Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Upcoming SlideShare
What to Upload to SlideShare
What to Upload to SlideShare
Loading in …3
×
1 of 36

Probabilistic Predictions - When Will It Be Done?

3

Share

Download to read offline

The very first question a customer asks us when we start work is - When will it be done? Traditional methods of answering this question are fraught with errors. The most common errors include heavy reliance on estimates and use of averages to give one deterministic answer. We are all aware that our world is not deterministic and each prediction has a probability of being right and a complementary probability of being wrong. In this session, we will use examples and a simple exercise to demonstrate a much easier method which can help make probabilistic predictions. These predictions can help teams have more informed conversations with their customers about their probability of completing a project on time and around the risk profiles of their projects. The audience will learn how with very little estimation and simple measurements they can better inform and equip teams, managers and customers with information about possible completion dates of the project. We will show how these techniques are actively being used to predict the completion of single items and a set of multiple items in the real world.

Related Books

Free with a 30 day trial from Scribd

See all

Related Audiobooks

Free with a 30 day trial from Scribd

See all

Probabilistic Predictions - When Will It Be Done?

  1. 1. @Singhpr
  2. 2. @Singhpr
  3. 3. @Singhpr
  4. 4. @Singhpr
  5. 5. @Singhpr
  6. 6. Total Number of catalogued songs = 107 Total Playtime For 107 songs = 19 hrs, 53 minutes Average Song Length = 5 mins, 7 Seconds @Singhpr
  7. 7. @Singhpr
  8. 8. @Singhpr 13 Minutes
  9. 9. @Singhpr
  10. 10. "All My Love", 5:53 "Gallows Pole", 4:57 "In My Time of Dying", 11:08 "LA Drone" (instrumental), 0:14 "Stairway to Heaven", 8:02 0:00 1:12 2:24 3:36 4:48 6:00 7:12 8:24 9:36 10:48 12:00 0 20 40 60 80 100 120
  11. 11. @Singhpr
  12. 12. @Singhpr
  13. 13. @Singhpr
  14. 14. Average Per Game = 2.3 Number Of Games in a Season = 16 Prediction (2.3 * 16) = 36.8 Game No Touchdowns 1 1 2 1 3 0 4 2 5 2 6 4 7 0 8 3 9 3 10 2 11 2 12 4 13 3 14 1 15 1 16 2 17 4 18 5 19 4 20 2 @Singhpr
  15. 15. @Singhpr
  16. 16. Game Number Touchdowns 1 1 2 1 3 0 4 2 5 2 6 4 7 0 8 3 9 3 10 2 11 2 12 4 13 3 14 1 15 1 16 2 17 3 18 2 Game Number Touchdowns 19 1 20 2 21 1 22 3 23 4 24 1 25 2 26 3 27 3 28 3 29 4 30 2 31 4 32 1 33 4 34 5 35 4 36 2 @Singhpr
  17. 17. I II III IV V VI I 1 0 3 1 2 4 II 1 3 1 2 3 1 III 0 3 1 1 3 4 IV 2 2 2 3 3 5 V 2 2 3 4 4 4 VI 4 4 2 1 2 2 @Singhpr
  18. 18. I II III IV V VI I 1 0 3 1 2 4 II 1 3 1 2 3 1 III 0 3 1 1 3 4 IV 2 2 2 3 3 5 V 2 2 3 4 4 4 VI 4 4 2 1 2 2 @Singhpr
  19. 19. @Singhpr
  20. 20. I II III IV V VI I 1 0 3 1 2 4 II 1 3 1 2 3 1 III 0 3 1 1 3 4 IV 2 2 2 3 3 5 V 2 2 3 4 4 4 VI 4 4 2 1 2 2 @Singhpr Sim Result 1 3 2 1 3 0 4 4 5 0 6 1 7 5 8 3 9 2 10 2 11 2 12 0 13 1 14 3 15 3 16 4 Total 34
  21. 21. I II III IV V VI I 1 0 3 1 2 4 II 1 3 1 2 3 1 III 0 3 1 1 3 4 IV 2 2 2 3 3 5 V 2 2 3 4 4 4 VI 4 4 2 1 2 2 @Singhpr Sim Result 1 0 2 4 3 0 4 5 5 0 6 1 7 5 8 3 9 4 10 3 11 2 12 0 13 2 14 3 15 3 16 4 Total 40
  22. 22. 0 0 0 2 4 4 12 9 18 17 45 47 63 52 58 72 72 81 71 71 60 66 48 39 26 18 16 17 7 0 1 2 1 1 0 0 0 10 20 30 40 50 60 70 80 90 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 Touch Downs 95% 50% 70% 10 %
  23. 23. I II III IV V VI I 1 0 3 1 2 4 II 1 3 1 2 3 1 III 0 3 1 1 3 4 IV 2 2 2 3 3 5 V 2 2 3 4 4 4 VI 4 4 2 1 2 2 @Singhpr
  24. 24. 0 0 0 2 4 4 12 9 18 17 45 47 63 52 58 72 72 81 71 71 60 66 48 39 26 18 16 17 7 0 1 2 1 1 0 0 0 10 20 30 40 50 60 70 80 90 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 Touch Downs 95% 50% 70% 10 %
  25. 25. @Singhpr
  26. 26. @Singhpr
  27. 27. @danvacanti – https://www.actionableagile.com
  28. 28. If you track nothing else, track the date that an item starts and the date that an item completes (for all work items) @Singhpr
  29. 29. Communicate your forecasts in terms of a range and a probability @Singhpr
  30. 30. Update your forecasts as you get more information And Favour short term forecasts over long term forecasts @Singhpr
  31. 31. Most importantly: The best forecasts in the world are useless unless you take action @Singhpr
  32. 32. @Singhpr
  33. 33. @Singhpr

×