SlideShare ist ein Scribd-Unternehmen logo
1 von 32
Downloaden Sie, um offline zu lesen
TCA Cycle
Gandham.Rajeev
TCA Cycle
 Also known as Krebs cycle
 TCA cycle essentially involves the oxidation of
acetyl CoA to CO2 and H2O.
 TCA cycle –the central metabolic pathway
 The TCA cycle is the final common oxidative
pathway for carbohydrates, fats, amino acids.
 TCA cycle supplies energy & also provides many
intermediates required for the synthesis of amino
acids, glucose, heme etc.
 TCA cycle is the most important central pathway
connecting almost all the individual metabolic
pathways.
 Definition
 Citric acid cycle or TCA cycle or tricarboxylic acid
cycle essentially involves the oxidation of acetyl
CoA to CO2 & H2O.
 Location of the TCA cycle
 Reactions of occur in mitochondrial matrix, in
close proximity to the ETC.
Reactions of TCA cycle
 Oxidative decarboxylation of pyruvate to acetyl
CoA by PDH complex.
 This step is connecting link between glycolysis and
TCA cycle.
Reactions of TCA Cycle
 Step:1 Formation of citrate
 Oxaloacetate condenses with acetyl CoA to form
Citrate, catalysed by the enzyme citrate synthase
 Inhibited by:
 ATP, NADH, Citrate - competitive inhibitor of
oxaloacetate.
Steps 2 & 3 Citrate is isomerized to isocitrate
 Citrate is isomerized to isocitrate by the enzyme
aconitase
 This is achieved in a two stage reaction of
dehydration followed by hydration through the
formation of an intermediate -cis-aconiase
Steps 4 & 5 Formation of -ketoglutarate
 Isocitrate dehydrogenase (ICDH) catalyses the
conversion of (oxidative decarboxylation) of isocitrate
to oxalosuccinate & then to -ketoglutarate.
 The formation of NADH & the liberation of CO2
occure at this stage.
 Stimulated (cooperative) by isocitrate, NAD+, Mg2+,
ADP, Ca2+ (links with contraction).
 Inhibited by NADH & ATP
Step: 6 Conversion of -ketoglutarate to
succinyl CoA
 Occurs through oxidative decarboxylation,
catalysed by -ketoglutarate dehydrogenase
complex.
 -ketoglutarate dehydrogenase is an multienzyme
complex.
 At this stage of TCA cycle, second NADH is
produced & the second CO2 is liberated.
Step: 7 Formation of succinate
 Succinyl CoA is converted to succinate by
succinate thiokinase.
 This reaction is coupled with the phosphorylation
of GDP to GTP.
 This is a substrate level phosphorylation.
 GTP is converted to ATP by the enzyme nucleoside
diphosphate kinase.
Step: 8 Conversion of succinate to fumarate
 Succinate is oxidized by succinate dehydrogenase
to fumarate.
 This reaction results in the production of FADH2.
 Step: 9 Formation of malate: The enzyme
fumarase catalyses the conversion of fumarate to
malate with the addition of H2O.
Step:10 Conversion of malate to
oxaloacetate
 Malate is then oxidized to oxaloacetate by malate
dehydrogenase.
 The third & final synthesis of NADH occurs at this
stage.
 The oxaloacetate is regenerated which can
combine with another molecule of acetyl CoA &
continue the cycle.
Pyruvate
Acetyl CoA
Citrate
Cis-Aconitase
Iso-citrate
Oxalosuccinate
ɑ-Ketoglutarate
Succinyl CoA
Succinate
Fumarate
Malate
Oxaloacatete
PDH
CO2, NADH + H+
NAD+
NADH + H+
NAD+
CO2, NADH + H+
NAD+
GDP+Pi
GTP
FADH2
FAD
- H2O
NADH + H+
NAD+
Citrate
synthase
Aconitase
Aconitase
SDH
Fumarase
TCA
From: Summerlin LR (1981) Chemistry for the Life Sciences. New York: Random House p 550.
Regeneration of oxaloacetate
 The TCA cycle basically involves the oxidation of
acetyl CoA to CO2 with the simultaneous
regeneration of oxaloacetate.
 There is no net consumption of oxaloacetate or any
other intermediate in the cycle.
Significance of TCA cycle
 Complete oxidation of acetyl CoA.
 ATP generation.
 Final common oxidative pathway.
 Integration of major metabolic pathways.
 Fat is burned on the wick of carbohydrates.
 Excess carbohydrates are converted as neutral fat
 No net synthesis of carbohydrates from fat.
 Carbon skeleton of amino acids finally enter the TCA cycle.
Requirement of O2 by TCA cycle
 There is no direct participation of O2 in TCA cycle.
 Operates only under aerobic conditions.
 This is due to, NAD+ & FAD required for the
operation of the cycle can be regenerated in the
respiratory chain only in presence of O2.
 Therefore, citric acid cycle is strictly aerobic.
Energetics of TCA Cycle
 Oxidation of 3 NADH by ETC coupled with
oxidative phosphorylation results in the synthesis of
9ATP.
 FADH2 leads to the formation of 2ATP.
 One substrate level phosphorylation.
 Thus, a total of 12 ATP are produced from one
acetyl CoA.
TCA CYCLE & ITS REGULATION
TCA CYCLE & ITS REGULATION
Regulation of TCA Cycle
 Three regulatory enzymes
1. Citrate synthase
2. Isocitrate dehydrogenase
3.α-ketoglutarate dehydrogenase
 Citrate synthase is inhibited by ATP, NADH, acyl
CoA & succinyl CoA.
 Isocitrate dehydrogenase is activated by ADP &
inhibited by ATP and NADH
 α-ketoglutarate dehydrogenase is inhibited by
succinyl CoA & NADH.
 Availability of ADP is very important for TCA
cycle to proceed.
Inhibitors of TCA Cycle
 Aconitase is inhibited by fluoro-acetate.
 This is a non-competitive inhibition.
 Alpha ketoglutarate is inhibited by Arsenite.
 This is also a non-competitive.
 Succinate dehydrogenase is inhibited by malonate.
 This is competitive inhibition.
Amphibolic nature of the TCA cycle
 TCA cycle is both catabolic & anabolic in nature,
called as amphibolic.
 Since various compounds enter into or leave from
TCA cycle, it is sometimes called as metabolic traffic
circle.
Important anabolic reactions of TCA cycle
 Oxaloacetate is precursor for aspartate.
 α-ketoglutarate can be transaminated to
glutamate.
 Succinyl CoA is used for synthesis of heme.
 Mitochondrial citrate is transported to cytoplasm
& it is cleaved into acetyl CoA to provide
substrate for fatty acid synthesis.
Anaplerosis or anaplerotic reactions
 The reactions concerned to replenish or to fill up
the intermediates of citric acid cycle are called
anaplerotic reactions or Anaplerosis
Important anaplerotic reactions
 Pyruvate carboxylase catalyses conversion of
pyruvate to oxaloacetate.
 This is an ATP dependent carboxylation reaction.
Pyruvate+CO2+ATP Oxaloacetate + ADP + Pi
• Pyruvate is converted to malate by NADP+
dependent malate dehydrogenase (malic enzyme).
Pyruvate + CO2 + NADPH + H+
malate + NADPH + H2O
 α- ketoglutarate can also be synthesized from
glutamate by glutamate dehydrogenase.
Glutamate + NAD(P) + H2O α-
ketoglutarate +NAD(P)H + H+ + NH4
+
Transamination
 Transamination is a process where an amino acid
transfers its amino group to a keto group and itself
gets converted to a keto acid.
 The formation of Alpha ketoglutarate &
oxaloacetate occures by this mechanism.
References
 Textbook of Biochemistry-U Satyanarayana
 Textbook of Biochemistry- DM Vasudevan
Thank You

Weitere ähnliche Inhalte

Was ist angesagt?

GLUCONEOGENESIS & ITS REGULATION
GLUCONEOGENESIS & ITS REGULATIONGLUCONEOGENESIS & ITS REGULATION
GLUCONEOGENESIS & ITS REGULATIONYESANNA
 
Beta-oxidation of fatty acids
Beta-oxidation of fatty acidsBeta-oxidation of fatty acids
Beta-oxidation of fatty acidsYESANNA
 
Hexose Monophosphate Shunt
Hexose Monophosphate ShuntHexose Monophosphate Shunt
Hexose Monophosphate ShuntAshok Katta
 
Absorption of carbohydrates ppt
Absorption of carbohydrates pptAbsorption of carbohydrates ppt
Absorption of carbohydrates pptIbad khan
 
Basal metabolic rate
Basal metabolic rateBasal metabolic rate
Basal metabolic rateNiaz Ahammed
 
Electron transport chain
Electron transport chainElectron transport chain
Electron transport chainSurender Rawat
 
Enzyme inhibition AND ITS TYPES
Enzyme inhibition AND ITS TYPES Enzyme inhibition AND ITS TYPES
Enzyme inhibition AND ITS TYPES Rajpal Choudhary
 
GLYCOGENOLYSIS & REGULATION OF GLYCOGEN METABOLISM
GLYCOGENOLYSIS & REGULATION OF GLYCOGEN METABOLISMGLYCOGENOLYSIS & REGULATION OF GLYCOGEN METABOLISM
GLYCOGENOLYSIS & REGULATION OF GLYCOGEN METABOLISMYESANNA
 
Citric Acid Cycle
Citric Acid CycleCitric Acid Cycle
Citric Acid CycleAshok Katta
 
Classification of enzymes
Classification of enzymesClassification of enzymes
Classification of enzymesRakhi Adarsh
 
Definitions and types of coenzymes
Definitions and types of coenzymesDefinitions and types of coenzymes
Definitions and types of coenzymesJasmineJuliet
 
Metabolism of protein
Metabolism of protein Metabolism of protein
Metabolism of protein enamifat
 
Enzymes definitions, types & classification
Enzymes   definitions, types & classificationEnzymes   definitions, types & classification
Enzymes definitions, types & classificationJasmineJuliet
 
Pentose phosphate pathway,hmp shunt
Pentose phosphate pathway,hmp shuntPentose phosphate pathway,hmp shunt
Pentose phosphate pathway,hmp shuntSijo A
 

Was ist angesagt? (20)

GLUCONEOGENESIS & ITS REGULATION
GLUCONEOGENESIS & ITS REGULATIONGLUCONEOGENESIS & ITS REGULATION
GLUCONEOGENESIS & ITS REGULATION
 
Glycolysis
GlycolysisGlycolysis
Glycolysis
 
Urea cycle
Urea cycleUrea cycle
Urea cycle
 
Beta-oxidation of fatty acids
Beta-oxidation of fatty acidsBeta-oxidation of fatty acids
Beta-oxidation of fatty acids
 
Hexose Monophosphate Shunt
Hexose Monophosphate ShuntHexose Monophosphate Shunt
Hexose Monophosphate Shunt
 
Enzyme classification
Enzyme classificationEnzyme classification
Enzyme classification
 
Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
 
Absorption of carbohydrates ppt
Absorption of carbohydrates pptAbsorption of carbohydrates ppt
Absorption of carbohydrates ppt
 
Basal metabolic rate
Basal metabolic rateBasal metabolic rate
Basal metabolic rate
 
Phospholipids
PhospholipidsPhospholipids
Phospholipids
 
Electron transport chain
Electron transport chainElectron transport chain
Electron transport chain
 
Enzyme inhibition AND ITS TYPES
Enzyme inhibition AND ITS TYPES Enzyme inhibition AND ITS TYPES
Enzyme inhibition AND ITS TYPES
 
GLYCOGENOLYSIS & REGULATION OF GLYCOGEN METABOLISM
GLYCOGENOLYSIS & REGULATION OF GLYCOGEN METABOLISMGLYCOGENOLYSIS & REGULATION OF GLYCOGEN METABOLISM
GLYCOGENOLYSIS & REGULATION OF GLYCOGEN METABOLISM
 
Citric Acid Cycle
Citric Acid CycleCitric Acid Cycle
Citric Acid Cycle
 
Classification of enzymes
Classification of enzymesClassification of enzymes
Classification of enzymes
 
Definitions and types of coenzymes
Definitions and types of coenzymesDefinitions and types of coenzymes
Definitions and types of coenzymes
 
Metabolism of protein
Metabolism of protein Metabolism of protein
Metabolism of protein
 
Enzymes Biochemistry
Enzymes BiochemistryEnzymes Biochemistry
Enzymes Biochemistry
 
Enzymes definitions, types & classification
Enzymes   definitions, types & classificationEnzymes   definitions, types & classification
Enzymes definitions, types & classification
 
Pentose phosphate pathway,hmp shunt
Pentose phosphate pathway,hmp shuntPentose phosphate pathway,hmp shunt
Pentose phosphate pathway,hmp shunt
 

Andere mochten auch

TCA cycle- steps, regulation and significance
TCA cycle- steps, regulation and significanceTCA cycle- steps, regulation and significance
TCA cycle- steps, regulation and significanceNamrata Chhabra
 
Physiology ANS
Physiology ANSPhysiology ANS
Physiology ANSMed Study
 
Carbohydrate metabolism, part 1
Carbohydrate metabolism, part 1Carbohydrate metabolism, part 1
Carbohydrate metabolism, part 1enamifat
 
Carbohydrate metabolism
Carbohydrate  metabolismCarbohydrate  metabolism
Carbohydrate metabolismSANA DANISH
 
Lipid200 structure and function
Lipid200 structure and functionLipid200 structure and function
Lipid200 structure and functionOheneba Hagan
 
GLYCOLYSIS & ITS REGULATION
GLYCOLYSIS & ITS REGULATIONGLYCOLYSIS & ITS REGULATION
GLYCOLYSIS & ITS REGULATIONYESANNA
 
Lipids Chemistry Structure & Function
Lipids Chemistry Structure & FunctionLipids Chemistry Structure & Function
Lipids Chemistry Structure & Functionhafizayyub
 
Carbohydrate Metabolism - Biochemistry
Carbohydrate Metabolism - BiochemistryCarbohydrate Metabolism - Biochemistry
Carbohydrate Metabolism - BiochemistryCU Dentistry 2019
 
Main lecture for lipids
Main lecture for lipidsMain lecture for lipids
Main lecture for lipidsLheanne Tesoro
 
Lipid functions
Lipid functionsLipid functions
Lipid functionshina amir
 
Carbohydrate Metabolism
Carbohydrate MetabolismCarbohydrate Metabolism
Carbohydrate Metabolismdluetgens
 
Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolismHaseeb Quadri
 
Neurotransmitters
NeurotransmittersNeurotransmitters
Neurotransmittersdamarisb
 
Presentation on lipid
Presentation on lipidPresentation on lipid
Presentation on lipidssshruti
 

Andere mochten auch (20)

TCA cycle
TCA cycleTCA cycle
TCA cycle
 
Lipid chemistry
Lipid chemistryLipid chemistry
Lipid chemistry
 
TCA cycle- steps, regulation and significance
TCA cycle- steps, regulation and significanceTCA cycle- steps, regulation and significance
TCA cycle- steps, regulation and significance
 
Physiology ANS
Physiology ANSPhysiology ANS
Physiology ANS
 
Autonomic Nervous System
Autonomic Nervous SystemAutonomic Nervous System
Autonomic Nervous System
 
Carbohydrate metabolism, part 1
Carbohydrate metabolism, part 1Carbohydrate metabolism, part 1
Carbohydrate metabolism, part 1
 
Carbohydrate metabolism
Carbohydrate  metabolismCarbohydrate  metabolism
Carbohydrate metabolism
 
Lipid200 structure and function
Lipid200 structure and functionLipid200 structure and function
Lipid200 structure and function
 
GLYCOLYSIS & ITS REGULATION
GLYCOLYSIS & ITS REGULATIONGLYCOLYSIS & ITS REGULATION
GLYCOLYSIS & ITS REGULATION
 
Lipids Chemistry Structure & Function
Lipids Chemistry Structure & FunctionLipids Chemistry Structure & Function
Lipids Chemistry Structure & Function
 
Carbohydrate Metabolism - Biochemistry
Carbohydrate Metabolism - BiochemistryCarbohydrate Metabolism - Biochemistry
Carbohydrate Metabolism - Biochemistry
 
Main lecture for lipids
Main lecture for lipidsMain lecture for lipids
Main lecture for lipids
 
Lipid functions
Lipid functionsLipid functions
Lipid functions
 
Carbohydrate Metabolism
Carbohydrate MetabolismCarbohydrate Metabolism
Carbohydrate Metabolism
 
Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
 
Fatty acid oxidation
Fatty acid oxidationFatty acid oxidation
Fatty acid oxidation
 
Classification of lipids
Classification of lipidsClassification of lipids
Classification of lipids
 
Neurotransmitters
NeurotransmittersNeurotransmitters
Neurotransmitters
 
Presentation on lipid
Presentation on lipidPresentation on lipid
Presentation on lipid
 
Carbohydrates
CarbohydratesCarbohydrates
Carbohydrates
 

Ähnlich wie TCA CYCLE & ITS REGULATION

Krebs cycle- significance,steps,energetics,inhibitors,amphibolic
Krebs cycle- significance,steps,energetics,inhibitors,amphibolicKrebs cycle- significance,steps,energetics,inhibitors,amphibolic
Krebs cycle- significance,steps,energetics,inhibitors,amphibolicsalehadastgir
 
TCA cycle/Krebs cycle/Citric acid cycle
TCA cycle/Krebs cycle/Citric acid cycleTCA cycle/Krebs cycle/Citric acid cycle
TCA cycle/Krebs cycle/Citric acid cycleRoshanKumarMahat
 
Lec05 tc acycle
Lec05 tc acycleLec05 tc acycle
Lec05 tc acycledream10f
 
Krebs cycles or TCA cycles
Krebs cycles or TCA cyclesKrebs cycles or TCA cycles
Krebs cycles or TCA cyclesRavish Yadav
 
Tca cycle by shakthi sasmita (biochemist)
Tca cycle by  shakthi sasmita (biochemist)Tca cycle by  shakthi sasmita (biochemist)
Tca cycle by shakthi sasmita (biochemist)shakthi sasmita
 
TCA CYCLE AND ITS REGULATIONS
TCA CYCLE AND ITS REGULATIONSTCA CYCLE AND ITS REGULATIONS
TCA CYCLE AND ITS REGULATIONSDeepakMishan
 
Citric Acid Cycle | Krebs Cycle | TCA cycle
Citric Acid Cycle | Krebs Cycle | TCA cycleCitric Acid Cycle | Krebs Cycle | TCA cycle
Citric Acid Cycle | Krebs Cycle | TCA cyclekiransharma204
 
Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle - PDH and TCA
Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle - PDH and TCAPyruvate Dehydrogenase and Tricarboxylic Acid Cycle - PDH and TCA
Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle - PDH and TCAChetan Ganteppanavar
 
citric acid cycle -overview and process to know about
citric acid cycle -overview and process to know aboutcitric acid cycle -overview and process to know about
citric acid cycle -overview and process to know aboutvarinder kumar
 
Citric acid cycle (TCA cycle) by Dr. Anurag Yadav
Citric acid cycle (TCA cycle) by Dr. Anurag YadavCitric acid cycle (TCA cycle) by Dr. Anurag Yadav
Citric acid cycle (TCA cycle) by Dr. Anurag YadavDr Anurag Yadav
 
Krebs cycle/ TCA Cycle/ Citric Acid Cycle/ Tri Carboxylic Acid Cycle/ CAC
Krebs cycle/ TCA Cycle/ Citric Acid Cycle/ Tri Carboxylic Acid Cycle/ CACKrebs cycle/ TCA Cycle/ Citric Acid Cycle/ Tri Carboxylic Acid Cycle/ CAC
Krebs cycle/ TCA Cycle/ Citric Acid Cycle/ Tri Carboxylic Acid Cycle/ CACRajdip Majumder
 
Krebs cycle lec 5 6 audio 1
Krebs cycle lec 5 6 audio 1Krebs cycle lec 5 6 audio 1
Krebs cycle lec 5 6 audio 1mariagul6
 
Kreb's cycle (Citric acid cycle, TCA cycle)
Kreb's cycle (Citric acid cycle, TCA cycle)Kreb's cycle (Citric acid cycle, TCA cycle)
Kreb's cycle (Citric acid cycle, TCA cycle)Zuli Shingala
 

Ähnlich wie TCA CYCLE & ITS REGULATION (20)

Kerb's cycle.
Kerb's cycle.Kerb's cycle.
Kerb's cycle.
 
Krebs cycle
Krebs cycleKrebs cycle
Krebs cycle
 
Krebs cycle
Krebs cycleKrebs cycle
Krebs cycle
 
Krebs cycle
Krebs cycleKrebs cycle
Krebs cycle
 
Krebs cycle- significance,steps,energetics,inhibitors,amphibolic
Krebs cycle- significance,steps,energetics,inhibitors,amphibolicKrebs cycle- significance,steps,energetics,inhibitors,amphibolic
Krebs cycle- significance,steps,energetics,inhibitors,amphibolic
 
TCA cycle/Krebs cycle/Citric acid cycle
TCA cycle/Krebs cycle/Citric acid cycleTCA cycle/Krebs cycle/Citric acid cycle
TCA cycle/Krebs cycle/Citric acid cycle
 
Lec05 tc acycle
Lec05 tc acycleLec05 tc acycle
Lec05 tc acycle
 
TCA CYCLE.pptx
TCA CYCLE.pptxTCA CYCLE.pptx
TCA CYCLE.pptx
 
Krebs cycles or TCA cycles
Krebs cycles or TCA cyclesKrebs cycles or TCA cycles
Krebs cycles or TCA cycles
 
Tri-Carboxylic Acid (TCA) cycle
Tri-Carboxylic Acid (TCA) cycleTri-Carboxylic Acid (TCA) cycle
Tri-Carboxylic Acid (TCA) cycle
 
Tca cycle by shakthi sasmita (biochemist)
Tca cycle by  shakthi sasmita (biochemist)Tca cycle by  shakthi sasmita (biochemist)
Tca cycle by shakthi sasmita (biochemist)
 
TCA CYCLE AND ITS REGULATIONS
TCA CYCLE AND ITS REGULATIONSTCA CYCLE AND ITS REGULATIONS
TCA CYCLE AND ITS REGULATIONS
 
Citric Acid Cycle | Krebs Cycle | TCA cycle
Citric Acid Cycle | Krebs Cycle | TCA cycleCitric Acid Cycle | Krebs Cycle | TCA cycle
Citric Acid Cycle | Krebs Cycle | TCA cycle
 
Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle - PDH and TCA
Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle - PDH and TCAPyruvate Dehydrogenase and Tricarboxylic Acid Cycle - PDH and TCA
Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle - PDH and TCA
 
Tca cycle
Tca cycleTca cycle
Tca cycle
 
citric acid cycle -overview and process to know about
citric acid cycle -overview and process to know aboutcitric acid cycle -overview and process to know about
citric acid cycle -overview and process to know about
 
Citric acid cycle (TCA cycle) by Dr. Anurag Yadav
Citric acid cycle (TCA cycle) by Dr. Anurag YadavCitric acid cycle (TCA cycle) by Dr. Anurag Yadav
Citric acid cycle (TCA cycle) by Dr. Anurag Yadav
 
Krebs cycle/ TCA Cycle/ Citric Acid Cycle/ Tri Carboxylic Acid Cycle/ CAC
Krebs cycle/ TCA Cycle/ Citric Acid Cycle/ Tri Carboxylic Acid Cycle/ CACKrebs cycle/ TCA Cycle/ Citric Acid Cycle/ Tri Carboxylic Acid Cycle/ CAC
Krebs cycle/ TCA Cycle/ Citric Acid Cycle/ Tri Carboxylic Acid Cycle/ CAC
 
Krebs cycle lec 5 6 audio 1
Krebs cycle lec 5 6 audio 1Krebs cycle lec 5 6 audio 1
Krebs cycle lec 5 6 audio 1
 
Kreb's cycle (Citric acid cycle, TCA cycle)
Kreb's cycle (Citric acid cycle, TCA cycle)Kreb's cycle (Citric acid cycle, TCA cycle)
Kreb's cycle (Citric acid cycle, TCA cycle)
 

Mehr von YESANNA

PERICARDIAL FLUID
PERICARDIAL FLUIDPERICARDIAL FLUID
PERICARDIAL FLUIDYESANNA
 
SYNOVIAL FLUID
SYNOVIAL FLUID SYNOVIAL FLUID
SYNOVIAL FLUID YESANNA
 
ASCITIC FLUID ANALYSIS
ASCITIC FLUID ANALYSISASCITIC FLUID ANALYSIS
ASCITIC FLUID ANALYSISYESANNA
 
CEREBROSPINAL FLUID (CSF)
CEREBROSPINAL FLUID (CSF)CEREBROSPINAL FLUID (CSF)
CEREBROSPINAL FLUID (CSF)YESANNA
 
Oxidative Stress in Preeclampsia
Oxidative Stress in Preeclampsia Oxidative Stress in Preeclampsia
Oxidative Stress in Preeclampsia YESANNA
 
GANDHAM RAJEEV-BIOCHEMISTRY IMPORTANT QUESTIONS-RGUHS-2017
GANDHAM RAJEEV-BIOCHEMISTRY IMPORTANT QUESTIONS-RGUHS-2017GANDHAM RAJEEV-BIOCHEMISTRY IMPORTANT QUESTIONS-RGUHS-2017
GANDHAM RAJEEV-BIOCHEMISTRY IMPORTANT QUESTIONS-RGUHS-2017YESANNA
 
MINERALS-REVISION - 27-05-2017
MINERALS-REVISION - 27-05-2017MINERALS-REVISION - 27-05-2017
MINERALS-REVISION - 27-05-2017YESANNA
 
IRON METABOLISM
IRON METABOLISMIRON METABOLISM
IRON METABOLISMYESANNA
 
METABOLISM OF ZINC, MAGNESIUM & ELECTROLYTES
METABOLISM OF ZINC, MAGNESIUM & ELECTROLYTESMETABOLISM OF ZINC, MAGNESIUM & ELECTROLYTES
METABOLISM OF ZINC, MAGNESIUM & ELECTROLYTESYESANNA
 
METABOLISM OF SULFUR, IODINE, MANGANESE,FLUORINE & SELENIUM
METABOLISM OF SULFUR, IODINE, MANGANESE,FLUORINE & SELENIUMMETABOLISM OF SULFUR, IODINE, MANGANESE,FLUORINE & SELENIUM
METABOLISM OF SULFUR, IODINE, MANGANESE,FLUORINE & SELENIUMYESANNA
 
COPPER METABOLISM
COPPER METABOLISMCOPPER METABOLISM
COPPER METABOLISMYESANNA
 
MATABOLISM OF CALCIUM & PHOSPHOROUS
MATABOLISM OF CALCIUM & PHOSPHOROUSMATABOLISM OF CALCIUM & PHOSPHOROUS
MATABOLISM OF CALCIUM & PHOSPHOROUSYESANNA
 
RIBOFLAVIN (B2)
RIBOFLAVIN (B2)RIBOFLAVIN (B2)
RIBOFLAVIN (B2)YESANNA
 
NIACIN (B3)
NIACIN (B3)NIACIN (B3)
NIACIN (B3)YESANNA
 
VITAMIN LIKE COMPOUNDS
VITAMIN LIKE COMPOUNDS VITAMIN LIKE COMPOUNDS
VITAMIN LIKE COMPOUNDS YESANNA
 
VITAMIN C
VITAMIN CVITAMIN C
VITAMIN CYESANNA
 
COBALAMINE (12)
COBALAMINE (12) COBALAMINE (12)
COBALAMINE (12) YESANNA
 
FOLIC ACID (B9)
FOLIC ACID (B9)FOLIC ACID (B9)
FOLIC ACID (B9)YESANNA
 
BIOTIN (B7)
BIOTIN (B7)BIOTIN (B7)
BIOTIN (B7)YESANNA
 
PYRIDOXINE (B6)
PYRIDOXINE (B6)PYRIDOXINE (B6)
PYRIDOXINE (B6)YESANNA
 

Mehr von YESANNA (20)

PERICARDIAL FLUID
PERICARDIAL FLUIDPERICARDIAL FLUID
PERICARDIAL FLUID
 
SYNOVIAL FLUID
SYNOVIAL FLUID SYNOVIAL FLUID
SYNOVIAL FLUID
 
ASCITIC FLUID ANALYSIS
ASCITIC FLUID ANALYSISASCITIC FLUID ANALYSIS
ASCITIC FLUID ANALYSIS
 
CEREBROSPINAL FLUID (CSF)
CEREBROSPINAL FLUID (CSF)CEREBROSPINAL FLUID (CSF)
CEREBROSPINAL FLUID (CSF)
 
Oxidative Stress in Preeclampsia
Oxidative Stress in Preeclampsia Oxidative Stress in Preeclampsia
Oxidative Stress in Preeclampsia
 
GANDHAM RAJEEV-BIOCHEMISTRY IMPORTANT QUESTIONS-RGUHS-2017
GANDHAM RAJEEV-BIOCHEMISTRY IMPORTANT QUESTIONS-RGUHS-2017GANDHAM RAJEEV-BIOCHEMISTRY IMPORTANT QUESTIONS-RGUHS-2017
GANDHAM RAJEEV-BIOCHEMISTRY IMPORTANT QUESTIONS-RGUHS-2017
 
MINERALS-REVISION - 27-05-2017
MINERALS-REVISION - 27-05-2017MINERALS-REVISION - 27-05-2017
MINERALS-REVISION - 27-05-2017
 
IRON METABOLISM
IRON METABOLISMIRON METABOLISM
IRON METABOLISM
 
METABOLISM OF ZINC, MAGNESIUM & ELECTROLYTES
METABOLISM OF ZINC, MAGNESIUM & ELECTROLYTESMETABOLISM OF ZINC, MAGNESIUM & ELECTROLYTES
METABOLISM OF ZINC, MAGNESIUM & ELECTROLYTES
 
METABOLISM OF SULFUR, IODINE, MANGANESE,FLUORINE & SELENIUM
METABOLISM OF SULFUR, IODINE, MANGANESE,FLUORINE & SELENIUMMETABOLISM OF SULFUR, IODINE, MANGANESE,FLUORINE & SELENIUM
METABOLISM OF SULFUR, IODINE, MANGANESE,FLUORINE & SELENIUM
 
COPPER METABOLISM
COPPER METABOLISMCOPPER METABOLISM
COPPER METABOLISM
 
MATABOLISM OF CALCIUM & PHOSPHOROUS
MATABOLISM OF CALCIUM & PHOSPHOROUSMATABOLISM OF CALCIUM & PHOSPHOROUS
MATABOLISM OF CALCIUM & PHOSPHOROUS
 
RIBOFLAVIN (B2)
RIBOFLAVIN (B2)RIBOFLAVIN (B2)
RIBOFLAVIN (B2)
 
NIACIN (B3)
NIACIN (B3)NIACIN (B3)
NIACIN (B3)
 
VITAMIN LIKE COMPOUNDS
VITAMIN LIKE COMPOUNDS VITAMIN LIKE COMPOUNDS
VITAMIN LIKE COMPOUNDS
 
VITAMIN C
VITAMIN CVITAMIN C
VITAMIN C
 
COBALAMINE (12)
COBALAMINE (12) COBALAMINE (12)
COBALAMINE (12)
 
FOLIC ACID (B9)
FOLIC ACID (B9)FOLIC ACID (B9)
FOLIC ACID (B9)
 
BIOTIN (B7)
BIOTIN (B7)BIOTIN (B7)
BIOTIN (B7)
 
PYRIDOXINE (B6)
PYRIDOXINE (B6)PYRIDOXINE (B6)
PYRIDOXINE (B6)
 

Kürzlich hochgeladen

Clinical Research Informatics Year-in-Review 2024
Clinical Research Informatics Year-in-Review 2024Clinical Research Informatics Year-in-Review 2024
Clinical Research Informatics Year-in-Review 2024Peter Embi
 
SGK RỐI LOẠN KALI MÁU CỰC KỲ QUAN TRỌNG.pdf
SGK RỐI LOẠN KALI MÁU CỰC KỲ QUAN TRỌNG.pdfSGK RỐI LOẠN KALI MÁU CỰC KỲ QUAN TRỌNG.pdf
SGK RỐI LOẠN KALI MÁU CỰC KỲ QUAN TRỌNG.pdfHongBiThi1
 
SGK LEUKEMIA KINH DÒNG BẠCH CÂU HẠT HAY.pdf
SGK LEUKEMIA KINH DÒNG BẠCH CÂU HẠT HAY.pdfSGK LEUKEMIA KINH DÒNG BẠCH CÂU HẠT HAY.pdf
SGK LEUKEMIA KINH DÒNG BẠCH CÂU HẠT HAY.pdfHongBiThi1
 
ANATOMICAL FAETURES OF BONES FOR NURSING STUDENTS .pptx
ANATOMICAL FAETURES OF BONES  FOR NURSING STUDENTS .pptxANATOMICAL FAETURES OF BONES  FOR NURSING STUDENTS .pptx
ANATOMICAL FAETURES OF BONES FOR NURSING STUDENTS .pptxWINCY THIRUMURUGAN
 
Male Infertility Panel Discussion by Dr Sujoy Dasgupta
Male Infertility Panel Discussion by Dr Sujoy DasguptaMale Infertility Panel Discussion by Dr Sujoy Dasgupta
Male Infertility Panel Discussion by Dr Sujoy DasguptaSujoy Dasgupta
 
Basic structure of hair and hair growth cycle.pptx
Basic structure of hair and hair growth cycle.pptxBasic structure of hair and hair growth cycle.pptx
Basic structure of hair and hair growth cycle.pptxkomalt2001
 
SGK ĐIỆN GIẬT ĐHYHN RẤT LÀ HAY TUYỆT VỜI.pdf
SGK ĐIỆN GIẬT ĐHYHN        RẤT LÀ HAY TUYỆT VỜI.pdfSGK ĐIỆN GIẬT ĐHYHN        RẤT LÀ HAY TUYỆT VỜI.pdf
SGK ĐIỆN GIẬT ĐHYHN RẤT LÀ HAY TUYỆT VỜI.pdfHongBiThi1
 
ayurvedic formulations herbal drug technologyppt
ayurvedic formulations herbal drug technologypptayurvedic formulations herbal drug technologyppt
ayurvedic formulations herbal drug technologypptPradnya Wadekar
 
MedMatch: Your Health, Our Mission. Pitch deck.
MedMatch: Your Health, Our Mission. Pitch deck.MedMatch: Your Health, Our Mission. Pitch deck.
MedMatch: Your Health, Our Mission. Pitch deck.whalesdesign
 
Adenomyosis or Fibroid- making right diagnosis
Adenomyosis or Fibroid- making right diagnosisAdenomyosis or Fibroid- making right diagnosis
Adenomyosis or Fibroid- making right diagnosisSujoy Dasgupta
 
Male Infertility, Antioxidants and Beyond
Male Infertility, Antioxidants and BeyondMale Infertility, Antioxidants and Beyond
Male Infertility, Antioxidants and BeyondSujoy Dasgupta
 
SGK NGẠT NƯỚC ĐHYHN RẤT LÀ HAY NHA .pdf
SGK NGẠT NƯỚC ĐHYHN RẤT LÀ HAY NHA    .pdfSGK NGẠT NƯỚC ĐHYHN RẤT LÀ HAY NHA    .pdf
SGK NGẠT NƯỚC ĐHYHN RẤT LÀ HAY NHA .pdfHongBiThi1
 
historyofpsychiatryinindia. Senthil Thirusangu
historyofpsychiatryinindia. Senthil Thirusanguhistoryofpsychiatryinindia. Senthil Thirusangu
historyofpsychiatryinindia. Senthil Thirusangu Medical University
 
Red Blood Cells_anemia & polycythemia.pdf
Red Blood Cells_anemia & polycythemia.pdfRed Blood Cells_anemia & polycythemia.pdf
Red Blood Cells_anemia & polycythemia.pdfMedicoseAcademics
 
Bulimia nervosa ( Eating Disorders) Mental Health Nursing.
Bulimia nervosa ( Eating Disorders) Mental Health Nursing.Bulimia nervosa ( Eating Disorders) Mental Health Nursing.
Bulimia nervosa ( Eating Disorders) Mental Health Nursing.aarjukhadka22
 
blood bank management system project report
blood bank management system project reportblood bank management system project report
blood bank management system project reportNARMADAPETROLEUMGAS
 
CONNECTIVE TISSUE (ANATOMY AND PHYSIOLOGY).pdf
CONNECTIVE TISSUE (ANATOMY AND PHYSIOLOGY).pdfCONNECTIVE TISSUE (ANATOMY AND PHYSIOLOGY).pdf
CONNECTIVE TISSUE (ANATOMY AND PHYSIOLOGY).pdfDolisha Warbi
 

Kürzlich hochgeladen (20)

Clinical Research Informatics Year-in-Review 2024
Clinical Research Informatics Year-in-Review 2024Clinical Research Informatics Year-in-Review 2024
Clinical Research Informatics Year-in-Review 2024
 
SGK RỐI LOẠN KALI MÁU CỰC KỲ QUAN TRỌNG.pdf
SGK RỐI LOẠN KALI MÁU CỰC KỲ QUAN TRỌNG.pdfSGK RỐI LOẠN KALI MÁU CỰC KỲ QUAN TRỌNG.pdf
SGK RỐI LOẠN KALI MÁU CỰC KỲ QUAN TRỌNG.pdf
 
SGK LEUKEMIA KINH DÒNG BẠCH CÂU HẠT HAY.pdf
SGK LEUKEMIA KINH DÒNG BẠCH CÂU HẠT HAY.pdfSGK LEUKEMIA KINH DÒNG BẠCH CÂU HẠT HAY.pdf
SGK LEUKEMIA KINH DÒNG BẠCH CÂU HẠT HAY.pdf
 
ANATOMICAL FAETURES OF BONES FOR NURSING STUDENTS .pptx
ANATOMICAL FAETURES OF BONES  FOR NURSING STUDENTS .pptxANATOMICAL FAETURES OF BONES  FOR NURSING STUDENTS .pptx
ANATOMICAL FAETURES OF BONES FOR NURSING STUDENTS .pptx
 
Male Infertility Panel Discussion by Dr Sujoy Dasgupta
Male Infertility Panel Discussion by Dr Sujoy DasguptaMale Infertility Panel Discussion by Dr Sujoy Dasgupta
Male Infertility Panel Discussion by Dr Sujoy Dasgupta
 
Basic structure of hair and hair growth cycle.pptx
Basic structure of hair and hair growth cycle.pptxBasic structure of hair and hair growth cycle.pptx
Basic structure of hair and hair growth cycle.pptx
 
SGK ĐIỆN GIẬT ĐHYHN RẤT LÀ HAY TUYỆT VỜI.pdf
SGK ĐIỆN GIẬT ĐHYHN        RẤT LÀ HAY TUYỆT VỜI.pdfSGK ĐIỆN GIẬT ĐHYHN        RẤT LÀ HAY TUYỆT VỜI.pdf
SGK ĐIỆN GIẬT ĐHYHN RẤT LÀ HAY TUYỆT VỜI.pdf
 
ayurvedic formulations herbal drug technologyppt
ayurvedic formulations herbal drug technologypptayurvedic formulations herbal drug technologyppt
ayurvedic formulations herbal drug technologyppt
 
MedMatch: Your Health, Our Mission. Pitch deck.
MedMatch: Your Health, Our Mission. Pitch deck.MedMatch: Your Health, Our Mission. Pitch deck.
MedMatch: Your Health, Our Mission. Pitch deck.
 
Adenomyosis or Fibroid- making right diagnosis
Adenomyosis or Fibroid- making right diagnosisAdenomyosis or Fibroid- making right diagnosis
Adenomyosis or Fibroid- making right diagnosis
 
Male Infertility, Antioxidants and Beyond
Male Infertility, Antioxidants and BeyondMale Infertility, Antioxidants and Beyond
Male Infertility, Antioxidants and Beyond
 
SGK NGẠT NƯỚC ĐHYHN RẤT LÀ HAY NHA .pdf
SGK NGẠT NƯỚC ĐHYHN RẤT LÀ HAY NHA    .pdfSGK NGẠT NƯỚC ĐHYHN RẤT LÀ HAY NHA    .pdf
SGK NGẠT NƯỚC ĐHYHN RẤT LÀ HAY NHA .pdf
 
How to master Steroid (glucocorticoids) prescription, different scenarios, ca...
How to master Steroid (glucocorticoids) prescription, different scenarios, ca...How to master Steroid (glucocorticoids) prescription, different scenarios, ca...
How to master Steroid (glucocorticoids) prescription, different scenarios, ca...
 
historyofpsychiatryinindia. Senthil Thirusangu
historyofpsychiatryinindia. Senthil Thirusanguhistoryofpsychiatryinindia. Senthil Thirusangu
historyofpsychiatryinindia. Senthil Thirusangu
 
Red Blood Cells_anemia & polycythemia.pdf
Red Blood Cells_anemia & polycythemia.pdfRed Blood Cells_anemia & polycythemia.pdf
Red Blood Cells_anemia & polycythemia.pdf
 
Bulimia nervosa ( Eating Disorders) Mental Health Nursing.
Bulimia nervosa ( Eating Disorders) Mental Health Nursing.Bulimia nervosa ( Eating Disorders) Mental Health Nursing.
Bulimia nervosa ( Eating Disorders) Mental Health Nursing.
 
blood bank management system project report
blood bank management system project reportblood bank management system project report
blood bank management system project report
 
GOUT UPDATE AHMED YEHIA 2024, case based approach with application of the lat...
GOUT UPDATE AHMED YEHIA 2024, case based approach with application of the lat...GOUT UPDATE AHMED YEHIA 2024, case based approach with application of the lat...
GOUT UPDATE AHMED YEHIA 2024, case based approach with application of the lat...
 
American College of physicians ACP high value care recommendations in rheumat...
American College of physicians ACP high value care recommendations in rheumat...American College of physicians ACP high value care recommendations in rheumat...
American College of physicians ACP high value care recommendations in rheumat...
 
CONNECTIVE TISSUE (ANATOMY AND PHYSIOLOGY).pdf
CONNECTIVE TISSUE (ANATOMY AND PHYSIOLOGY).pdfCONNECTIVE TISSUE (ANATOMY AND PHYSIOLOGY).pdf
CONNECTIVE TISSUE (ANATOMY AND PHYSIOLOGY).pdf
 

TCA CYCLE & ITS REGULATION

  • 2. TCA Cycle  Also known as Krebs cycle  TCA cycle essentially involves the oxidation of acetyl CoA to CO2 and H2O.  TCA cycle –the central metabolic pathway  The TCA cycle is the final common oxidative pathway for carbohydrates, fats, amino acids.
  • 3.  TCA cycle supplies energy & also provides many intermediates required for the synthesis of amino acids, glucose, heme etc.  TCA cycle is the most important central pathway connecting almost all the individual metabolic pathways.
  • 4.  Definition  Citric acid cycle or TCA cycle or tricarboxylic acid cycle essentially involves the oxidation of acetyl CoA to CO2 & H2O.  Location of the TCA cycle  Reactions of occur in mitochondrial matrix, in close proximity to the ETC.
  • 5. Reactions of TCA cycle  Oxidative decarboxylation of pyruvate to acetyl CoA by PDH complex.  This step is connecting link between glycolysis and TCA cycle.
  • 6. Reactions of TCA Cycle  Step:1 Formation of citrate  Oxaloacetate condenses with acetyl CoA to form Citrate, catalysed by the enzyme citrate synthase  Inhibited by:  ATP, NADH, Citrate - competitive inhibitor of oxaloacetate.
  • 7. Steps 2 & 3 Citrate is isomerized to isocitrate  Citrate is isomerized to isocitrate by the enzyme aconitase  This is achieved in a two stage reaction of dehydration followed by hydration through the formation of an intermediate -cis-aconiase
  • 8. Steps 4 & 5 Formation of -ketoglutarate  Isocitrate dehydrogenase (ICDH) catalyses the conversion of (oxidative decarboxylation) of isocitrate to oxalosuccinate & then to -ketoglutarate.  The formation of NADH & the liberation of CO2 occure at this stage.  Stimulated (cooperative) by isocitrate, NAD+, Mg2+, ADP, Ca2+ (links with contraction).  Inhibited by NADH & ATP
  • 9. Step: 6 Conversion of -ketoglutarate to succinyl CoA  Occurs through oxidative decarboxylation, catalysed by -ketoglutarate dehydrogenase complex.  -ketoglutarate dehydrogenase is an multienzyme complex.  At this stage of TCA cycle, second NADH is produced & the second CO2 is liberated.
  • 10. Step: 7 Formation of succinate  Succinyl CoA is converted to succinate by succinate thiokinase.  This reaction is coupled with the phosphorylation of GDP to GTP.  This is a substrate level phosphorylation.  GTP is converted to ATP by the enzyme nucleoside diphosphate kinase.
  • 11. Step: 8 Conversion of succinate to fumarate  Succinate is oxidized by succinate dehydrogenase to fumarate.  This reaction results in the production of FADH2.  Step: 9 Formation of malate: The enzyme fumarase catalyses the conversion of fumarate to malate with the addition of H2O.
  • 12. Step:10 Conversion of malate to oxaloacetate  Malate is then oxidized to oxaloacetate by malate dehydrogenase.  The third & final synthesis of NADH occurs at this stage.  The oxaloacetate is regenerated which can combine with another molecule of acetyl CoA & continue the cycle.
  • 13. Pyruvate Acetyl CoA Citrate Cis-Aconitase Iso-citrate Oxalosuccinate ɑ-Ketoglutarate Succinyl CoA Succinate Fumarate Malate Oxaloacatete PDH CO2, NADH + H+ NAD+ NADH + H+ NAD+ CO2, NADH + H+ NAD+ GDP+Pi GTP FADH2 FAD - H2O NADH + H+ NAD+ Citrate synthase Aconitase Aconitase SDH Fumarase TCA
  • 14. From: Summerlin LR (1981) Chemistry for the Life Sciences. New York: Random House p 550.
  • 15. Regeneration of oxaloacetate  The TCA cycle basically involves the oxidation of acetyl CoA to CO2 with the simultaneous regeneration of oxaloacetate.  There is no net consumption of oxaloacetate or any other intermediate in the cycle.
  • 16. Significance of TCA cycle  Complete oxidation of acetyl CoA.  ATP generation.  Final common oxidative pathway.  Integration of major metabolic pathways.  Fat is burned on the wick of carbohydrates.  Excess carbohydrates are converted as neutral fat  No net synthesis of carbohydrates from fat.  Carbon skeleton of amino acids finally enter the TCA cycle.
  • 17. Requirement of O2 by TCA cycle  There is no direct participation of O2 in TCA cycle.  Operates only under aerobic conditions.  This is due to, NAD+ & FAD required for the operation of the cycle can be regenerated in the respiratory chain only in presence of O2.  Therefore, citric acid cycle is strictly aerobic.
  • 18. Energetics of TCA Cycle  Oxidation of 3 NADH by ETC coupled with oxidative phosphorylation results in the synthesis of 9ATP.  FADH2 leads to the formation of 2ATP.  One substrate level phosphorylation.  Thus, a total of 12 ATP are produced from one acetyl CoA.
  • 21. Regulation of TCA Cycle  Three regulatory enzymes 1. Citrate synthase 2. Isocitrate dehydrogenase 3.α-ketoglutarate dehydrogenase
  • 22.  Citrate synthase is inhibited by ATP, NADH, acyl CoA & succinyl CoA.  Isocitrate dehydrogenase is activated by ADP & inhibited by ATP and NADH  α-ketoglutarate dehydrogenase is inhibited by succinyl CoA & NADH.  Availability of ADP is very important for TCA cycle to proceed.
  • 23. Inhibitors of TCA Cycle  Aconitase is inhibited by fluoro-acetate.  This is a non-competitive inhibition.  Alpha ketoglutarate is inhibited by Arsenite.  This is also a non-competitive.  Succinate dehydrogenase is inhibited by malonate.  This is competitive inhibition.
  • 24. Amphibolic nature of the TCA cycle  TCA cycle is both catabolic & anabolic in nature, called as amphibolic.  Since various compounds enter into or leave from TCA cycle, it is sometimes called as metabolic traffic circle.
  • 25. Important anabolic reactions of TCA cycle  Oxaloacetate is precursor for aspartate.  α-ketoglutarate can be transaminated to glutamate.  Succinyl CoA is used for synthesis of heme.  Mitochondrial citrate is transported to cytoplasm & it is cleaved into acetyl CoA to provide substrate for fatty acid synthesis.
  • 26. Anaplerosis or anaplerotic reactions  The reactions concerned to replenish or to fill up the intermediates of citric acid cycle are called anaplerotic reactions or Anaplerosis
  • 27. Important anaplerotic reactions  Pyruvate carboxylase catalyses conversion of pyruvate to oxaloacetate.  This is an ATP dependent carboxylation reaction. Pyruvate+CO2+ATP Oxaloacetate + ADP + Pi
  • 28. • Pyruvate is converted to malate by NADP+ dependent malate dehydrogenase (malic enzyme). Pyruvate + CO2 + NADPH + H+ malate + NADPH + H2O
  • 29.  α- ketoglutarate can also be synthesized from glutamate by glutamate dehydrogenase. Glutamate + NAD(P) + H2O α- ketoglutarate +NAD(P)H + H+ + NH4 +
  • 30. Transamination  Transamination is a process where an amino acid transfers its amino group to a keto group and itself gets converted to a keto acid.  The formation of Alpha ketoglutarate & oxaloacetate occures by this mechanism.
  • 31. References  Textbook of Biochemistry-U Satyanarayana  Textbook of Biochemistry- DM Vasudevan