a  single   electron  from  the  cytochrome  bc1   complex  to  cytochrome  oxidase     (to  a  binuclear  copper  center)   Cytochrome  c  
  • 30. Cytochrome  Oxidase  (Complex  IV)   •  Mammalian  cytochrome  oxidase  is  a  membrane   protein  with  13  subunits   •  Contains  two  heme  groups:  a  and  a3   •  Contains  copper  ions   –  CuA:  two  ions  that  accept  electrons  from  cyt  c   –  CuB:  bonded  to  heme  a3  forming  a  binuclear  center   that  transfers  four  electrons  to  oxygen  
  • 31. Cytochrome  oxidase     passes  electrons  to  O2   •  Four  electrons  are  used  to  reduce  one  oxygen  molecule   into  two  water  molecules  (coming  from  4  cyt  c  molecules)   •  Four  protons  are  picked  up  from  the  matrix  in  this  process   •  Four  addi9onal  protons  are  passed  from  the  matrix  to  the   intermembrane  space  
  • 32. Electron  flow  through  Complex  IV  
  • 33. Summary  of  the  Electron  Flow     in  the  Respiratory  Chain  
  • 34. Mul*ple  complexes  associate  together     to  form  a  respirasome   Substrate channeling à efficiency
  • 35. Summary  of  Electron  Transport   •  Complex  I  à  Complex  IV   1NADH  +  11H+ (N)  +  ½O2    ——>    NAD+  +  10H+ (P)  +  H2O     •  Complex  II  à  Complex  IV   FADH2  +  6H+ (N)  +  ½O2    ——>    FAD  +  6H+ (P)  +  H2O     Difference  in  number  of  protons  transported  reflects  the   amount  of  synthesized  ATP.    
  • 36.
  • 37. Energy  of  electron  transfer  is  efficiently   conserved  in  a  proton  gradient   NADH  +  H+  +  ½  O2  à  NAD+  +  H2O  (Net)   ∆Eʹ′o  =  Eʹ′o   (e-­‐  acceptor)  –  Eʹ′o   (e-­‐  donor)  =  0.816  –  (-­‐0.32)  =  1.14  V   ∆Gʹ′o  =  –  nF∆Eʹ′o  =  –  2  x  96.5  x  1.14  =  –  220  kJ/mol  of  NADH     Succinate  to  fumarate  oxida9on  yields  ~  –  150  kJ/mol           Much  of  this  energy  is  used  to  pump  protons  (proton-­‐mo*ve   force)      
  • 38. Proton-­‐Mo*ve  Force   •  2  components:   1.  Concentra9on  gradient  (of  protons)   2.  Electrical  gradient  (+  and  –  ions  are  segregated)   •  The  proteins  in  the  electron-­‐transport  chain  created   the  electrochemical  proton  gradient  by  one  of  three   means:   –  Ac9vely  transport  protons  across  the  membrane     •  Complex  I  and  Complex  IV   –  Chemically  remove  protons  from  the  matrix     •  Reduc9on  of  CoQ  and  reduc9on  of  oxygen   –  Release  protons  into  the  intermembrane  space   •  Oxida9on  of  QH2  
  • 39. Proton-­‐Mo*ve  Force   In  ac9vely  respiring  mito:   Δψ  ~0.15  V  and  the   matrix  is  0.75x  more   alkaline     ΔG  =  (5.7x0.75)  +   (96.5x0.15)  =  19  kJ/mol     Since  2  e–s  from  NADH   leads  to  pumping  of  10   protons  è  roughly  190   kJ  of  the  220  kJ  released   by  NADH  oxida8on  is   conserved  in  the  proton   gradient!    
  • 40. Reac*ve  oxygen  species  (ROS)  can   damage  biological  macromolecules   When  the  rate  of  e–  entry  into   the  RC  and  the  rate  of  e–   transfer  through  the  chain  are   mismatched  è  superoxide   radical  (•O2 –)  produc9on   increases  (par9ally  reduced   ubiquinone  radical  (•Q–)   donates  an  electron  to  O2)   è  forma9on  of  the  highly   reac9ve  hydroxyl  free  radical   (•OH)  è  damaging  enzymes,   lipids  and  DNA   To  prevent:  superoxide   dismutase  &  glutathione   peroxidase  
  • 41. Chemiosmo*c  Model  for  ATP  Synthesis   •   Electron  transport  sets  up  a  proton-­‐mo9ve  force     •   Energy  of  proton-­‐mo9ve  force  (~190  kJ)  drives   synthesis  of  ATP  (requires  52  kJ)  see  worked  example  13-­‐2   ADP + Pi + nH+ P à ATP + H2O + nH+ N
  • 42. Consequently,  electron  transport  is   coupled  to  ATP  synthesis   Coupling:   • Electron  transport  requires  ATP  synthesis   • ATP  synthesis  requires  electron  transport   • Obligate!  Neither  process  can  proceed   without  the  other    
  • 43. Coupling   • O2  consump9on  and  ATP  synthesis  depends  on  the   presence  of  ADP  +  Pi  and  an  oxidizable  substrate   • Blocking  the  passage  of  e–s  to  O2  will  inhibit  ATP   produc9on   Addition of cyanide (CN-), which blocks electron transfer between cytochrome oxidase (Complex IV) and O2, inhibits both respiration and ATP synthesis.  
  • 44. Coupling   • If  ADP  is  not  available  succinate  cannot  be  oxidized   • Inhibi9ng  ATP  synthesis  will  inhibit  e–  transfer  to  O2   • Chemical  uncouplers  of  ATP  synthesis  from  e–  transport   dissipate  proton  gradients  (weak  hydrophobic  acids)     inhibitors of ATP synthase
  • 45. Mitochondrial  ATP  Synthase  Complex     •  Mitochondrial  ATP  synthase  (complex  V)  is  an  F-­‐type   ATPase   •  Contains  two  func9onal  units:   –  F1   •  Peripheral  membrane  protein  complex  in  the  matrix   •  On  its  own  catalyzes  the  hydrolysis  of  ATP   –  Fo   •  Integral  membrane  complex,  a  channel   •  Oligomycin-­‐sensi9ve   •  Transports  protons  from  IMS  to  matrix,  dissipa9ng   the  proton  gradient   •  Energy  transferred  to  F1  to  catalyze  phosphoryla9on   of  ADP  
  • 46. Mitochondrial  ATP  Synthase  Complex     •  On  the  enzyme  surface,  ADP  +  Pi  ßà  ATP  +  H2O  is  readily   reversible  with  ΔG’  ~  0!!  Why?   •  The  enzyme  stabilizes  ATP  much  more  than  ADP,  more   9ghtly  bound  (Kd(ATP)  <  10–12  M;  Kd(ADP)  ~  10–5  M)   •  Binding  energy  of  ~  40  kJ/mol  drives  the  synthesis  of  ATP   •  If  no  proton  gradient  is  present,  ATP  cannot  leave  the   enzyme  surface   •  To  con8nually  synthesize  ATP  the  enzyme  cycles  between  a   conforma8on  that  binds  ATP  very  8ghtly  (to  drive  synthesis)   and  a  conforma8on  that  releases  ATP  
  • 47. The  F1  catalyzes  ADP  +  Pi            ATP   •  9  subunits  α3β3γδε •  The  head  is  a  hexamer  arranged  in  three  αβ  dimers     •  β  has  the  cataly9c  ac9vity  and  can  exist  in  three   different  conforma9ons  (γ  binds     only  one  of  the  3  β)   –  Open:  empty   –  Loose:  binding  ADP  and  Pi       –  Tight:  catalyzes  ATP  forma9on     and  binds  product  
  • 48. Binding-­‐Change  Model  (rota*onal  catalysis)   The  3  ac9ve  sites   take  turn  catalyzing   the  reac9on  driven   by  proton  entering   A  subunit  starts  with   β-­‐ADP  conforma9on   It  changes   conforma9on  to   β-­‐ATP,  stabilizing   ATP  on  enzyme   surface   Subunit  changes  to   β-­‐empty  which  is  a   very  low  affinity   conforma9on   The position of γ
  • 49. Coupling  Proton  Transloca*on     to  ATP  Synthesis   •  Proton  transloca9on  causes  a  rota9on  of  the  Fo  subunit   and  the  central  sha{  γ   •  This  causes  a  conforma9onal  change  within  all  the   three  αβ  pairs   •  The  conforma9onal  change  in  one  of  the  three  pairs   promotes  condensa9on  of  ADP  and  Pi  into  ATP  
  • 51. Stoichiometry  of  O2  consump*on  and  ATP  Synthesis   •  xADP  +  xPi  +  ½  O2  +  H+  +  NADH  à  xATP  +  H2O  +  NAD+   •  x  (P/O  ra*o)  =  number  of  ATP  molecules  synthesized   per  ½  O2  (thought  to  be  an  integer)   •  Switched  the  ques9on  to  how  many  protons  are   pumped  outward  and  how  many  protons  must  flow   back  in  to  make  ATP   •  10  H+  (from  NADH)  and  6  H+  (from  succinate)  are   pumped  out  per  electron  pair   •  4  H+  are  needed  to  flow  back  to  make  1  ATP    (3  to  turn  the  Fo  and  1  to  transport  Pi,  ATP  and  ADP)  è   proton-­‐based  P/O  ra9os  are:   2.5  ATP/NADH  and  1.5  ATP/succinate  
  • 52. Transport  of  ADP  and  Pi  into  the  Matrix   Proton-motive force drives the translocation of ADP in and ATP out (net transport of 1 –ve charge into the +ve IMS Proton-motive force drives the inward movement of phosphate into the matrixAll three of these transport systems can be isolated as a single membrane-bound complex (ATP synthasome)
  • 53. Malate-­‐Aspartate  Shuale   In liver, kidney and heart mitochondria
  • 54. Glycerol-­‐3-­‐Phosphate  Shuale   In brain and skeletal muscles
  • 55. Regula*on  of  Oxida*ve  Phosphoryla*on   •  Primarily  regulated  by  substrate  availability   –  Acceptor  control  ra*o  –  maximal  rate  of  ADP-­‐induced  O2   consump9on/basal  rate  (without  ADP)  ~  >10  in  many  cells   –  Mass  ac*on  ra*o  –  [ATP]/[ADP][Pi]  is  normally  very  high.  When   the  rate  of  energy-­‐requiring  processes  é,  mass  ac9on  ra9oê   èéADP  available  for  OxPhos  è  respira9on  rateé –  ATP  is  formed  only  as  fast  as  it’s  used  in  energy-­‐requiring  ac8vi8es   •  Inhibitor  of  F1  (IF1)   –  Prevents  hydrolysis  of  ATP  during  low  oxygen   –  Binds  to  2  ATP  synthases  and  inhibits  their  ATPase  ac9vi9es   –  Only  ac9ve  at  lower  pH,  encountered  when  electron  transport  is   slowed  (i.e.,  low  oxygen).  Recall  lac8c  acid  fermenta8on!   •  Inhibi9on  of  OxPhos  leads  to  accumula9on  of  NADH     –  Causes  feedback  inhibi9on  cascade  up  to  PFK-­‐1  in  glycolysis  
  • 56. Regula*on  of  ATP-­‐producing  pathways   All four pathways are accelerated when the use of ATP and the formation of ADP, AMP, and Pi increase.
  • 57. HIF   •  Hypoxic  cells  è  Imbalance   between  e–  input  and  e–   transfer  to  O2  è  éROS   •  Countered  by:   1.  Increase  in  glycolysis   2.  Inac9va9on  of  PDH   3.  Replacement  of  COX  subunit    
  • 58. Brown  Adipose  Tissue  has  uncoupled  mito   •  In  newborn  mammals,  BAT  serves  as  heat-­‐genera9ng  9ssue   •  Large  number  of  mito  è  large  number  of  cytochromes  è  looks   brown   •  BAT  mito  have  an  uncoupling  protein  in  their  inner  membrane   (thermogenin)  which  is  a  proton  channel   •  Path  for  protons  to  the  matrix  without  passing  through  FoF1   complex  è  short-­‐circui9ng  of  protons  è  energy  is  not  conserved   as  ATP  by  lost  as  heat   •  Also  in  hiberna9ng     animals  
  • 59. Steroidogenesis   •  Steroids  are  synthesized  from  cholesterol  in  a  series  of   hydroxyla9ons  catalyzed  by  cytochrome  P-­‐450     •  R-­‐H  +  O2  +  NADPH  +  H+  à  R-­‐OH  +  H2O  +  NADP+   •  Steroidogenic  cells  (e.g.  adrenal  glands)  are  packed  with   specialized  mitochondria  for  steroid  synthesis  î   •  P-­‐450  are  also  found  in  ER,  responsible  for   metabolism  of  xenobio*cs   •  Hydroxyla9on  è  more  water  soluble     è  more  excre9on  in  urine   •  Many  prescrip9on  drugs  are  substrates     for  P-­‐450  è  P-­‐450  ac9vity  limits  the     drugs’  life9me  and  efficacy   •  Humans  differ  in  their  P-­‐450  contents  and   ac9vi9es  in  their  cells  è  an  individual’s  gene9cs  and  personal   history  could  have  a  say  in  determining  therapeu9c  drug  dose   or  form  
  • 60. Mitochondrial  damage  ini*ates  apoptosis   •  Apoptosis  –  Individual  cells  die  for  the  benefit  of  the  organism   •  Ini9ated  by  external  signals  or  internal  events   •  Early  consequence  of  death  signals  in  the  increase  in  MOM   permeability  to  proteins   •  What  causes  this  permeability?  (My  Ph.D.  research  J)   •  Cytochrome  c  (and  others)  is  released  into  the  cytosol   •  7  molecules  of  cyt  c  form  an  apoptosome  with  7  Apaf-­‐1   •  Allow  the  docking  and  ac9va9on  of  procaspase-­‐9     •  Cleaves  procaspase-­‐9  (inac9ve)  to  caspase-­‐9  (ac9ve)  which   cleaves  and  ac9vates  procaspase-­‐3  and  7  (into  caspase-­‐3  and   caspase-­‐7)  which  is  an  execu9oner  caspase  (breaks  down  the   macromolecular  contents  of  cells)     •  Caspase  cascade   •  Cytochrome  c  is  another  moonlightling  protein  
  • 61.
  • 62. Mitochondrial  genes   •  Circular  double  stranded  mtDNA   •  Each  mito  has  ~  5  copies   •  Human  mt  genome  contains  37  genes:     13  encode  subunits  of  respiratory  chain  proteins   24  encode  for  tRNA  and  rRNA   •  The  majority  of  mito’s  1100  proteins   are  encoded  by  nuclear  genes  and     translated  on  cytosolic  ribosomes  
  • 63. Muta*ons  in  mtDNA  accumulate   •  Mito  are  exposed  the  most  to  ROS   •  mtDNA  replica9on  and  repair  are  less  effec9ve  than  nuclear  DNA   replica9on  è  Defects  in  mtDNA  occur  over  8me   •  Animals  inherit  their  mito  from  mothers   •  105-­‐106  mito/egg  and  102-­‐103  mito/   sperm.  Also  eggs  target  sperm  mito   for  degrada9on   •  Heteroplasmy  and  homoplasmy     wt cells – blue Mutant COX – brown Different cells in the same tissue are affected differently by mito mutation
  • 64. Muta*ons  in  mtDNA  cause  disease   •  Mitochondrial  encephalomyopathies   •  affect  brain  and  skeletal  muscles   •  Leber’s  hereditary  op*c  neuropathy  (LHON)  affects  the  central   nervous  system  (leads  to  loss  of  vision)   •  Point  muta9on  in  mitochondrial  gene  ND4  à  mito  par9ally   defec9ve  in  electron  transfer  through  complex  I   •  Mito  can  produce  ATP  from  complex  II  but  apparently  cannot   supply  enough  ATP  to  support  the  very  ac9ve  metabolism  of   neurons  à  damage  to  op9c  nerve  à  blindness   •  Diabetes     •  Defec9ve  OxPhos  in  pancrea9c  β  cells  blocks  insulin  secre9on   •  In  normal  β  cells,  glc  is  taken  in  and  oxidized  to  raise  [ATP]  above   threshold.  ATP  blocks  K+  channel  à  depolariza9on  of  membrane   à  opening  of  voltage-­‐gated  Ca2+  channels  à  Ca2+  influx  into   cytoplasm  leads  to  the  release  of  insulin  into  blood    
  • 65.
  • 66. Ques*on  6  (Take  home  exam)     Due:  NEXT  WEEK  (js*ban@birzeit.edu)   •  Please  solve  ques*ons:   1.  6  (uncouplers)   2.  17  (ATP  turnover)   3.  22  (alanine)   4.  24  (diabetes)   For  wriZen  answers,  I  prefer  to  have  them  typed  in  Word.  I   can  accept  the  assignment  in  one  file  sent  to  my  email.  For   answers  that  require  solving  mathema8cally,  you  can  either   type  them  or  write  them  down  and  scan  them.