SlideShare ist ein Scribd-Unternehmen logo
1 von 43
Downloaden Sie, um offline zu lesen
Lateral load Resisting Systems
Dr. Ahmed Tarabia
High rise concrete building, 3rd Civil
Spring 2015
‫الجانبية‬ ‫لالحمال‬ ‫المقاومة‬ ‫االنظمة‬ ‫انواع‬
•‫المقاومة‬ ‫االطارات‬‫للعزوم‬:
‫الكمرات‬ ‫و‬ ‫األعمدة‬ ‫من‬ ‫تتكون‬‫الخرسانية‬.
•‫حوائط‬‫الحوائط‬ ‫أو‬ ‫القص‬‫االنشائية‬.
•‫المركبة‬ ‫االنظمة‬:
‫االطارات‬ ‫من‬ ‫مجموعة‬ ‫من‬ ‫تتكون‬+‫القص‬ ‫حوائط‬.
OBJECTIVES
• 1- Rigidity center definition, how to locate it?
• 2- Lateral Load Resisting Systems In Each Direction.
• 3-How To Distribute Lateral Loads Between Lateral
Load Resisting Systems In Each Lateral Direction.
(Relative rigidity method)
General rules
• A system or more should be provided in each
direction of the principal directions.
• These systems should be able to resist the
lateral loads.
Check: (Drift-moment-Shear-Stability)
Moment resisting frames
Moment resisting frames
Shear wall system
Shear wall system
   
Dual system:(Shear walls + Frames)
‫الجساءة‬ ‫مركز‬Center of Rigidity
•‫المستوي‬ ‫في‬ ‫جسئ‬ ‫كسطح‬ ‫تتحرك‬ ‫دور‬ ‫كل‬ ‫بالطة‬ ‫أن‬ ‫افتراض‬
•‫مركز‬‫أثر‬ ‫اذا‬ ‫الدور‬ ‫مستوى‬ ‫فى‬ ‫افتراضية‬ ‫نقطة‬ ‫هو‬ ‫الجساءة‬
‫انتقالية‬ ‫حركة‬ ‫جسئ‬ ‫كجسم‬ ‫المستوي‬ ‫يتحرك‬ ‫فيها‬ ‫الجانبية‬ ‫القوة‬
‫المؤثرة‬ ‫القوة‬ ‫اتجاه‬ ‫في‬‫بدون‬‫حدوث‬‫دوران‬.
•‫انتقالية‬ ‫حركة‬ ‫يحدث‬ ‫آخر‬ ‫مكان‬ ‫اي‬ ‫في‬ ‫القوة‬ ‫أثرت‬ ‫اذا‬ ‫و‬
‫التواء‬ ‫عزم‬ ‫لوجود‬ ‫نتيجة‬ ‫دوران‬ ‫حدوث‬ ‫مع‬ ‫للمستوي‬.
‫األولي‬ ‫الحالة‬:‫الجساءة‬ ‫مركز‬ ‫في‬ ‫تؤثر‬ ‫القوة‬
‫الثانية‬ ‫الحالة‬:‫الجساءة‬ ‫مركز‬ ‫خارج‬ ‫تؤثر‬ ‫القوة‬
‫الجساءة‬ ‫مركز‬ ‫تحديد‬Xo , Yo
•‫اتجاه‬ ‫لكل‬ ‫المقاومة‬ ‫عناصر‬ ‫تحديد‬ ‫يتم‬.
•‫حساب‬ ‫يتم‬Ieffective‫ألخذ‬‫بالقطاعات‬ ‫التشريخ‬ ‫تاثير‬‫الخرسانية‬:
How to find the inertia of the lateral resisting system
•‫محور‬ ‫حول‬ ‫الجساءات‬ ‫عزوم‬ ‫باستخدام‬ ‫الجساءة‬ ‫مركز‬ ‫تحديد‬ ‫يتم‬X &Y
‫اآلتية‬ ‫المعادالت‬ ‫طريق‬ ‫عن‬ ‫مكان‬ ‫أس‬ ‫في‬ ‫فرضهم‬ ‫يتم‬ ‫و‬:
‫محور‬ ‫حول‬ ‫الجساءات‬ ‫عزوم‬ ‫باستخدام‬X &Y‫اآلتية‬ ‫المعادالت‬ ‫طريق‬ ‫عن‬:
‫محور‬ ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫المقاومة‬ ‫لعناصر‬X:
‫محور‬ ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫المقاومة‬ ‫لعناصر‬Y:
nx Number of lateral load resisting systems in X direction
ny Number of lateral load resisting systems in X direction
Y
C.R.Xo
Yo
Simple examples: #1
Simple examples: #2
In the case of symmetry of lateral load resisting system
Ey=0.0
Force 3C
C.R.
1C1C C2
Y
X
A B C
1
2
3 3
2
1
CBA
B12C 2C
2CC1 C1
Step 2:
• Transfer axes systems to the rigidity center.
Y
C.R.
Distribution of lateral forces
•-‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬FY‫اتجاه‬ ‫في‬Y:
• For each Y-direction resisting elements:
• For each X-direction resisting elements:
)y*(I)x*(I
.XI
.eF
I
I
F=F
2
j
1
yj
2
j
1
xj
ixi
xy
1
xj
xi
yyi



 nx
j
ny
j
ny
j
)y*(I)x*(I
.yI
.eF=F
2
j
1
yj
2
j
1
xj
iyi
xyxi



 nx
j
ny
j
-‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬FY‫اتجاه‬ ‫في‬Y:
Then, For Y-direction resisting elements:


ny
1j
xj
xi
yyi
I
I
.F=F
0.0eif y 
•-‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬F x‫اتجاه‬ ‫في‬X:
• For X-direction resisting elements:
• For Y-direction resisting elements:
)y*(I)x*(I
.YI
.eF
I
I
F=F
2
j
1
yj
2
j
1
xj
iyi
yx
1
yj
yi
xxi



 nx
j
ny
j
nx
j
)y*(I)x*(I
.xI
.eF=F
2
j
1
yj
2
j
1
xj
ixi
yxyi



 nx
j
ny
j
-‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬F x‫اتجاه‬ ‫في‬:X
For X-direction resisting elements:


nx
j
yj
1
yi
xxi
I
I
.F=F
0.0eif x

Example #1
Force 3C
C.R.
1C1C C2
Y
X
A B C
1
2
3 3
2
1
CBA
B12C 2C
2CC1 C1
Lateral load resisting systems
• X ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫األحمال‬ ‫لمقاومة‬ ‫االنشائي‬ ‫النظام‬
• a- The frames on axis (1-1), (2-2) and (3-3).
• Y ‫اتجاه‬ ‫فى‬ ‫االنشائي‬ ‫النظام‬ ‫يتكون‬ ‫و‬
• a- The frames on axis (A-A), (B-B) and (C-C).
• ‫تأثير‬ ‫نتيجة‬ ‫االنشائية‬ ‫العناصر‬ ‫جميع‬ ‫نصيب‬ ‫احسب‬‫الحمل‬ ‫هذا‬.
The sections of C1 600mm x800mm
The sections of C2 800mm x1000mm and
The section of C3 is 1000mm x 1000mm.
4
3
y:1 0179.0
12
0.8x0.6
x0.7ICfor m
Find effective inertia-1
4
3
y 0467.0
12
1.0x0.8
x0.7I:C2For m
4
3
y3 0583.0
12
1.0x1.0
x0.7I:CFor m
2-Find the Centre of Rigidity:
Because the lateral load resisting systems
are symmetric in X and Y directions, the
center of rigidity is located in the center of
the two systems.
- Transfer axes system to the center of rigidity
1C
A
3
Fx
2
2C
1
A
C1
X
3
2
1
23C
C.R.
C2
Y
B
B
B1
2C
1C
C
C
C
C1
3 - Load distribution:
In this example, a load in X-direction =Fx is acting at the mid-point of the floor.
We need to find the share of each resisting system of this load
using the following equations. Because ey=0.0, then:
"For X-dir. resisting element"


nx
j 1
yj
yi
xxi
I
I
F=F
System in Section Iy Yi
Fx Fx/frame
X-direction (m x m) (m4) (m)
Frame (1-1)
.8*.6 0.0179 3 0.05652
0.2601.0*0.80
0.0467
3 0.147458
.8*.6 0.0179 3 0.05652
Frame (2-2)
1.0*0.80
0.0467
0 0.147458
0.481.0*1.0
0.0583
0 0.184086
1.0*0.80
0.0467
0 0.147458
Frame (3-3)
.8*.6 0.0179 -3 0.05652
0.2601.0*0.80
0.0467
-3 0.147458
.8*.6 0.0179 -3 0.05652
SUM 0.3167 1 1
Distribution of lateral loads on frames
Frame#3
Frame #2
Frame #1
C1 1C1C
C2C2 B1
A B C
1
2
33
2
1
CBA
X
Y
2CC1 C1
C3Fx
Frame#4
Example #2
Data of the problem:
The sections of C1 600mm x800mm
The sections of C2 800mm x1000mm and
The section of C3 1000mm x 1000mm.
X ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫األحمال‬ ‫لمقاومة‬ ‫االنشائي‬ ‫النظام‬
a- The frames on axis (2-2) and (3-3).
Y ‫اتجاه‬ ‫فى‬ ‫االنشائي‬ ‫النظام‬ ‫يتكون‬ ‫و‬
a- The frames on axis (A-A), and (C-C).
FX kN ‫تأث‬ ‫نتيجة‬ ‫االنشائية‬ ‫العناصر‬ ‫جميع‬ ‫نصيب‬ ‫احسب‬‫الحمل‬ ‫هذا‬ ‫ير‬.
Find effective inertia-1
4
3
x
:
4
3
y:1
010.0
12
0.6x0.8
x0.7I
0179.0
12
0.8x0.6
x0.7ICfor
m
m


4
3
x
4
3
y
029.0
12
0.8x1.0
x0.7I
0467.0
12
1.0x0.8
x0.7I:C2For
m
m


4
3
x
4
3
y3
0583.0
12
1.0x1.0
x0.7I
0583.0
12
1.0x1.0
x0.7I:CFor
m
m


Frame #2
Frame #1
C2C2 B1
X
Y
2CC1 C1
C3Force
Frame#4
Frame#3
1C1C
C2C2
X
Y
C1 C1
Fx
X ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫األحمال‬ ‫لمقاومة‬ ‫االنشائي‬ ‫النظام‬ Y‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫األحمال‬ ‫لمقاومة‬ ‫االنشائي‬ ‫النظام‬
Find the Centre of Rigidity:-2
System in
Col.
Section
Ix Xi
Ix . Xi
Y-direction (m x m) (m4) (m)
Frame (A-A)
0.8x0.60 0.01 0 0
1.0x0.80 0.03 0 0
0.8x0.60 0.0583 0 0
Frame (C-C)
0.8x0.60 0.01 6 0.06
1.0x0.80 0.03 6 0.18
0.8x0.60 0.0583 6 0.3498
SUM 0.1966 0.5898
A- Find Xo
m
I
XI
y
y
n
i
ix
n
i
ixi
0.3
1966.0
5898.
=X
1
1
o 




Assume that the X axis is axis (3-3) and the Y axis is axis (A-A)
System in
Col.
Section
Iy Yi
Iy . Yi
X-direction (m x m) (m4) (m)
Frame (1-1)
0.8x0.60 0.0179 0 0
1.0x0.80 0.0467 0 0
0.8x0.60 0.0179 0 0
Frame (2-2)
1.0x0.80 0.0467 3 0.1401
1.0x1.00 0.0583 3 0.1749
1.0x0.80 0.0467 3 0.1401
SUM 0.2342 0.4551
m
I
YI
x
x
n
i
yi
n
i
iyi
1.94
233.0
455.0
=Y
1
1
o 




B- Find Yo
3C
1C1C C2
B12C 2C
C1 C11C
Frame #1
Frame #2Frame#3
Frame#3
C.R.
Force
Y
X
ex=0.0 and ey = 3.0 – 1.94 = 1.06 m
- M = Fx . ey = Fx . (1.06)
•-‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬X‫و‬F x
• For X-direction resisting elements:
• For Y-direction resisting elements:
)y*(I)x*(I
.YI
.eF
I
I
F=F
2
j
1
yj
2
j
1
xj
iyi
yx
1
yj
yi
xxi



 nx
j
ny
j
nx
j
)y*(I)x*(I
.xI
.eF=F
2
j
1
yj
2
j
1
xj
ixi
yxyi



 nx
j
ny
j
System
in
Section Iy Yi
Iy . Yi
2 Iy . Yi Fx' Fx"
Fx/
column
Fx/
frameX-
directio
n
(m x m) (m4) (m)
Frame
(1-1)
0.8x0.60 0.0179 -1.94 0.0674 -0.0347 0.0764 -0.027 0.050
0.231.0x0.80 0.0467 -1.94 0.1758 -0.0906 0.1994 -0.070 0.130
0.8x0.60 0.0179 -1.94 0.0674 -0.0347 0.0764 -0.027 0.050
Frame
(2-2)
1.0x0.80 0.0467 1.06 0.0525 0.0495 0.1994 0.038 0.237
0.771.0x1.00 0.0583 1.06 0.0655 0.0618 0.2489 0.047 0.296
1.0x0.80 0.0467 1.06 0.0525 0.0495 0.1994 0.038 0.237
SUM 0.2342 0.4809 1.0000 0.00 1.00 1.00
3 – find the values of [Iy. Yi
2 ] in the X - direction
System in Section Ix Xi
Ix. Xi
2 Ix. Xi Fy' Fy"
Fy/
column
Fy/
Frame
Y-direction (m x m) (m4) (m)
Frame
(A-A)
0.8x0.60 0.01008 -3 0.0907 -0.0302 0.0000 0.023 0.023
0.121.0x0.8 0.02987 -3 0.2688 -0.0896 0.0000 0.069 0.069
0.8x0.6 0.01008 -3 0.0907 -0.0302 0.0000 0.023 0.023
Frame
(C-C)
0.8x0.6 0.01008 3 0.0907 0.0302 0.0000 -0.023 -0.023
-0.121.0x0.8 0.02987 3 0.2688 0.0896 0.0000 -0.069 -0.069
0.8x0.6 0.01008 3 0.0907 0.0302 0.0000 -0.023 -0.023
SUM 0.1001 0.9005 0.0000 0.0000 0.0000 0.0000 0.0000
4– Calculate the values of [Ix. Xi
2 ] in the Y - direction
- The share of Frame (1-1) = 0.23 Fx
- The share of Frame (2-2) = 0.77 Fx
- The share of Frame (A-A) = 0.12 Fx
- The share of Frame (C-C = -0.12 Fx
.12Fx
.12Fx
C1
.23 Fx
.77 Fx
Fx
3C
1C1C C2
Y
X
B12C 2C
Frame #1
Frame #2
Distribution of lateral loads on frames

Weitere ähnliche Inhalte

Was ist angesagt?

BIAXIAL COLUMN DESIGN
BIAXIAL COLUMN DESIGNBIAXIAL COLUMN DESIGN
BIAXIAL COLUMN DESIGNshawon_sb
 
Design of columns biaxial bending as per IS 456-2000
Design of columns  biaxial bending as per IS 456-2000Design of columns  biaxial bending as per IS 456-2000
Design of columns biaxial bending as per IS 456-2000PraveenKumar Shanmugam
 
Rcc member design steps
Rcc member design stepsRcc member design steps
Rcc member design stepsDYPCET
 
Connection and Bracing
Connection and BracingConnection and Bracing
Connection and Bracingsuddal
 
ANALYSIS OF SOFT STOREY FOR MULTI STORYED BUILDING IN ZONE-4
ANALYSIS OF SOFT STOREY FOR MULTI STORYED BUILDING IN ZONE-4ANALYSIS OF SOFT STOREY FOR MULTI STORYED BUILDING IN ZONE-4
ANALYSIS OF SOFT STOREY FOR MULTI STORYED BUILDING IN ZONE-4Ijripublishers Ijri
 
onw way slab design
onw way slab designonw way slab design
onw way slab designPalak Patel
 
Design of tall buildings lecture-1-part-2-dr-shafiul-bari-sir
Design of tall buildings lecture-1-part-2-dr-shafiul-bari-sirDesign of tall buildings lecture-1-part-2-dr-shafiul-bari-sir
Design of tall buildings lecture-1-part-2-dr-shafiul-bari-sirjibonghosh
 
Flat slab design
Flat slab designFlat slab design
Flat slab designMoussa Rili
 
Rcc structure design by etabs (acecoms)
Rcc structure design by etabs (acecoms)Rcc structure design by etabs (acecoms)
Rcc structure design by etabs (acecoms)Md. Shahadat Hossain
 

Was ist angesagt? (20)

BIAXIAL COLUMN DESIGN
BIAXIAL COLUMN DESIGNBIAXIAL COLUMN DESIGN
BIAXIAL COLUMN DESIGN
 
Design of staircases
Design of staircasesDesign of staircases
Design of staircases
 
Design of columns biaxial bending as per IS 456-2000
Design of columns  biaxial bending as per IS 456-2000Design of columns  biaxial bending as per IS 456-2000
Design of columns biaxial bending as per IS 456-2000
 
Rcc member design steps
Rcc member design stepsRcc member design steps
Rcc member design steps
 
Design of two-way slab
Design of two-way slabDesign of two-way slab
Design of two-way slab
 
Connection and Bracing
Connection and BracingConnection and Bracing
Connection and Bracing
 
Design highrise
Design highriseDesign highrise
Design highrise
 
Design of footing as per IS 456-2000
Design of footing as per IS 456-2000Design of footing as per IS 456-2000
Design of footing as per IS 456-2000
 
Framed structures
Framed structures Framed structures
Framed structures
 
Trusses
TrussesTrusses
Trusses
 
ANALYSIS OF SOFT STOREY FOR MULTI STORYED BUILDING IN ZONE-4
ANALYSIS OF SOFT STOREY FOR MULTI STORYED BUILDING IN ZONE-4ANALYSIS OF SOFT STOREY FOR MULTI STORYED BUILDING IN ZONE-4
ANALYSIS OF SOFT STOREY FOR MULTI STORYED BUILDING IN ZONE-4
 
Etabs notes-pdf
Etabs notes-pdfEtabs notes-pdf
Etabs notes-pdf
 
onw way slab design
onw way slab designonw way slab design
onw way slab design
 
Types of loads
Types of loadsTypes of loads
Types of loads
 
Design of tall buildings lecture-1-part-2-dr-shafiul-bari-sir
Design of tall buildings lecture-1-part-2-dr-shafiul-bari-sirDesign of tall buildings lecture-1-part-2-dr-shafiul-bari-sir
Design of tall buildings lecture-1-part-2-dr-shafiul-bari-sir
 
Flat slab design
Flat slab designFlat slab design
Flat slab design
 
Ductile detailing
Ductile detailingDuctile detailing
Ductile detailing
 
Rcc structure design by etabs (acecoms)
Rcc structure design by etabs (acecoms)Rcc structure design by etabs (acecoms)
Rcc structure design by etabs (acecoms)
 
Shear wall and its design guidelines
Shear wall and its design guidelinesShear wall and its design guidelines
Shear wall and its design guidelines
 
Basic structure
Basic structureBasic structure
Basic structure
 

Andere mochten auch

Horizontal Vessel Loading Calculation
 Horizontal Vessel Loading Calculation Horizontal Vessel Loading Calculation
Horizontal Vessel Loading CalculationFadhel AlMohammad
 
Stability of High-Rise Buildings
Stability of High-Rise BuildingsStability of High-Rise Buildings
Stability of High-Rise BuildingsAkash Waghani
 
Lateral stability of building structures
Lateral stability of building structuresLateral stability of building structures
Lateral stability of building structuresWolfgang Schueller
 
Civil Engineering (Beams,Columns)
Civil Engineering (Beams,Columns)Civil Engineering (Beams,Columns)
Civil Engineering (Beams,Columns)mbrsalman
 

Andere mochten auch (6)

Horizontal Vessel Loading Calculation
 Horizontal Vessel Loading Calculation Horizontal Vessel Loading Calculation
Horizontal Vessel Loading Calculation
 
Stability of High-Rise Buildings
Stability of High-Rise BuildingsStability of High-Rise Buildings
Stability of High-Rise Buildings
 
Chapter 16
Chapter 16Chapter 16
Chapter 16
 
Lateral stability of building structures
Lateral stability of building structuresLateral stability of building structures
Lateral stability of building structures
 
Tall buildings
Tall buildingsTall buildings
Tall buildings
 
Civil Engineering (Beams,Columns)
Civil Engineering (Beams,Columns)Civil Engineering (Beams,Columns)
Civil Engineering (Beams,Columns)
 

Ähnlich wie Lateral load resisting systems

Robust Control of Rotor/AMB Systems
Robust Control of Rotor/AMB SystemsRobust Control of Rotor/AMB Systems
Robust Control of Rotor/AMB SystemsSina Kuseyri
 
Analysis of floating structure by virtual supports
Analysis of floating structure by virtual supportsAnalysis of floating structure by virtual supports
Analysis of floating structure by virtual supportsHarsha Kumarasinghe
 
Lecture 3.pdf
Lecture 3.pdfLecture 3.pdf
Lecture 3.pdfYesuf3
 
Vigas continuas
Vigas continuasVigas continuas
Vigas continuasNoerCampos
 
Mass Spring Damper system.pptx
Mass Spring Damper system.pptxMass Spring Damper system.pptx
Mass Spring Damper system.pptxANURUPAa
 
Part 1_Recap and background.pdf
Part 1_Recap and background.pdfPart 1_Recap and background.pdf
Part 1_Recap and background.pdfSajawalNawaz5
 
Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Alessandro Palmeri
 
E_Presentation_slides_03_week.pdf
E_Presentation_slides_03_week.pdfE_Presentation_slides_03_week.pdf
E_Presentation_slides_03_week.pdfwtpqk87nxc
 
Robust Control of Rotor/AMB Systems
Robust Control of Rotor/AMB SystemsRobust Control of Rotor/AMB Systems
Robust Control of Rotor/AMB SystemsSina Kuseyri
 
lec3 Direct Stiffness Approach for Beams and Frames.ppt
lec3 Direct Stiffness Approach for Beams and Frames.pptlec3 Direct Stiffness Approach for Beams and Frames.ppt
lec3 Direct Stiffness Approach for Beams and Frames.pptShaheerRizwan1
 
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Hossam Shafiq II
 
MCE 4603 LO1 Handout 3-1(1).pptx
MCE 4603  LO1 Handout 3-1(1).pptxMCE 4603  LO1 Handout 3-1(1).pptx
MCE 4603 LO1 Handout 3-1(1).pptxSalmanHadi5
 
modelling_mechanical.pptx
modelling_mechanical.pptxmodelling_mechanical.pptx
modelling_mechanical.pptxPeace80
 
Presentation1.pdf
Presentation1.pdfPresentation1.pdf
Presentation1.pdfmannimalik
 
Static and Kinematic Indeterminacy of Structure.
Static and Kinematic Indeterminacy of Structure.Static and Kinematic Indeterminacy of Structure.
Static and Kinematic Indeterminacy of Structure.Pritesh Parmar
 
Advanced Structural Analysis.ppt
Advanced Structural Analysis.pptAdvanced Structural Analysis.ppt
Advanced Structural Analysis.pptSudiptaKolay2
 

Ähnlich wie Lateral load resisting systems (20)

Beams
BeamsBeams
Beams
 
Robust Control of Rotor/AMB Systems
Robust Control of Rotor/AMB SystemsRobust Control of Rotor/AMB Systems
Robust Control of Rotor/AMB Systems
 
Analysis of floating structure by virtual supports
Analysis of floating structure by virtual supportsAnalysis of floating structure by virtual supports
Analysis of floating structure by virtual supports
 
Lecture 3.pdf
Lecture 3.pdfLecture 3.pdf
Lecture 3.pdf
 
Vigas continuas
Vigas continuasVigas continuas
Vigas continuas
 
The_Two_Towers
The_Two_TowersThe_Two_Towers
The_Two_Towers
 
Mass Spring Damper system.pptx
Mass Spring Damper system.pptxMass Spring Damper system.pptx
Mass Spring Damper system.pptx
 
Part 1_Recap and background.pdf
Part 1_Recap and background.pdfPart 1_Recap and background.pdf
Part 1_Recap and background.pdf
 
Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)
 
E_Presentation_slides_03_week.pdf
E_Presentation_slides_03_week.pdfE_Presentation_slides_03_week.pdf
E_Presentation_slides_03_week.pdf
 
Robust Control of Rotor/AMB Systems
Robust Control of Rotor/AMB SystemsRobust Control of Rotor/AMB Systems
Robust Control of Rotor/AMB Systems
 
Structures and Materials- Section 1 Statics
Structures and Materials- Section 1 StaticsStructures and Materials- Section 1 Statics
Structures and Materials- Section 1 Statics
 
lec3 Direct Stiffness Approach for Beams and Frames.ppt
lec3 Direct Stiffness Approach for Beams and Frames.pptlec3 Direct Stiffness Approach for Beams and Frames.ppt
lec3 Direct Stiffness Approach for Beams and Frames.ppt
 
Mohr circle
Mohr circleMohr circle
Mohr circle
 
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
 
MCE 4603 LO1 Handout 3-1(1).pptx
MCE 4603  LO1 Handout 3-1(1).pptxMCE 4603  LO1 Handout 3-1(1).pptx
MCE 4603 LO1 Handout 3-1(1).pptx
 
modelling_mechanical.pptx
modelling_mechanical.pptxmodelling_mechanical.pptx
modelling_mechanical.pptx
 
Presentation1.pdf
Presentation1.pdfPresentation1.pdf
Presentation1.pdf
 
Static and Kinematic Indeterminacy of Structure.
Static and Kinematic Indeterminacy of Structure.Static and Kinematic Indeterminacy of Structure.
Static and Kinematic Indeterminacy of Structure.
 
Advanced Structural Analysis.ppt
Advanced Structural Analysis.pptAdvanced Structural Analysis.ppt
Advanced Structural Analysis.ppt
 

Kürzlich hochgeladen

2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.elesangwon
 
11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdf11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdfHafizMudaserAhmad
 
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmComputer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmDeepika Walanjkar
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONjhunlian
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptJohnWilliam111370
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfBalamuruganV28
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfPaper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfNainaShrivastava14
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSneha Padhiar
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating SystemRashmi Bhat
 
Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionSneha Padhiar
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communicationpanditadesh123
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Erbil Polytechnic University
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...Erbil Polytechnic University
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Romil Mishra
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxRomil Mishra
 
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESCME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESkarthi keyan
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSsandhya757531
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Sumanth A
 

Kürzlich hochgeladen (20)

2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
 
11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdf11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdf
 
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmComputer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdf
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfPaper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating System
 
Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based question
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communication
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptx
 
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESCME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
 

Lateral load resisting systems

  • 1. Lateral load Resisting Systems Dr. Ahmed Tarabia High rise concrete building, 3rd Civil Spring 2015
  • 2. ‫الجانبية‬ ‫لالحمال‬ ‫المقاومة‬ ‫االنظمة‬ ‫انواع‬ •‫المقاومة‬ ‫االطارات‬‫للعزوم‬: ‫الكمرات‬ ‫و‬ ‫األعمدة‬ ‫من‬ ‫تتكون‬‫الخرسانية‬. •‫حوائط‬‫الحوائط‬ ‫أو‬ ‫القص‬‫االنشائية‬. •‫المركبة‬ ‫االنظمة‬: ‫االطارات‬ ‫من‬ ‫مجموعة‬ ‫من‬ ‫تتكون‬+‫القص‬ ‫حوائط‬.
  • 3. OBJECTIVES • 1- Rigidity center definition, how to locate it? • 2- Lateral Load Resisting Systems In Each Direction. • 3-How To Distribute Lateral Loads Between Lateral Load Resisting Systems In Each Lateral Direction. (Relative rigidity method)
  • 4. General rules • A system or more should be provided in each direction of the principal directions. • These systems should be able to resist the lateral loads. Check: (Drift-moment-Shear-Stability)
  • 8. Shear wall system    
  • 10. ‫الجساءة‬ ‫مركز‬Center of Rigidity •‫المستوي‬ ‫في‬ ‫جسئ‬ ‫كسطح‬ ‫تتحرك‬ ‫دور‬ ‫كل‬ ‫بالطة‬ ‫أن‬ ‫افتراض‬ •‫مركز‬‫أثر‬ ‫اذا‬ ‫الدور‬ ‫مستوى‬ ‫فى‬ ‫افتراضية‬ ‫نقطة‬ ‫هو‬ ‫الجساءة‬ ‫انتقالية‬ ‫حركة‬ ‫جسئ‬ ‫كجسم‬ ‫المستوي‬ ‫يتحرك‬ ‫فيها‬ ‫الجانبية‬ ‫القوة‬ ‫المؤثرة‬ ‫القوة‬ ‫اتجاه‬ ‫في‬‫بدون‬‫حدوث‬‫دوران‬. •‫انتقالية‬ ‫حركة‬ ‫يحدث‬ ‫آخر‬ ‫مكان‬ ‫اي‬ ‫في‬ ‫القوة‬ ‫أثرت‬ ‫اذا‬ ‫و‬ ‫التواء‬ ‫عزم‬ ‫لوجود‬ ‫نتيجة‬ ‫دوران‬ ‫حدوث‬ ‫مع‬ ‫للمستوي‬.
  • 12. ‫الثانية‬ ‫الحالة‬:‫الجساءة‬ ‫مركز‬ ‫خارج‬ ‫تؤثر‬ ‫القوة‬
  • 13. ‫الجساءة‬ ‫مركز‬ ‫تحديد‬Xo , Yo •‫اتجاه‬ ‫لكل‬ ‫المقاومة‬ ‫عناصر‬ ‫تحديد‬ ‫يتم‬. •‫حساب‬ ‫يتم‬Ieffective‫ألخذ‬‫بالقطاعات‬ ‫التشريخ‬ ‫تاثير‬‫الخرسانية‬: How to find the inertia of the lateral resisting system •‫محور‬ ‫حول‬ ‫الجساءات‬ ‫عزوم‬ ‫باستخدام‬ ‫الجساءة‬ ‫مركز‬ ‫تحديد‬ ‫يتم‬X &Y ‫اآلتية‬ ‫المعادالت‬ ‫طريق‬ ‫عن‬ ‫مكان‬ ‫أس‬ ‫في‬ ‫فرضهم‬ ‫يتم‬ ‫و‬:
  • 14. ‫محور‬ ‫حول‬ ‫الجساءات‬ ‫عزوم‬ ‫باستخدام‬X &Y‫اآلتية‬ ‫المعادالت‬ ‫طريق‬ ‫عن‬: ‫محور‬ ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫المقاومة‬ ‫لعناصر‬X: ‫محور‬ ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫المقاومة‬ ‫لعناصر‬Y: nx Number of lateral load resisting systems in X direction ny Number of lateral load resisting systems in X direction
  • 18. In the case of symmetry of lateral load resisting system Ey=0.0 Force 3C C.R. 1C1C C2 Y X A B C 1 2 3 3 2 1 CBA B12C 2C 2CC1 C1
  • 19. Step 2: • Transfer axes systems to the rigidity center. Y C.R.
  • 20. Distribution of lateral forces •-‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬FY‫اتجاه‬ ‫في‬Y: • For each Y-direction resisting elements: • For each X-direction resisting elements: )y*(I)x*(I .XI .eF I I F=F 2 j 1 yj 2 j 1 xj ixi xy 1 xj xi yyi     nx j ny j ny j )y*(I)x*(I .yI .eF=F 2 j 1 yj 2 j 1 xj iyi xyxi     nx j ny j
  • 21. -‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬FY‫اتجاه‬ ‫في‬Y: Then, For Y-direction resisting elements:   ny 1j xj xi yyi I I .F=F 0.0eif y 
  • 22. •-‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬F x‫اتجاه‬ ‫في‬X: • For X-direction resisting elements: • For Y-direction resisting elements: )y*(I)x*(I .YI .eF I I F=F 2 j 1 yj 2 j 1 xj iyi yx 1 yj yi xxi     nx j ny j nx j )y*(I)x*(I .xI .eF=F 2 j 1 yj 2 j 1 xj ixi yxyi     nx j ny j
  • 23. -‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬F x‫اتجاه‬ ‫في‬:X For X-direction resisting elements:   nx j yj 1 yi xxi I I .F=F 0.0eif x 
  • 24. Example #1 Force 3C C.R. 1C1C C2 Y X A B C 1 2 3 3 2 1 CBA B12C 2C 2CC1 C1
  • 25. Lateral load resisting systems • X ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫األحمال‬ ‫لمقاومة‬ ‫االنشائي‬ ‫النظام‬ • a- The frames on axis (1-1), (2-2) and (3-3). • Y ‫اتجاه‬ ‫فى‬ ‫االنشائي‬ ‫النظام‬ ‫يتكون‬ ‫و‬ • a- The frames on axis (A-A), (B-B) and (C-C). • ‫تأثير‬ ‫نتيجة‬ ‫االنشائية‬ ‫العناصر‬ ‫جميع‬ ‫نصيب‬ ‫احسب‬‫الحمل‬ ‫هذا‬.
  • 26. The sections of C1 600mm x800mm The sections of C2 800mm x1000mm and The section of C3 is 1000mm x 1000mm. 4 3 y:1 0179.0 12 0.8x0.6 x0.7ICfor m Find effective inertia-1 4 3 y 0467.0 12 1.0x0.8 x0.7I:C2For m 4 3 y3 0583.0 12 1.0x1.0 x0.7I:CFor m
  • 27. 2-Find the Centre of Rigidity: Because the lateral load resisting systems are symmetric in X and Y directions, the center of rigidity is located in the center of the two systems. - Transfer axes system to the center of rigidity
  • 29. 3 - Load distribution: In this example, a load in X-direction =Fx is acting at the mid-point of the floor. We need to find the share of each resisting system of this load using the following equations. Because ey=0.0, then: "For X-dir. resisting element"   nx j 1 yj yi xxi I I F=F
  • 30. System in Section Iy Yi Fx Fx/frame X-direction (m x m) (m4) (m) Frame (1-1) .8*.6 0.0179 3 0.05652 0.2601.0*0.80 0.0467 3 0.147458 .8*.6 0.0179 3 0.05652 Frame (2-2) 1.0*0.80 0.0467 0 0.147458 0.481.0*1.0 0.0583 0 0.184086 1.0*0.80 0.0467 0 0.147458 Frame (3-3) .8*.6 0.0179 -3 0.05652 0.2601.0*0.80 0.0467 -3 0.147458 .8*.6 0.0179 -3 0.05652 SUM 0.3167 1 1
  • 31. Distribution of lateral loads on frames
  • 32. Frame#3 Frame #2 Frame #1 C1 1C1C C2C2 B1 A B C 1 2 33 2 1 CBA X Y 2CC1 C1 C3Fx Frame#4 Example #2
  • 33. Data of the problem: The sections of C1 600mm x800mm The sections of C2 800mm x1000mm and The section of C3 1000mm x 1000mm. X ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫األحمال‬ ‫لمقاومة‬ ‫االنشائي‬ ‫النظام‬ a- The frames on axis (2-2) and (3-3). Y ‫اتجاه‬ ‫فى‬ ‫االنشائي‬ ‫النظام‬ ‫يتكون‬ ‫و‬ a- The frames on axis (A-A), and (C-C). FX kN ‫تأث‬ ‫نتيجة‬ ‫االنشائية‬ ‫العناصر‬ ‫جميع‬ ‫نصيب‬ ‫احسب‬‫الحمل‬ ‫هذا‬ ‫ير‬.
  • 35. Frame #2 Frame #1 C2C2 B1 X Y 2CC1 C1 C3Force Frame#4 Frame#3 1C1C C2C2 X Y C1 C1 Fx X ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫األحمال‬ ‫لمقاومة‬ ‫االنشائي‬ ‫النظام‬ Y‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫األحمال‬ ‫لمقاومة‬ ‫االنشائي‬ ‫النظام‬
  • 36. Find the Centre of Rigidity:-2 System in Col. Section Ix Xi Ix . Xi Y-direction (m x m) (m4) (m) Frame (A-A) 0.8x0.60 0.01 0 0 1.0x0.80 0.03 0 0 0.8x0.60 0.0583 0 0 Frame (C-C) 0.8x0.60 0.01 6 0.06 1.0x0.80 0.03 6 0.18 0.8x0.60 0.0583 6 0.3498 SUM 0.1966 0.5898 A- Find Xo m I XI y y n i ix n i ixi 0.3 1966.0 5898. =X 1 1 o      Assume that the X axis is axis (3-3) and the Y axis is axis (A-A)
  • 37. System in Col. Section Iy Yi Iy . Yi X-direction (m x m) (m4) (m) Frame (1-1) 0.8x0.60 0.0179 0 0 1.0x0.80 0.0467 0 0 0.8x0.60 0.0179 0 0 Frame (2-2) 1.0x0.80 0.0467 3 0.1401 1.0x1.00 0.0583 3 0.1749 1.0x0.80 0.0467 3 0.1401 SUM 0.2342 0.4551 m I YI x x n i yi n i iyi 1.94 233.0 455.0 =Y 1 1 o      B- Find Yo
  • 38. 3C 1C1C C2 B12C 2C C1 C11C Frame #1 Frame #2Frame#3 Frame#3 C.R. Force Y X ex=0.0 and ey = 3.0 – 1.94 = 1.06 m - M = Fx . ey = Fx . (1.06)
  • 39. •-‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬X‫و‬F x • For X-direction resisting elements: • For Y-direction resisting elements: )y*(I)x*(I .YI .eF I I F=F 2 j 1 yj 2 j 1 xj iyi yx 1 yj yi xxi     nx j ny j nx j )y*(I)x*(I .xI .eF=F 2 j 1 yj 2 j 1 xj ixi yxyi     nx j ny j
  • 40. System in Section Iy Yi Iy . Yi 2 Iy . Yi Fx' Fx" Fx/ column Fx/ frameX- directio n (m x m) (m4) (m) Frame (1-1) 0.8x0.60 0.0179 -1.94 0.0674 -0.0347 0.0764 -0.027 0.050 0.231.0x0.80 0.0467 -1.94 0.1758 -0.0906 0.1994 -0.070 0.130 0.8x0.60 0.0179 -1.94 0.0674 -0.0347 0.0764 -0.027 0.050 Frame (2-2) 1.0x0.80 0.0467 1.06 0.0525 0.0495 0.1994 0.038 0.237 0.771.0x1.00 0.0583 1.06 0.0655 0.0618 0.2489 0.047 0.296 1.0x0.80 0.0467 1.06 0.0525 0.0495 0.1994 0.038 0.237 SUM 0.2342 0.4809 1.0000 0.00 1.00 1.00 3 – find the values of [Iy. Yi 2 ] in the X - direction
  • 41. System in Section Ix Xi Ix. Xi 2 Ix. Xi Fy' Fy" Fy/ column Fy/ Frame Y-direction (m x m) (m4) (m) Frame (A-A) 0.8x0.60 0.01008 -3 0.0907 -0.0302 0.0000 0.023 0.023 0.121.0x0.8 0.02987 -3 0.2688 -0.0896 0.0000 0.069 0.069 0.8x0.6 0.01008 -3 0.0907 -0.0302 0.0000 0.023 0.023 Frame (C-C) 0.8x0.6 0.01008 3 0.0907 0.0302 0.0000 -0.023 -0.023 -0.121.0x0.8 0.02987 3 0.2688 0.0896 0.0000 -0.069 -0.069 0.8x0.6 0.01008 3 0.0907 0.0302 0.0000 -0.023 -0.023 SUM 0.1001 0.9005 0.0000 0.0000 0.0000 0.0000 0.0000 4– Calculate the values of [Ix. Xi 2 ] in the Y - direction
  • 42. - The share of Frame (1-1) = 0.23 Fx - The share of Frame (2-2) = 0.77 Fx - The share of Frame (A-A) = 0.12 Fx - The share of Frame (C-C = -0.12 Fx
  • 43. .12Fx .12Fx C1 .23 Fx .77 Fx Fx 3C 1C1C C2 Y X B12C 2C Frame #1 Frame #2 Distribution of lateral loads on frames