SlideShare ist ein Scribd-Unternehmen logo
1 von 85
Downloaden Sie, um offline zu lesen
Programmable web of the future

{
firstName: Veselin,
lastName: Pizurica,
epochTime: 1381953702
}

Free Powerpoint Templates

Page 1
Today talk is about the future future of the web
Integration/convergence:
–  API’s
–  Sensor Networks/M2M
–  Cloud
–  Data mining
–  Intelligent decision engines

Page 2
Introduction to AI
–  Learning, Pattern recognition
–  Intelligent agents
–  Probabilistic reasoning and uncertainty
–  Graphical models

Page 3
Material used

• 
• 
• 
• 

UGent AI course: http://telin.ugent.be/~sanja/ArtificialIntelligence
BaysiaLab	
  white	
  paper	
  
Wikipedia	
  
Google	
  search	
  

Page 4
Map	
  of	
  Analy;c	
  Modeling	
  
	
  

Page
Breiman	
  (2001)	
  and	
  Shmueli	
  (2010) 5
Predic;ve	
  modeling	
  

= f (X)
Page 6
Explanatory	
  modeling	
  

Y = (X)

Page 7
Intelligent	
  agents
	
  

Agent:	
  an	
  en;ty	
  that	
  perceives	
  and	
  acts	
  (from	
  La;n	
  agere,	
  to	
  do)	
  
Ra)onal	
  agent	
  is	
  one	
  that	
  acts	
  so	
  as	
  to	
  achieve	
  the	
  best	
  outcome,	
  or	
  when	
  there	
  is	
  
uncertainty,	
  the	
  best	
  expected	
  outcome	
  
Abstractly,	
  an	
  agent	
  is	
  a	
  func;on	
  from	
  percept	
  histories	
  to	
  ac;ons:	
  
For	
  any	
  given	
  class	
  of	
  environments	
  and	
  tasks,	
  we	
  seek	
  the	
  agent	
  (or	
  class	
  of	
  agents)	
  with	
  
the	
  best	
  performance	
  
In	
  prac;ce,	
  computa;onal	
  limita;ons	
  make	
  perfect	
  ra;onality	
  unachievable	
  à	
  design	
  best	
  
program	
  for	
  given	
  machine	
  resources	
  
Page 8
8	
  
Ra;onality
	
  
•  A	
  ra;onal	
  agent	
  is	
  one	
  that	
  does	
  the	
  right	
  thing.	
  	
  
•  How	
  do	
  we	
  know	
  whether	
  it	
  is	
  the	
  right	
  thing?	
  	
  
-­‐	
  	
  By	
  considering	
  the	
  consequences	
  of	
  the	
  agent	
  behavior	
  
(i.e.,	
  the	
  sequence	
  of	
  states	
  through	
  which	
  the	
  
environment	
  goes	
  as	
  a	
  result	
  of	
  agent’s	
  behavior)	
  
•  A	
  sequence	
  of	
  states	
  (through	
  which	
  the	
  environment	
  goes)	
  is	
  
evaluated	
  by	
  a	
  performance	
  measure	
  	
  

Page 9
9	
  
Specifying	
  the	
  task	
  environment
	
  
To design a rational agent, we must specify the
task environment
Consider the task of designing an automated taxi:
–  Performance measure: safety, destination, profits, legality,
comfort
–  Environment: streets/freeways, traffic, pedestrians, weather
–  Actuators: steering, accelerator, brake, horn, speaker/display
–  Sensors: video, acceleromaters, gauges, engine sensors,
keyboard, sensors

Page 10
10	
  
Environment	
  types
	
  

Page 11
11	
  
Environment	
  types
	
  

Page 12
12	
  
Environment	
  types
	
  

Page 13
13	
  
Environment	
  types
	
  

Page 14
14	
  
Environment	
  types
	
  

Page 15
15	
  
Environment	
  types
	
  

Page 16
16	
  
Environment	
  types
	
  

Page 17
17	
  
Environment	
  types
	
  

Page 18
18	
  
Agent	
  types
	
  
•  Four	
  basic	
  types	
  in	
  order	
  of	
  increasing	
  
generality:	
  
–  simple	
  reflex	
  agents	
  
–  reflex	
  agents	
  with	
  state	
  
–  goal-­‐based	
  agents	
  
–  u;lity-­‐based	
  agents	
  

All	
  these	
  can	
  be	
  turned	
  into	
  learning	
  agents	
  

Page 19
19	
  
Simple	
  reflex	
  agents
	
  

Page 20
20	
  
Reflex	
  agents	
  with	
  state
	
  

Page 21
21	
  
Goal-­‐based	
  agents
	
  

Page 22
22	
  
U;lity-­‐based	
  agents
	
  

Page 23
23	
  
Why	
  learning?
Why	
  do	
  we	
  want	
  an	
  agent	
  to	
  learn?	
  (Why	
  not	
  program	
  an	
  
improved	
  design	
  from	
  the	
  beginning)?	
  
–  Cannot	
  an;cipate	
  all	
  possible	
  situa;ons	
  that	
  the	
  agent	
  
might	
  find	
  itself	
  in	
  
–  Cannot	
  an;cipate	
  all	
  changes	
  over	
  ;me	
  
–  Programmers	
  might	
  not	
  know	
  how	
  to	
  program	
  a	
  solu;on	
  
themselves	
  (e.g.	
  how	
  to	
  program	
  face	
  recogni;on)	
  
	
  
Learning	
  modifies	
  the	
  agent's	
  decision	
  mechanisms	
  to	
  improve	
  
performance	
  
Page 24
Paaern	
  recogni;on
Unsupervised	
  learning	
  
–  Learning	
  paaerns	
  without	
  explicit	
  feedback	
  supplied	
  
–  The	
  system	
  forms	
  clusters	
  or	
  natural	
  groupings	
  of	
  the	
  input	
  paaerns	
  
(based	
  on	
  some	
  similarity	
  criteria).	
  ➡Clustering	
  	
  

Reinforcement	
  learning	
  
–  Learning	
  from	
  a	
  series	
  of	
  reinforcements	
  –	
  rewards	
  and	
  punishments	
  

Supervised	
  learning	
  
–  Learning	
  a	
  func;on	
  that	
  maps	
  input	
  to	
  output	
  based	
  on	
  available	
  
(observed)	
  input-­‐output	
  pairs	
  (Correct	
  answers	
  for	
  each	
  instance)	
  

Semi-­‐supervised	
  learning	
  
–  A	
  few	
  labeled	
  samples	
  available	
  and	
  a	
  large	
  collec;on	
  of	
  unlabeled	
  
ones	
  
–  Learn	
  from	
  geometry	
  of	
  unlabeled	
  samples	
  and	
  use	
  the	
  labeled	
  ones	
  
Page 25
to	
  improve	
  the	
  learning	
  	
  
Supervised	
  Learning
labeled training sets, used to train a classifier

Page 26
Unsupervised Learning
• 
• 

No labeled training sets are provided
System applies a specified clustering/grouping criteria to unlabeled dataset Clusters/groups
together “most similar” objects (according to given criteria)

Page 27
Pattern Recognition Process
Data acquisition and sensing
– Measurements of physical variables.
– Important issues: bandwidth, resolution , etc.

Pre-processing
– Removal of noise in data.
– Isolation of patterns of interest from the
background.

Feature extraction
– Finding a new representation in terms of
features.

Classification
– Using features and learned models to assign a
pattern to a category.

Post-processing
– Evaluation of confidence in decisions.

Page 28
Feature vectors
Single object represented by several features, e.g. shape, size, color,
weight
x1 = shape(e.g.nr of sides)
x2 = size(e.g. some numeric value)
x3 = color (e. g. rgb values)
xd = some other(numeric)feature.

X becomes a feature vector

Page 29
Classical model of Pattern
Recognition

Page 30
Example of Simple Classifier

Page 31
Clustering: k-means

Page 32
“Curse of dimensionality”

Finding	
  the	
  principal	
  eigenvectors	
  of	
  the	
  covariance	
  matrix	
  of	
  the	
  data:	
  PCA	
  

Page 33
PCA
Principal component analysis (PCA) is
a orthogonal transformation to convert
a set of observations of possibly
correlated variables into a set of
values of linearly uncorrelated
variables called principal components.

It is not, however, optimized for class
separability. An alternative is the
linear discriminant analysis, which
does take this into account. PCA is
also sensitive to the scaling of the
variables.

Page 34
Deep Learning
•  Choosing the correct feature representation of input
data, is a way that people can bring prior knowledge of a
domain to increase an algorithm's computational
performance and accuracy. To move towards general
artificial intelligence, algorithms need to be less
dependent on this feature engineering and better learn to
identify the explanatory factors of input data on their
own.
•  Deep learning tries to move in this direction by capturing
a 'good' representation of input data by using
compositions of non-linear transformations.
Page 35
Two types of models
•  Probabilistic graphical models have
nodes in each layer that are considered
as latent random variables. In this case,
you care about the probability
distribution of the input data x and the
hidden latent random variables h that
describe the input data in the joint
distribution p(x,h). These latent random
variables describe a distribution over the
observed data.
•  Direct encoding (neural network) models
have nodes in each layer that are
considered as computational units. This
means each node h performs some
computation (normally nonlinear like a
sigmoidal function) given its inputs from
the previous layer.
Page 36
Decision trees
1.  Learn rules from data
2.  Apply each rule at each
node
3.  Classification is at the
leafs of the tree

Page 37
Decision Trees example
Example:	
  decision	
  whether	
  to	
  wait	
  for	
  a	
  table	
  in	
  a	
  restaurant	
  depending	
  on	
  
the	
  following	
  aaributes:	
  
1.  Alternate	
  (Alt):	
  Is	
  there	
  a	
  suitable	
  alterna;ve	
  restaurant	
  nearby?	
  
2. 	
  Bar:	
  Is	
  there	
  a	
  comfortable	
  bar	
  area	
  in	
  the	
  restaurant,	
  where	
  I	
  can	
  wait?	
  
3. 	
  Fri/Sat	
  (Fri):	
  True	
  on	
  Fridays/Saturdays	
  
4. 	
  Hungry	
  (Hun):	
  Are	
  we	
  hungry?	
  
5. 	
  Patrons	
  (Pat):	
  How	
  many	
  people	
  are	
  in	
  the	
  restaurant	
  (None,	
  Some	
  or	
  Full)	
  
6. 	
  Price:	
  the	
  restaurant’s	
  price	
  range	
  ($,	
  $$,	
  $$$)	
  
7. 	
  Raining	
  (Rain):	
  Is	
  it	
  raining	
  outside?	
  
8. 	
  ReservaBon	
  (Res):	
  Did	
  we	
  make	
  a	
  reserva;on?	
  
9. 	
  Type:	
  the	
  kind	
  of	
  restaurant	
  (French,	
  Italian,	
  Thai	
  or	
  burger)	
  
10. 	
  WaitEsBmate	
  (Est):	
  the	
  wait	
  ;me	
  es;mated	
  by	
  the	
  host	
  (0-­‐10min,	
  10-­‐30,	
  
30-­‐60,	
  or	
  >60)	
  
Page 38
Decision tree
How	
  many	
  dis;nct	
  decision	
  trees	
  we	
  have	
  with	
  n	
  Boolean	
  aaributes?	
  
=	
  number	
  of	
  Boolean	
  func;on	
  =	
  number	
  of	
  dis;nct	
  truth	
  tables	
  with	
  2^n	
  rows	
  =	
  

2^n^n	
  
E.g., with 6 Boolean attributes 18,446,744,073,709,551,616

Page 39
Uncertainty
	
  
Let	
  At	
  denote	
  the	
  ac;on	
  “leave	
  for	
  airport	
  t	
  minutes	
  before	
  flight”	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Will	
  At	
  get	
  me	
  there	
  on	
  ;me?	
  	
  

?

?

?
•  Purely	
  logical	
  approach	
  leads	
  to	
  weak	
  conclusions:	
  
§ 	
  “A90	
  will	
  get	
  me	
  there	
  on	
  ;me	
  if	
  there	
  is	
  no	
  accident	
  on	
  the	
  way	
  and	
  it	
  
doesn't	
  rain	
  and	
  my	
  ;res	
  remain	
  intact	
  and	
  no	
  meteorite	
  hits	
  the	
  car,	
  etc”	
  
§ None	
  of	
  these	
  can	
  be	
  inferred	
  for	
  sure	
  à	
  plan	
  success	
  cannot	
  be	
  inferred	
  

Page 40
40	
  
Uncertainty
	
  
•  Consider	
  diagnosis	
  of	
  a	
  pa;ent	
  with	
  headache.	
  Many	
  reasons	
  are	
  possible	
  like	
  
sinus	
  problems	
  or	
  eye	
  vision,	
  tense	
  muscles,	
  flu,	
  cancer,…	
  Suppose	
  a	
  logical	
  
rule	
  that	
  aaempts	
  to	
  express	
  this	
  
Headache	
  ⇒	
  SinusiBs	
  ∨	
  EyeSight	
  ∨	
  SBffNeck	
  ∨	
  Flu	
  ∨	
  Cancer…
•  The	
  problem	
  is	
  that	
  there	
  is	
  almost	
  unlimited	
  list	
  of	
  possible	
  causes.	
  	
  The	
  
causal	
  rule,	
  like	
  SBffNeck=>Headache	
  doesn’t	
  work	
  either	
  (s;ff	
  neck	
  doesn’t	
  
always	
  cause	
  headache)	
  	
  

	
  	
  	
  

•  Trying	
  to	
  use	
  logic	
  in	
  this	
  type	
  of	
  domains	
  fails	
  because	
  	
  
	
  
§  there	
  is	
  too	
  much	
  work	
  to	
  list	
  all	
  the	
  aaributes	
  
§  no	
  complete	
  theory	
  or	
  knowledge	
  
§  not	
  all	
  the	
  necessary	
  tests	
  can	
  be	
  or	
  have	
  been	
  run	
  
Page 41
41	
  
Why	
  probabilis;c	
  reasoning?
	
  
•  Probabilis;c	
  reasoning	
  is	
  useful	
  because	
  logic	
  olen	
  fails	
  due	
  to	
  

Laziness	
  

and	
  

Ignorance	
  

too	
  many	
  
aaributes	
  to	
  list
Theore;cal	
  

Prac;cal	
  

(no	
  complete	
  
knowledge	
  of	
  the	
  
domain)

(not	
  enough	
  
observa;ons,	
  
tests,..)

	
  

	
  

•  Probabilis;c	
  asser;ons	
  summarize	
  the	
  effects	
  of	
  laziness	
  and	
  ignorance	
  
	
  

Page 42
42	
  
Graphical	
  models
	
  
	
  

•  Graphical	
  models	
  
•  Markov	
  random	
  fields	
  
•  Bayesian	
  networks	
  

Page 43
43	
  
Graphical	
  models
	
  
Graphical	
  models	
  
Bayesian	
  networks	
  

Graphical	
  models	
  are	
  related	
  to	
  mathema;cal	
  
graph	
  theory	
  
Page 44
44	
  
Probabilis;c	
  graphs
	
  
•  A	
  graph	
  is	
  a	
  set	
  of	
  objects	
  (represented	
  by	
  nodes,	
  also	
  called	
  
ver)ces	
  or	
  points),	
  where	
  some	
  pairs	
  of	
  the	
  nodes	
  are	
  
connected	
  by	
  links	
  (edges).	
  	
  

	
  
•  If	
  the	
  edges	
  are	
  directed,	
  they	
  are	
  also	
  called	
  arrows	
  and	
  the	
  
graph	
  is	
  directed.	
  In	
  a	
  weighted	
  graph,	
  weights	
  are	
  assigned	
  to	
  
the	
  edges.	
  The	
  graph	
  is	
  complete	
  if	
  all	
  the	
  ver;ces	
  are	
  
connected	
  to	
  each	
  other.	
  
•  Probabilis;c	
  graphs	
  
–  nodes	
  ↔	
  random	
  variables	
  (r.v.s)	
  
Page
45	
  
–  edges	
  ↔	
  probabilis;c	
  dependencies	
  between	
  these	
  r.v.s.	
  	
   45
Common	
  graphical	
  models
	
  
•  Bayesian	
  networks	
  –	
  directed	
  graphical	
  models	
  
X

Causal	
  influence	
  

descendants	
  of	
  X

	
  
•  Markov	
  random	
  fields	
  –	
  not	
  directed	
  graphs	
  
X

neighbors	
  of	
  X
Page 46
46	
  
Markov	
  rule
	
  
•  In	
  a	
  directed	
  graph	
  
	
  
P(Xi | all nondescend ants) = P(Xi | Parents(Xi ))
	
  
•  A	
  special	
  case:	
  Markov	
  chain	
  	
  
P(Xi | Xi−1,..., X1 ) = P(Xi | Xi−1 )

…
•  Markov	
  random	
  field	
  
P(Xi | all other nodes) = P(Xi | Neighbors (Xi ))

Page 47
47	
  
Markov	
  Random	
  Fields	
  (MRFs)
	
  
•  Non-­‐directed	
  probabilis;c	
  graphs	
  
•  Used	
  a	
  lot	
  in	
  digital	
  image	
  processing	
  and	
  computer	
  vision	
  
•  This	
  example	
  illustrates	
  applica;on	
  in	
  image	
  segmenta;on	
  

	
  

Page 48
48	
  
Bayesian	
  networks
	
  
symptoms	
  
smoker?	
  

X-­‐ray	
  	
  

travel	
  

disease	
  1	
  

disease	
  2	
  
Page 49
49	
  
Bayes’	
  rule
	
  
Product	
  rule	
   P(a ∧ b) = P(a | b) P(b)
P (b | a ) P ( a )
	
  	
  
Bayes’	
  rule	
   P( a | b) =
P ( b)
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Or	
  in	
  distribu;on	
  form	
  
	
  	
  
P( X | Y )P(Y )
P(Y | X ) =	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  	
  	
  	
  	
  P(	
  	
  	
  	
  	
  	
  |	
  Y	
  )P(Y )
	
  	
  
	
  	
  
	
  	
   α 	
  	
  	
   X 	
  	
   	
  
P( X )
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Useful	
  for	
  accessing	
  diagnos)c	
  probability	
  from	
  causal	
  probability	
  
P( Effect | Cause)P(Cause)
	
  	
   P(Cause | Effect ) =
P( Effect )
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Olen	
  we	
  perceive	
  as	
  evidence	
  the	
  effect	
  of	
  some	
  unknown	
  cause	
  and	
  we	
  want	
  to	
  
determine	
  that	
  cause,	
  e,g.	
  the	
  chance	
  of	
  diseasex	
  given	
  symptomy:	
  
	
  	
  

P( symptom y | disease x ) P(disease x )

P(disease x | symptom y ) =
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

P( symptom y )
Page 50
50	
  
Bayesian	
  networks
	
  
A	
  simple,	
  graphical	
  nota;on	
  for	
  condi;onal	
  independence	
  asser;ons	
  and	
  
hence	
  for	
  compact	
  specifica;on	
  of	
  full	
  joint	
  distribu;ons	
  
Syntax:	
  
•  a	
  set	
  of	
  nodes,	
  one	
  per	
  variable	
  
•  a	
  directed,	
  acyclic	
  graph	
  (each	
  link	
  means	
  “directly	
  influences”)	
  
•  a	
  condi;onal	
  distribu;on	
  for	
  each	
  node	
  given	
  its	
  parents:	
  

P( X i | Parents ( X i ))

Page 51
51	
  
Network:	
  directed	
  acyclic	
  graph
	
  
Descendants	
  of	
  X
Non-­‐descendants	
  of	
  X

Y

edges:	
  causal	
  influence	
  
X

nodes:	
  random	
  variables	
  
X has causal influence on Y
•  Evidence for X forms causal support for Y
•  Evidence for Y forms diagnostic support for X
Page 52
52	
  
Network	
  separa;on
	
  
Let	
  us	
  inves;gate	
  (condi;onal)	
  independence	
  in	
  three	
  simple	
  
networks	
  featuring	
  these	
  types	
  of	
  nodes,	
  and	
  let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
denote	
  “a	
  and	
  b	
  are	
  condi;onally	
  independent	
  given	
  c”	
  

P(a, b, c) = P(a) P(c | a) P(b | c)

Consider	
  now	
  evidence	
  in	
  	
  c:	
  	
  

P(a, b) = ∑ P(a) P(c | a ) P(b | c) = P(a) P(b | a )
⇒
c
≠ P(a) P(b)
(in	
  this	
  network	
  a	
  and	
  b	
  are	
  in	
  general	
  not	
  
independent)	
  

P(a, b, c) P(a)P(c | a)P(b | c)
=
=
P(c)
P(c)
= P(a | c)P(b | c)

P(a, b | c) =

	
  
So,	
  we	
  can	
  say	
  that	
  the	
  node	
  c	
  	
  blocks	
  the	
  path	
  between	
  a	
  and	
  b.	
  

Page 53
53	
  
D-­‐separa;on	
  contd.
	
  
A,	
  B	
  and	
  C	
  are	
  non-­‐overlapping	
  sets	
  
A

C

B

The	
  sets	
  A	
  and	
  B	
  are	
  d-­‐separated	
  by	
  C	
  if	
  	
  
each	
  node	
  in	
  A	
  is	
  d-­‐separated	
  from	
  each	
  node	
  in	
  B	
  by	
  C
Page 54
54	
  
Example:	
  Car	
  diagnosis
	
  
Ini;al	
  evidence:	
  car	
  won't	
  start	
  
Testable	
  variables	
  (green),	
  “broken,	
  so	
  fix	
  it”	
  variables	
  (orange)	
  
Hidden	
  variables	
  (gray)	
  ensure	
  sparse	
  structure,	
  reduce	
  parameters

Page 55
55	
  
Belief	
  propaga;on
	
  
•  Belief	
  propaga;on	
  algorithm	
  was	
  introduced	
  by	
  Judea	
  Pearl,	
  1982	
  
•  Exact	
  inference	
  in	
  networks	
  without	
  loops;	
  complexity	
  linear	
  in	
  the	
  number	
  
of	
  nodes	
  
•  	
  Became	
  very	
  popular	
  aler	
  it	
  was	
  shown	
  that	
  the	
  same	
  computa;ons	
  are	
  in	
  
	
  
turbo	
  codes	
  and	
  the	
  same	
  principles	
  in	
  the	
  Viterbi	
  algorithm	
  
•  Main	
  idea:	
  inference	
  by	
  local	
  message	
  passing	
  among	
  neighboring	
  nodes	
  
	
  	
  	
  	
  	
  	
  The	
  message	
  can	
  loosely	
  be	
  interpreted	
  as	
  “I	
  (node	
  i )	
  think	
  that	
  you	
  	
  	
  	
  	
  	
  
(node	
  j)	
  are	
  that	
  much	
  likely	
  to	
  be	
  in	
  a	
  given	
  state”.	
  
	
  

Page 56
56	
  
Message	
  passing	
  revisited
	
  

1.	
  Distributed	
  soldier	
  coun;ng.	
  

2.	
  Distributed	
  soldier	
  coun;ng	
  with	
  the	
  leader	
  in	
  line.	
  
Page 57
57	
  
Numenta: HTM model
An HTM network consists of regions
arranged in a hierarchy.
Jeff Hawkins: “It combines and
extends approaches used in
Bayesian networks, spatial and
temporal clustering algorithms, while
using a tree-shaped hierarchy of
nodes that is common in neural
networks.”
Read a book, it is a great fun ->
Page 58
Semantic web and IBM’s Watson

The "heart and soul” is Unstructured Information Management Architecture [UIMA]

Page 59
Presentation 2nd part
•  Smart web
–  API economy
–  IOT

•  Bayesian nets
–  Troubleshooting and diagnostic
–  Sensor integration via plugin framework
–  Inteligent decisions and actions
–  Cloud deployment
–  IFTTT like application using framework above
Page 60
Page 61
API
•  APIs have become new patents
•  Who holds the data, holds the knowledge
•  Companies don’t share their know-how, but
they are willing to share their know-what
(via application programming interface API)
•  API economy is coming, and it will be the
major driver of the profit for many
companies
Page 62
Classical products distribution

Services distributed via API

Page 63
API Market

Page 64
Page 65
Sensor Networks
•  Network of specialized sensors intended
to monitor and record conditions at diverse
locations.
•  Commonly monitored parameters are
temperature, humidity, pressure, wind
direction and speed, illumination intensity,
vibration intensity, sound intensity, powerline voltage, chemical concentrations,
pollutant levels and vital body functions.
Page 66
Page 67
M2M is becoming a reality
API economy has become reality

Page 68
Programmable web of the future
Sensors gather and push data to the cloud.
API economies share data and services in the
cloud.
In the cloud, intelligent engine aggregates and
correlates data from different sources,
creating a new VALUE. That can be used
either to:
–  Provide new insights (analysis)
–  Create new instructions (actions) via API
Page 69
Three types of AI/IOT
implementations
•  “Ambient intelligence” – mash networks,
information flow and decisions stay local
•  “IOT Analytics” – big data like use case
scenarios
•  IOT Analytics + API’s + cloud + decision
engine + actions

Page 70
From IBM talk on IOT

Page 71
Decision Engine

Page 72
IF THIS THEN THAT
IS NOT GOING TO WORK

Page 73
CRM/BPM
IS NOT GOING TO WORK

Page 74
Technology that can deal with huge data
sets under complexity and uncertainty?

Page 75
Google/Toyota/Renault/Volvo driverless car research projects
Bayes models will win the battle

Page 76
Why is this different?

Page 77
Bayesian network modeling
Data analysis technique ideally suited to
messy, complex data. The focus is on
structure discovery – determining an optimal
graphical model which describes the interrelationships in the underlying processes
structure discovery AND inter-relationships
Page 78
•  How do you express that car needs both
battery and fuel to function? Easy.
•  How do you say that if your lights are not
working, most likely it is a battery fault, but
it could be as well that just lights are
broken? Still the fact that lights are not
working point to most likely cause of the
battery fault.
If you only model via composition and add behavior
separately – what most of the tools do these days – you
are heading for complexity!
Page 79
Example, car model

Car model with relations: NO Data available
Chance that the car will start is above 98%

Page 80
Car example, lights are off

off
Lights are off
Chance that battery functions dropped from 99,99% to less 50%
Chance that the car will start is bellow 50%

Page 81
Car example, lights are on

on
Lights are on
Battery works, there is no need to check it
Chance that the car will start now only depends on the fuel

Page 82
Prototype architecture
Database of recipes

Website where
User configures
Logic (recipes)

Decision engine

Pluggable
Actions

Developer extensions (new capabilities)

Pluggable sensors
Page 83
DEMO!!

Page 84
“Trading places”

Page 85

Weitere ähnliche Inhalte

Was ist angesagt?

artificial intelligence and its applications
 artificial intelligence and its applications artificial intelligence and its applications
artificial intelligence and its applicationsYogendra Vishnoi
 
Sensor Technology ppt
Sensor Technology pptSensor Technology ppt
Sensor Technology pptmansimore1
 
Internet of Things (IOT)
Internet of Things (IOT)Internet of Things (IOT)
Internet of Things (IOT)Kunal Adhikari
 
IoT Based Weather Monitoring System for Effective Analytics
IoT Based Weather Monitoring System for Effective AnalyticsIoT Based Weather Monitoring System for Effective Analytics
IoT Based Weather Monitoring System for Effective AnalyticsFerdin Joe John Joseph PhD
 
Internet-of-things- (IOT) - a-seminar - ppt - by- mohan-kumar-g
Internet-of-things- (IOT) - a-seminar - ppt - by- mohan-kumar-gInternet-of-things- (IOT) - a-seminar - ppt - by- mohan-kumar-g
Internet-of-things- (IOT) - a-seminar - ppt - by- mohan-kumar-gMohan Kumar G
 
Applications of IOT (internet of things)
Applications of IOT (internet of things)Applications of IOT (internet of things)
Applications of IOT (internet of things)Vinesh Gowda
 
Blue Eyes ppt
Blue Eyes pptBlue Eyes ppt
Blue Eyes pptdeepu427
 
Artificial Intelligence And Machine Learning PowerPoint Presentation Slides C...
Artificial Intelligence And Machine Learning PowerPoint Presentation Slides C...Artificial Intelligence And Machine Learning PowerPoint Presentation Slides C...
Artificial Intelligence And Machine Learning PowerPoint Presentation Slides C...SlideTeam
 
Machine Learning and Internet of Things
Machine Learning and Internet of ThingsMachine Learning and Internet of Things
Machine Learning and Internet of ThingsSofian Hadiwijaya
 
Machine learning Summer Training report
Machine learning Summer Training reportMachine learning Summer Training report
Machine learning Summer Training reportSubhadip Mondal
 
Internet of Things (IoT)
Internet of Things (IoT)Internet of Things (IoT)
Internet of Things (IoT)Prakhyath Rai
 
Artificial Intelligence
Artificial IntelligenceArtificial Intelligence
Artificial IntelligenceNeil Mathew
 
Internet of Things (IoT) and its applications
Internet of Things (IoT) and its applicationsInternet of Things (IoT) and its applications
Internet of Things (IoT) and its applicationsSarwan Singh
 
AI Vs ML Vs DL PowerPoint Presentation Slide Templates Complete Deck
AI Vs ML Vs DL PowerPoint Presentation Slide Templates Complete DeckAI Vs ML Vs DL PowerPoint Presentation Slide Templates Complete Deck
AI Vs ML Vs DL PowerPoint Presentation Slide Templates Complete DeckSlideTeam
 
Internet of Things(IOT)_Seminar_Dr.G.Rajeshkumar
Internet of Things(IOT)_Seminar_Dr.G.RajeshkumarInternet of Things(IOT)_Seminar_Dr.G.Rajeshkumar
Internet of Things(IOT)_Seminar_Dr.G.RajeshkumarRAJESHKUMARG12
 

Was ist angesagt? (20)

Sensors in IOT
Sensors in IOTSensors in IOT
Sensors in IOT
 
artificial intelligence and its applications
 artificial intelligence and its applications artificial intelligence and its applications
artificial intelligence and its applications
 
Sensor Technology ppt
Sensor Technology pptSensor Technology ppt
Sensor Technology ppt
 
Iot architecture
Iot architectureIot architecture
Iot architecture
 
Internet of Things (IOT)
Internet of Things (IOT)Internet of Things (IOT)
Internet of Things (IOT)
 
IoT Based Weather Monitoring System for Effective Analytics
IoT Based Weather Monitoring System for Effective AnalyticsIoT Based Weather Monitoring System for Effective Analytics
IoT Based Weather Monitoring System for Effective Analytics
 
Internet-of-things- (IOT) - a-seminar - ppt - by- mohan-kumar-g
Internet-of-things- (IOT) - a-seminar - ppt - by- mohan-kumar-gInternet-of-things- (IOT) - a-seminar - ppt - by- mohan-kumar-g
Internet-of-things- (IOT) - a-seminar - ppt - by- mohan-kumar-g
 
Applications of IOT (internet of things)
Applications of IOT (internet of things)Applications of IOT (internet of things)
Applications of IOT (internet of things)
 
Blue Eyes ppt
Blue Eyes pptBlue Eyes ppt
Blue Eyes ppt
 
Artificial Intelligence And Machine Learning PowerPoint Presentation Slides C...
Artificial Intelligence And Machine Learning PowerPoint Presentation Slides C...Artificial Intelligence And Machine Learning PowerPoint Presentation Slides C...
Artificial Intelligence And Machine Learning PowerPoint Presentation Slides C...
 
Machine Learning and Internet of Things
Machine Learning and Internet of ThingsMachine Learning and Internet of Things
Machine Learning and Internet of Things
 
Internet of Robotic Things
Internet of Robotic ThingsInternet of Robotic Things
Internet of Robotic Things
 
Machine learning Summer Training report
Machine learning Summer Training reportMachine learning Summer Training report
Machine learning Summer Training report
 
Internet of Things (IoT)
Internet of Things (IoT)Internet of Things (IoT)
Internet of Things (IoT)
 
Artificial Intelligence
Artificial IntelligenceArtificial Intelligence
Artificial Intelligence
 
IoT
IoTIoT
IoT
 
IoT and m2m
IoT and m2mIoT and m2m
IoT and m2m
 
Internet of Things (IoT) and its applications
Internet of Things (IoT) and its applicationsInternet of Things (IoT) and its applications
Internet of Things (IoT) and its applications
 
AI Vs ML Vs DL PowerPoint Presentation Slide Templates Complete Deck
AI Vs ML Vs DL PowerPoint Presentation Slide Templates Complete DeckAI Vs ML Vs DL PowerPoint Presentation Slide Templates Complete Deck
AI Vs ML Vs DL PowerPoint Presentation Slide Templates Complete Deck
 
Internet of Things(IOT)_Seminar_Dr.G.Rajeshkumar
Internet of Things(IOT)_Seminar_Dr.G.RajeshkumarInternet of Things(IOT)_Seminar_Dr.G.Rajeshkumar
Internet of Things(IOT)_Seminar_Dr.G.Rajeshkumar
 

Andere mochten auch

AI is the Catalyst of IoT
AI is the Catalyst of IoTAI is the Catalyst of IoT
AI is the Catalyst of IoTAhmed Banafa
 
Why the Internet of Things needs AI & interoperability to succeed
Why the Internet of Things needs AI & interoperability to succeedWhy the Internet of Things needs AI & interoperability to succeed
Why the Internet of Things needs AI & interoperability to succeedNuance Communications
 
Innovation with AWS: IoT, Robotics and AI
Innovation with AWS: IoT, Robotics and AIInnovation with AWS: IoT, Robotics and AI
Innovation with AWS: IoT, Robotics and AIAmazon Web Services
 
IoT + Big Data + Cloud + AI Integration Strategy Insights from Patents
IoT + Big Data + Cloud + AI Integration Strategy Insights from PatentsIoT + Big Data + Cloud + AI Integration Strategy Insights from Patents
IoT + Big Data + Cloud + AI Integration Strategy Insights from PatentsAlex G. Lee, Ph.D. Esq. CLP
 
IoT Cloud architecture
IoT Cloud architectureIoT Cloud architecture
IoT Cloud architectureMachinePulse
 
What Exactly Is The "Internet of Things"?
What Exactly Is The "Internet of Things"?What Exactly Is The "Internet of Things"?
What Exactly Is The "Internet of Things"?Postscapes
 
IoT Security: Problems, Challenges and Solutions
IoT Security: Problems, Challenges and SolutionsIoT Security: Problems, Challenges and Solutions
IoT Security: Problems, Challenges and SolutionsLiwei Ren任力偉
 
5 questions about the IoT (Internet of Things)
5 questions about the IoT (Internet of Things) 5 questions about the IoT (Internet of Things)
5 questions about the IoT (Internet of Things) Deloitte United States
 
Security in the Internet of Things
Security in the Internet of ThingsSecurity in the Internet of Things
Security in the Internet of ThingsForgeRock
 

Andere mochten auch (11)

AI is the Catalyst of IoT
AI is the Catalyst of IoTAI is the Catalyst of IoT
AI is the Catalyst of IoT
 
Why the Internet of Things needs AI & interoperability to succeed
Why the Internet of Things needs AI & interoperability to succeedWhy the Internet of Things needs AI & interoperability to succeed
Why the Internet of Things needs AI & interoperability to succeed
 
How AI connect dots for IoT
How AI connect dots for IoTHow AI connect dots for IoT
How AI connect dots for IoT
 
Understanding the Internet of Things Protocols
Understanding the Internet of Things ProtocolsUnderstanding the Internet of Things Protocols
Understanding the Internet of Things Protocols
 
Innovation with AWS: IoT, Robotics and AI
Innovation with AWS: IoT, Robotics and AIInnovation with AWS: IoT, Robotics and AI
Innovation with AWS: IoT, Robotics and AI
 
IoT + Big Data + Cloud + AI Integration Strategy Insights from Patents
IoT + Big Data + Cloud + AI Integration Strategy Insights from PatentsIoT + Big Data + Cloud + AI Integration Strategy Insights from Patents
IoT + Big Data + Cloud + AI Integration Strategy Insights from Patents
 
IoT Cloud architecture
IoT Cloud architectureIoT Cloud architecture
IoT Cloud architecture
 
What Exactly Is The "Internet of Things"?
What Exactly Is The "Internet of Things"?What Exactly Is The "Internet of Things"?
What Exactly Is The "Internet of Things"?
 
IoT Security: Problems, Challenges and Solutions
IoT Security: Problems, Challenges and SolutionsIoT Security: Problems, Challenges and Solutions
IoT Security: Problems, Challenges and Solutions
 
5 questions about the IoT (Internet of Things)
5 questions about the IoT (Internet of Things) 5 questions about the IoT (Internet of Things)
5 questions about the IoT (Internet of Things)
 
Security in the Internet of Things
Security in the Internet of ThingsSecurity in the Internet of Things
Security in the Internet of Things
 

Ähnlich wie Artificial intelligence and IoT

Imtiaz khan data_science_analytics
Imtiaz khan data_science_analyticsImtiaz khan data_science_analytics
Imtiaz khan data_science_analyticsimtiaz khan
 
Model evaluation in the land of deep learning
Model evaluation in the land of deep learningModel evaluation in the land of deep learning
Model evaluation in the land of deep learningPramit Choudhary
 
Datascience101presentation4
Datascience101presentation4Datascience101presentation4
Datascience101presentation4Salford Systems
 
Machine Learning AND Deep Learning for OpenPOWER
Machine Learning AND Deep Learning for OpenPOWERMachine Learning AND Deep Learning for OpenPOWER
Machine Learning AND Deep Learning for OpenPOWERGanesan Narayanasamy
 
Data analytcis-first-steps
Data analytcis-first-stepsData analytcis-first-steps
Data analytcis-first-stepsShesha R
 
Human in the loop: Bayesian Rules Enabling Explainable AI
Human in the loop: Bayesian Rules Enabling Explainable AIHuman in the loop: Bayesian Rules Enabling Explainable AI
Human in the loop: Bayesian Rules Enabling Explainable AIPramit Choudhary
 
Spark + AI Summit - The Importance of Model Fairness and Interpretability in ...
Spark + AI Summit - The Importance of Model Fairness and Interpretability in ...Spark + AI Summit - The Importance of Model Fairness and Interpretability in ...
Spark + AI Summit - The Importance of Model Fairness and Interpretability in ...Francesca Lazzeri, PhD
 
Machine_Learning_with_MATLAB_Seminar_Latest.pdf
Machine_Learning_with_MATLAB_Seminar_Latest.pdfMachine_Learning_with_MATLAB_Seminar_Latest.pdf
Machine_Learning_with_MATLAB_Seminar_Latest.pdfCarlos Paredes
 
How to Make Cars Smarter: A Step Towards Self-Driving Cars
How to Make Cars Smarter: A Step Towards Self-Driving CarsHow to Make Cars Smarter: A Step Towards Self-Driving Cars
How to Make Cars Smarter: A Step Towards Self-Driving CarsVMware Tanzu
 
Machine Learning in the Financial Industry
Machine Learning in the Financial IndustryMachine Learning in the Financial Industry
Machine Learning in the Financial IndustrySubrat Panda, PhD
 
Recommender Systems from A to Z – The Right Dataset
Recommender Systems from A to Z – The Right DatasetRecommender Systems from A to Z – The Right Dataset
Recommender Systems from A to Z – The Right DatasetCrossing Minds
 
Model Evaluation in the land of Deep Learning
Model Evaluation in the land of Deep LearningModel Evaluation in the land of Deep Learning
Model Evaluation in the land of Deep LearningPramit Choudhary
 
AI in SE: A 25-year Journey
AI in SE: A 25-year JourneyAI in SE: A 25-year Journey
AI in SE: A 25-year JourneyLionel Briand
 
IRJET-Smart Tourism Recommender System
IRJET-Smart Tourism Recommender SystemIRJET-Smart Tourism Recommender System
IRJET-Smart Tourism Recommender SystemIRJET Journal
 
The importance of model fairness and interpretability in AI systems
The importance of model fairness and interpretability in AI systemsThe importance of model fairness and interpretability in AI systems
The importance of model fairness and interpretability in AI systemsFrancesca Lazzeri, PhD
 
Tech meetup Data Driven - Codemotion
Tech meetup Data Driven - Codemotion Tech meetup Data Driven - Codemotion
Tech meetup Data Driven - Codemotion antimo musone
 

Ähnlich wie Artificial intelligence and IoT (20)

Imtiaz khan data_science_analytics
Imtiaz khan data_science_analyticsImtiaz khan data_science_analytics
Imtiaz khan data_science_analytics
 
AI and Deep Learning
AI and Deep Learning AI and Deep Learning
AI and Deep Learning
 
Model evaluation in the land of deep learning
Model evaluation in the land of deep learningModel evaluation in the land of deep learning
Model evaluation in the land of deep learning
 
Datascience101presentation4
Datascience101presentation4Datascience101presentation4
Datascience101presentation4
 
Data Science and Analysis.pptx
Data Science and Analysis.pptxData Science and Analysis.pptx
Data Science and Analysis.pptx
 
Machine Learning AND Deep Learning for OpenPOWER
Machine Learning AND Deep Learning for OpenPOWERMachine Learning AND Deep Learning for OpenPOWER
Machine Learning AND Deep Learning for OpenPOWER
 
Data analytcis-first-steps
Data analytcis-first-stepsData analytcis-first-steps
Data analytcis-first-steps
 
Human in the loop: Bayesian Rules Enabling Explainable AI
Human in the loop: Bayesian Rules Enabling Explainable AIHuman in the loop: Bayesian Rules Enabling Explainable AI
Human in the loop: Bayesian Rules Enabling Explainable AI
 
Spark + AI Summit - The Importance of Model Fairness and Interpretability in ...
Spark + AI Summit - The Importance of Model Fairness and Interpretability in ...Spark + AI Summit - The Importance of Model Fairness and Interpretability in ...
Spark + AI Summit - The Importance of Model Fairness and Interpretability in ...
 
Machine_Learning_with_MATLAB_Seminar_Latest.pdf
Machine_Learning_with_MATLAB_Seminar_Latest.pdfMachine_Learning_with_MATLAB_Seminar_Latest.pdf
Machine_Learning_with_MATLAB_Seminar_Latest.pdf
 
How to Make Cars Smarter: A Step Towards Self-Driving Cars
How to Make Cars Smarter: A Step Towards Self-Driving CarsHow to Make Cars Smarter: A Step Towards Self-Driving Cars
How to Make Cars Smarter: A Step Towards Self-Driving Cars
 
Machine Learning in the Financial Industry
Machine Learning in the Financial IndustryMachine Learning in the Financial Industry
Machine Learning in the Financial Industry
 
Recommender Systems from A to Z – The Right Dataset
Recommender Systems from A to Z – The Right DatasetRecommender Systems from A to Z – The Right Dataset
Recommender Systems from A to Z – The Right Dataset
 
Model Evaluation in the land of Deep Learning
Model Evaluation in the land of Deep LearningModel Evaluation in the land of Deep Learning
Model Evaluation in the land of Deep Learning
 
AI in SE: A 25-year Journey
AI in SE: A 25-year JourneyAI in SE: A 25-year Journey
AI in SE: A 25-year Journey
 
Machine learning
 Machine learning Machine learning
Machine learning
 
Machine_Learning.pptx
Machine_Learning.pptxMachine_Learning.pptx
Machine_Learning.pptx
 
IRJET-Smart Tourism Recommender System
IRJET-Smart Tourism Recommender SystemIRJET-Smart Tourism Recommender System
IRJET-Smart Tourism Recommender System
 
The importance of model fairness and interpretability in AI systems
The importance of model fairness and interpretability in AI systemsThe importance of model fairness and interpretability in AI systems
The importance of model fairness and interpretability in AI systems
 
Tech meetup Data Driven - Codemotion
Tech meetup Data Driven - Codemotion Tech meetup Data Driven - Codemotion
Tech meetup Data Driven - Codemotion
 

Mehr von Veselin Pizurica

Has serverless adoption hit a roadblock?
Has serverless adoption hit a roadblock?Has serverless adoption hit a roadblock?
Has serverless adoption hit a roadblock?Veselin Pizurica
 
Remote Patient & Elderly Care Monitoring
Remote Patient & Elderly Care MonitoringRemote Patient & Elderly Care Monitoring
Remote Patient & Elderly Care MonitoringVeselin Pizurica
 
Solving the weak spots of serverless with directed acyclic graph model
Solving the weak spots of serverless with directed acyclic graph modelSolving the weak spots of serverless with directed acyclic graph model
Solving the weak spots of serverless with directed acyclic graph modelVeselin Pizurica
 
How to use probabilistic inference programming for application orchestration ...
How to use probabilistic inference programming for application orchestration ...How to use probabilistic inference programming for application orchestration ...
How to use probabilistic inference programming for application orchestration ...Veselin Pizurica
 
A practical look at how to build & run IoT business logic
A practical look at how to build & run IoT business logicA practical look at how to build & run IoT business logic
A practical look at how to build & run IoT business logicVeselin Pizurica
 
Waylay building smart city solution: IoT convention Antwerp
Waylay building smart city solution: IoT convention AntwerpWaylay building smart city solution: IoT convention Antwerp
Waylay building smart city solution: IoT convention AntwerpVeselin Pizurica
 
Google Cloud infrastructure in Conrad Connect by Google & waylay
Google Cloud infrastructure in Conrad Connect by Google & waylayGoogle Cloud infrastructure in Conrad Connect by Google & waylay
Google Cloud infrastructure in Conrad Connect by Google & waylayVeselin Pizurica
 
Artificial intelligence by Aleksandra Pizurica
Artificial intelligence by Aleksandra PizuricaArtificial intelligence by Aleksandra Pizurica
Artificial intelligence by Aleksandra PizuricaVeselin Pizurica
 
Automation is eating the world
Automation is eating the worldAutomation is eating the world
Automation is eating the worldVeselin Pizurica
 
LPWAN - IoT (Platform) Killer Application
LPWAN - IoT (Platform) Killer ApplicationLPWAN - IoT (Platform) Killer Application
LPWAN - IoT (Platform) Killer ApplicationVeselin Pizurica
 
Automation, intelligence and knowledge modelling
Automation, intelligence and knowledge modellingAutomation, intelligence and knowledge modelling
Automation, intelligence and knowledge modellingVeselin Pizurica
 
Internet of Things introduction
Internet of Things introductionInternet of Things introduction
Internet of Things introductionVeselin Pizurica
 
A Cloud-Based Bayesian Smart Agent Architecture for Internet-of-Things Applic...
A Cloud-Based Bayesian Smart Agent Architecture for Internet-of-Things Applic...A Cloud-Based Bayesian Smart Agent Architecture for Internet-of-Things Applic...
A Cloud-Based Bayesian Smart Agent Architecture for Internet-of-Things Applic...Veselin Pizurica
 

Mehr von Veselin Pizurica (16)

Has serverless adoption hit a roadblock?
Has serverless adoption hit a roadblock?Has serverless adoption hit a roadblock?
Has serverless adoption hit a roadblock?
 
Remote Patient & Elderly Care Monitoring
Remote Patient & Elderly Care MonitoringRemote Patient & Elderly Care Monitoring
Remote Patient & Elderly Care Monitoring
 
Solving the weak spots of serverless with directed acyclic graph model
Solving the weak spots of serverless with directed acyclic graph modelSolving the weak spots of serverless with directed acyclic graph model
Solving the weak spots of serverless with directed acyclic graph model
 
How to use probabilistic inference programming for application orchestration ...
How to use probabilistic inference programming for application orchestration ...How to use probabilistic inference programming for application orchestration ...
How to use probabilistic inference programming for application orchestration ...
 
A practical look at how to build & run IoT business logic
A practical look at how to build & run IoT business logicA practical look at how to build & run IoT business logic
A practical look at how to build & run IoT business logic
 
Waylay - We are hiring
Waylay - We are hiringWaylay - We are hiring
Waylay - We are hiring
 
Waylay building smart city solution: IoT convention Antwerp
Waylay building smart city solution: IoT convention AntwerpWaylay building smart city solution: IoT convention Antwerp
Waylay building smart city solution: IoT convention Antwerp
 
Google Cloud infrastructure in Conrad Connect by Google & waylay
Google Cloud infrastructure in Conrad Connect by Google & waylayGoogle Cloud infrastructure in Conrad Connect by Google & waylay
Google Cloud infrastructure in Conrad Connect by Google & waylay
 
Artificial intelligence by Aleksandra Pizurica
Artificial intelligence by Aleksandra PizuricaArtificial intelligence by Aleksandra Pizurica
Artificial intelligence by Aleksandra Pizurica
 
Automation is eating the world
Automation is eating the worldAutomation is eating the world
Automation is eating the world
 
LPWAN - IoT (Platform) Killer Application
LPWAN - IoT (Platform) Killer ApplicationLPWAN - IoT (Platform) Killer Application
LPWAN - IoT (Platform) Killer Application
 
Automation, intelligence and knowledge modelling
Automation, intelligence and knowledge modellingAutomation, intelligence and knowledge modelling
Automation, intelligence and knowledge modelling
 
Internet of Things introduction
Internet of Things introductionInternet of Things introduction
Internet of Things introduction
 
My life in one picture
My life in one pictureMy life in one picture
My life in one picture
 
WebRTC presentation
WebRTC presentationWebRTC presentation
WebRTC presentation
 
A Cloud-Based Bayesian Smart Agent Architecture for Internet-of-Things Applic...
A Cloud-Based Bayesian Smart Agent Architecture for Internet-of-Things Applic...A Cloud-Based Bayesian Smart Agent Architecture for Internet-of-Things Applic...
A Cloud-Based Bayesian Smart Agent Architecture for Internet-of-Things Applic...
 

Kürzlich hochgeladen

Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 

Kürzlich hochgeladen (20)

Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 

Artificial intelligence and IoT

  • 1. Programmable web of the future { firstName: Veselin, lastName: Pizurica, epochTime: 1381953702 } Free Powerpoint Templates Page 1
  • 2. Today talk is about the future future of the web Integration/convergence: –  API’s –  Sensor Networks/M2M –  Cloud –  Data mining –  Intelligent decision engines Page 2
  • 3. Introduction to AI –  Learning, Pattern recognition –  Intelligent agents –  Probabilistic reasoning and uncertainty –  Graphical models Page 3
  • 4. Material used •  •  •  •  UGent AI course: http://telin.ugent.be/~sanja/ArtificialIntelligence BaysiaLab  white  paper   Wikipedia   Google  search   Page 4
  • 5. Map  of  Analy;c  Modeling     Page Breiman  (2001)  and  Shmueli  (2010) 5
  • 8. Intelligent  agents   Agent:  an  en;ty  that  perceives  and  acts  (from  La;n  agere,  to  do)   Ra)onal  agent  is  one  that  acts  so  as  to  achieve  the  best  outcome,  or  when  there  is   uncertainty,  the  best  expected  outcome   Abstractly,  an  agent  is  a  func;on  from  percept  histories  to  ac;ons:   For  any  given  class  of  environments  and  tasks,  we  seek  the  agent  (or  class  of  agents)  with   the  best  performance   In  prac;ce,  computa;onal  limita;ons  make  perfect  ra;onality  unachievable  à  design  best   program  for  given  machine  resources   Page 8 8  
  • 9. Ra;onality   •  A  ra;onal  agent  is  one  that  does  the  right  thing.     •  How  do  we  know  whether  it  is  the  right  thing?     -­‐    By  considering  the  consequences  of  the  agent  behavior   (i.e.,  the  sequence  of  states  through  which  the   environment  goes  as  a  result  of  agent’s  behavior)   •  A  sequence  of  states  (through  which  the  environment  goes)  is   evaluated  by  a  performance  measure     Page 9 9  
  • 10. Specifying  the  task  environment   To design a rational agent, we must specify the task environment Consider the task of designing an automated taxi: –  Performance measure: safety, destination, profits, legality, comfort –  Environment: streets/freeways, traffic, pedestrians, weather –  Actuators: steering, accelerator, brake, horn, speaker/display –  Sensors: video, acceleromaters, gauges, engine sensors, keyboard, sensors Page 10 10  
  • 19. Agent  types   •  Four  basic  types  in  order  of  increasing   generality:   –  simple  reflex  agents   –  reflex  agents  with  state   –  goal-­‐based  agents   –  u;lity-­‐based  agents   All  these  can  be  turned  into  learning  agents   Page 19 19  
  • 20. Simple  reflex  agents   Page 20 20  
  • 21. Reflex  agents  with  state   Page 21 21  
  • 24. Why  learning? Why  do  we  want  an  agent  to  learn?  (Why  not  program  an   improved  design  from  the  beginning)?   –  Cannot  an;cipate  all  possible  situa;ons  that  the  agent   might  find  itself  in   –  Cannot  an;cipate  all  changes  over  ;me   –  Programmers  might  not  know  how  to  program  a  solu;on   themselves  (e.g.  how  to  program  face  recogni;on)     Learning  modifies  the  agent's  decision  mechanisms  to  improve   performance   Page 24
  • 25. Paaern  recogni;on Unsupervised  learning   –  Learning  paaerns  without  explicit  feedback  supplied   –  The  system  forms  clusters  or  natural  groupings  of  the  input  paaerns   (based  on  some  similarity  criteria).  ➡Clustering     Reinforcement  learning   –  Learning  from  a  series  of  reinforcements  –  rewards  and  punishments   Supervised  learning   –  Learning  a  func;on  that  maps  input  to  output  based  on  available   (observed)  input-­‐output  pairs  (Correct  answers  for  each  instance)   Semi-­‐supervised  learning   –  A  few  labeled  samples  available  and  a  large  collec;on  of  unlabeled   ones   –  Learn  from  geometry  of  unlabeled  samples  and  use  the  labeled  ones   Page 25 to  improve  the  learning    
  • 26. Supervised  Learning labeled training sets, used to train a classifier Page 26
  • 27. Unsupervised Learning •  •  No labeled training sets are provided System applies a specified clustering/grouping criteria to unlabeled dataset Clusters/groups together “most similar” objects (according to given criteria) Page 27
  • 28. Pattern Recognition Process Data acquisition and sensing – Measurements of physical variables. – Important issues: bandwidth, resolution , etc. Pre-processing – Removal of noise in data. – Isolation of patterns of interest from the background. Feature extraction – Finding a new representation in terms of features. Classification – Using features and learned models to assign a pattern to a category. Post-processing – Evaluation of confidence in decisions. Page 28
  • 29. Feature vectors Single object represented by several features, e.g. shape, size, color, weight x1 = shape(e.g.nr of sides) x2 = size(e.g. some numeric value) x3 = color (e. g. rgb values) xd = some other(numeric)feature. X becomes a feature vector Page 29
  • 30. Classical model of Pattern Recognition Page 30
  • 31. Example of Simple Classifier Page 31
  • 33. “Curse of dimensionality” Finding  the  principal  eigenvectors  of  the  covariance  matrix  of  the  data:  PCA   Page 33
  • 34. PCA Principal component analysis (PCA) is a orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. It is not, however, optimized for class separability. An alternative is the linear discriminant analysis, which does take this into account. PCA is also sensitive to the scaling of the variables. Page 34
  • 35. Deep Learning •  Choosing the correct feature representation of input data, is a way that people can bring prior knowledge of a domain to increase an algorithm's computational performance and accuracy. To move towards general artificial intelligence, algorithms need to be less dependent on this feature engineering and better learn to identify the explanatory factors of input data on their own. •  Deep learning tries to move in this direction by capturing a 'good' representation of input data by using compositions of non-linear transformations. Page 35
  • 36. Two types of models •  Probabilistic graphical models have nodes in each layer that are considered as latent random variables. In this case, you care about the probability distribution of the input data x and the hidden latent random variables h that describe the input data in the joint distribution p(x,h). These latent random variables describe a distribution over the observed data. •  Direct encoding (neural network) models have nodes in each layer that are considered as computational units. This means each node h performs some computation (normally nonlinear like a sigmoidal function) given its inputs from the previous layer. Page 36
  • 37. Decision trees 1.  Learn rules from data 2.  Apply each rule at each node 3.  Classification is at the leafs of the tree Page 37
  • 38. Decision Trees example Example:  decision  whether  to  wait  for  a  table  in  a  restaurant  depending  on   the  following  aaributes:   1.  Alternate  (Alt):  Is  there  a  suitable  alterna;ve  restaurant  nearby?   2.   Bar:  Is  there  a  comfortable  bar  area  in  the  restaurant,  where  I  can  wait?   3.   Fri/Sat  (Fri):  True  on  Fridays/Saturdays   4.   Hungry  (Hun):  Are  we  hungry?   5.   Patrons  (Pat):  How  many  people  are  in  the  restaurant  (None,  Some  or  Full)   6.   Price:  the  restaurant’s  price  range  ($,  $$,  $$$)   7.   Raining  (Rain):  Is  it  raining  outside?   8.   ReservaBon  (Res):  Did  we  make  a  reserva;on?   9.   Type:  the  kind  of  restaurant  (French,  Italian,  Thai  or  burger)   10.   WaitEsBmate  (Est):  the  wait  ;me  es;mated  by  the  host  (0-­‐10min,  10-­‐30,   30-­‐60,  or  >60)   Page 38
  • 39. Decision tree How  many  dis;nct  decision  trees  we  have  with  n  Boolean  aaributes?   =  number  of  Boolean  func;on  =  number  of  dis;nct  truth  tables  with  2^n  rows  =   2^n^n   E.g., with 6 Boolean attributes 18,446,744,073,709,551,616 Page 39
  • 40. Uncertainty   Let  At  denote  the  ac;on  “leave  for  airport  t  minutes  before  flight”                                           Will  At  get  me  there  on  ;me?     ? ? ? •  Purely  logical  approach  leads  to  weak  conclusions:   §   “A90  will  get  me  there  on  ;me  if  there  is  no  accident  on  the  way  and  it   doesn't  rain  and  my  ;res  remain  intact  and  no  meteorite  hits  the  car,  etc”   § None  of  these  can  be  inferred  for  sure  à  plan  success  cannot  be  inferred   Page 40 40  
  • 41. Uncertainty   •  Consider  diagnosis  of  a  pa;ent  with  headache.  Many  reasons  are  possible  like   sinus  problems  or  eye  vision,  tense  muscles,  flu,  cancer,…  Suppose  a  logical   rule  that  aaempts  to  express  this   Headache  ⇒  SinusiBs  ∨  EyeSight  ∨  SBffNeck  ∨  Flu  ∨  Cancer… •  The  problem  is  that  there  is  almost  unlimited  list  of  possible  causes.    The   causal  rule,  like  SBffNeck=>Headache  doesn’t  work  either  (s;ff  neck  doesn’t   always  cause  headache)           •  Trying  to  use  logic  in  this  type  of  domains  fails  because       §  there  is  too  much  work  to  list  all  the  aaributes   §  no  complete  theory  or  knowledge   §  not  all  the  necessary  tests  can  be  or  have  been  run   Page 41 41  
  • 42. Why  probabilis;c  reasoning?   •  Probabilis;c  reasoning  is  useful  because  logic  olen  fails  due  to   Laziness   and   Ignorance   too  many   aaributes  to  list Theore;cal   Prac;cal   (no  complete   knowledge  of  the   domain) (not  enough   observa;ons,   tests,..)     •  Probabilis;c  asser;ons  summarize  the  effects  of  laziness  and  ignorance     Page 42 42  
  • 43. Graphical  models     •  Graphical  models   •  Markov  random  fields   •  Bayesian  networks   Page 43 43  
  • 44. Graphical  models   Graphical  models   Bayesian  networks   Graphical  models  are  related  to  mathema;cal   graph  theory   Page 44 44  
  • 45. Probabilis;c  graphs   •  A  graph  is  a  set  of  objects  (represented  by  nodes,  also  called   ver)ces  or  points),  where  some  pairs  of  the  nodes  are   connected  by  links  (edges).       •  If  the  edges  are  directed,  they  are  also  called  arrows  and  the   graph  is  directed.  In  a  weighted  graph,  weights  are  assigned  to   the  edges.  The  graph  is  complete  if  all  the  ver;ces  are   connected  to  each  other.   •  Probabilis;c  graphs   –  nodes  ↔  random  variables  (r.v.s)   Page 45   –  edges  ↔  probabilis;c  dependencies  between  these  r.v.s.     45
  • 46. Common  graphical  models   •  Bayesian  networks  –  directed  graphical  models   X Causal  influence   descendants  of  X   •  Markov  random  fields  –  not  directed  graphs   X neighbors  of  X Page 46 46  
  • 47. Markov  rule   •  In  a  directed  graph     P(Xi | all nondescend ants) = P(Xi | Parents(Xi ))   •  A  special  case:  Markov  chain     P(Xi | Xi−1,..., X1 ) = P(Xi | Xi−1 ) … •  Markov  random  field   P(Xi | all other nodes) = P(Xi | Neighbors (Xi )) Page 47 47  
  • 48. Markov  Random  Fields  (MRFs)   •  Non-­‐directed  probabilis;c  graphs   •  Used  a  lot  in  digital  image  processing  and  computer  vision   •  This  example  illustrates  applica;on  in  image  segmenta;on     Page 48 48  
  • 49. Bayesian  networks   symptoms   smoker?   X-­‐ray     travel   disease  1   disease  2   Page 49 49  
  • 50. Bayes’  rule   Product  rule   P(a ∧ b) = P(a | b) P(b) P (b | a ) P ( a )     Bayes’  rule   P( a | b) = P ( b)                                                                                                     Or  in  distribu;on  form       P( X | Y )P(Y ) P(Y | X ) =                                                      =          P(            |  Y  )P(Y )             α       X       P( X )                                                                                                     Useful  for  accessing  diagnos)c  probability  from  causal  probability   P( Effect | Cause)P(Cause)     P(Cause | Effect ) = P( Effect )                                                                                                     Olen  we  perceive  as  evidence  the  effect  of  some  unknown  cause  and  we  want  to   determine  that  cause,  e,g.  the  chance  of  diseasex  given  symptomy:       P( symptom y | disease x ) P(disease x ) P(disease x | symptom y ) =                                                                                                     P( symptom y ) Page 50 50  
  • 51. Bayesian  networks   A  simple,  graphical  nota;on  for  condi;onal  independence  asser;ons  and   hence  for  compact  specifica;on  of  full  joint  distribu;ons   Syntax:   •  a  set  of  nodes,  one  per  variable   •  a  directed,  acyclic  graph  (each  link  means  “directly  influences”)   •  a  condi;onal  distribu;on  for  each  node  given  its  parents:   P( X i | Parents ( X i )) Page 51 51  
  • 52. Network:  directed  acyclic  graph   Descendants  of  X Non-­‐descendants  of  X Y edges:  causal  influence   X nodes:  random  variables   X has causal influence on Y •  Evidence for X forms causal support for Y •  Evidence for Y forms diagnostic support for X Page 52 52  
  • 53. Network  separa;on   Let  us  inves;gate  (condi;onal)  independence  in  three  simple   networks  featuring  these  types  of  nodes,  and  let                                             denote  “a  and  b  are  condi;onally  independent  given  c”   P(a, b, c) = P(a) P(c | a) P(b | c) Consider  now  evidence  in    c:     P(a, b) = ∑ P(a) P(c | a ) P(b | c) = P(a) P(b | a ) ⇒ c ≠ P(a) P(b) (in  this  network  a  and  b  are  in  general  not   independent)   P(a, b, c) P(a)P(c | a)P(b | c) = = P(c) P(c) = P(a | c)P(b | c) P(a, b | c) =   So,  we  can  say  that  the  node  c    blocks  the  path  between  a  and  b.   Page 53 53  
  • 54. D-­‐separa;on  contd.   A,  B  and  C  are  non-­‐overlapping  sets   A C B The  sets  A  and  B  are  d-­‐separated  by  C  if     each  node  in  A  is  d-­‐separated  from  each  node  in  B  by  C Page 54 54  
  • 55. Example:  Car  diagnosis   Ini;al  evidence:  car  won't  start   Testable  variables  (green),  “broken,  so  fix  it”  variables  (orange)   Hidden  variables  (gray)  ensure  sparse  structure,  reduce  parameters Page 55 55  
  • 56. Belief  propaga;on   •  Belief  propaga;on  algorithm  was  introduced  by  Judea  Pearl,  1982   •  Exact  inference  in  networks  without  loops;  complexity  linear  in  the  number   of  nodes   •   Became  very  popular  aler  it  was  shown  that  the  same  computa;ons  are  in     turbo  codes  and  the  same  principles  in  the  Viterbi  algorithm   •  Main  idea:  inference  by  local  message  passing  among  neighboring  nodes              The  message  can  loosely  be  interpreted  as  “I  (node  i )  think  that  you             (node  j)  are  that  much  likely  to  be  in  a  given  state”.     Page 56 56  
  • 57. Message  passing  revisited   1.  Distributed  soldier  coun;ng.   2.  Distributed  soldier  coun;ng  with  the  leader  in  line.   Page 57 57  
  • 58. Numenta: HTM model An HTM network consists of regions arranged in a hierarchy. Jeff Hawkins: “It combines and extends approaches used in Bayesian networks, spatial and temporal clustering algorithms, while using a tree-shaped hierarchy of nodes that is common in neural networks.” Read a book, it is a great fun -> Page 58
  • 59. Semantic web and IBM’s Watson The "heart and soul” is Unstructured Information Management Architecture [UIMA] Page 59
  • 60. Presentation 2nd part •  Smart web –  API economy –  IOT •  Bayesian nets –  Troubleshooting and diagnostic –  Sensor integration via plugin framework –  Inteligent decisions and actions –  Cloud deployment –  IFTTT like application using framework above Page 60
  • 62. API •  APIs have become new patents •  Who holds the data, holds the knowledge •  Companies don’t share their know-how, but they are willing to share their know-what (via application programming interface API) •  API economy is coming, and it will be the major driver of the profit for many companies Page 62
  • 63. Classical products distribution Services distributed via API Page 63
  • 66. Sensor Networks •  Network of specialized sensors intended to monitor and record conditions at diverse locations. •  Commonly monitored parameters are temperature, humidity, pressure, wind direction and speed, illumination intensity, vibration intensity, sound intensity, powerline voltage, chemical concentrations, pollutant levels and vital body functions. Page 66
  • 68. M2M is becoming a reality API economy has become reality Page 68
  • 69. Programmable web of the future Sensors gather and push data to the cloud. API economies share data and services in the cloud. In the cloud, intelligent engine aggregates and correlates data from different sources, creating a new VALUE. That can be used either to: –  Provide new insights (analysis) –  Create new instructions (actions) via API Page 69
  • 70. Three types of AI/IOT implementations •  “Ambient intelligence” – mash networks, information flow and decisions stay local •  “IOT Analytics” – big data like use case scenarios •  IOT Analytics + API’s + cloud + decision engine + actions Page 70
  • 71. From IBM talk on IOT Page 71
  • 73. IF THIS THEN THAT IS NOT GOING TO WORK Page 73
  • 74. CRM/BPM IS NOT GOING TO WORK Page 74
  • 75. Technology that can deal with huge data sets under complexity and uncertainty? Page 75 Google/Toyota/Renault/Volvo driverless car research projects
  • 76. Bayes models will win the battle Page 76
  • 77. Why is this different? Page 77
  • 78. Bayesian network modeling Data analysis technique ideally suited to messy, complex data. The focus is on structure discovery – determining an optimal graphical model which describes the interrelationships in the underlying processes structure discovery AND inter-relationships Page 78
  • 79. •  How do you express that car needs both battery and fuel to function? Easy. •  How do you say that if your lights are not working, most likely it is a battery fault, but it could be as well that just lights are broken? Still the fact that lights are not working point to most likely cause of the battery fault. If you only model via composition and add behavior separately – what most of the tools do these days – you are heading for complexity! Page 79
  • 80. Example, car model Car model with relations: NO Data available Chance that the car will start is above 98% Page 80
  • 81. Car example, lights are off off Lights are off Chance that battery functions dropped from 99,99% to less 50% Chance that the car will start is bellow 50% Page 81
  • 82. Car example, lights are on on Lights are on Battery works, there is no need to check it Chance that the car will start now only depends on the fuel Page 82
  • 83. Prototype architecture Database of recipes Website where User configures Logic (recipes) Decision engine Pluggable Actions Developer extensions (new capabilities) Pluggable sensors Page 83