SlideShare ist ein Scribd-Unternehmen logo
1 von 35
Downloaden Sie, um offline zu lesen
Introduction to Uplift Modelling
An online gaming application
A few words about me
•  Senior Data Scientist at Dataiku
(worked on churn prediction, fraud detection, bot detection, recommender systems, graph
analytics, smart cities, … )
•  Occasional Kaggle competitor
•  Mostly code with python and SQL
•  Twitter @prrgutierrez
Plan
•  Introduction / Clients situation
•  Uplift use case examples
•  Uplift modelling
•  Uplift evaluation & results
Client situation
•  French Online Gaming Company (RPG)
•  A lot of users are leaving
•  let’s do a churn prediction model !
•  Target : no come back in 14 or 28 days.
(14 missing days -> 80 % of chance not to come back
28 missing days -> 90 % of chance not to come back)
•  Features :
•  Connection features :
•  Time played in 1,7,15,30,… days
•  Time since last connection
•  Connection frequency
•  Days of week / hours of days played
•  Equivalent for payments and subscriptions
•  Age, sex, country
•  Number of account, is a bot …
•  No in game features (no data)
	
  
	
  
Client situation
•  Model Results :
•  AUC 0.88
•  Very stable model
•  Marketing actions :
•  7 different actions based on customer segmentation
(offers, promotion, … )
•  A/B test
-> -5 % churn for persons contacted by email
•  Going further :
•  Feature engineering : guilds, close network, in game actions, …
•  Study long term churn …
Client situation
•  But wait !
•  Strong hypothesis : target the person that are the most likely to churn
Client situation
•  But wait !
•  Strong hypothesis : target the person that are the most likely to churn
•  What is the gain / person for an action ?
•  cost of action
•  value of the customer
•  independent variables
•  “treated” population and “control” population
• 
•  Value with action :
•  Value without action :
•  Gain (if independent of treatment ) :
c
vi i
X
T C
Y =
⇢
1 if customer churn
0 otherwise
ET
(Vi) = vi(1 PT
(Y = 1|X)) c
EC
(Vi) = vi(1 PC
(Y = 1|X))
vi
E(Gi) = vi(PC
(Y = 1|X) PT
(Y = 1|X)) c
Client situation
•  But wait !
•  Strong hypothesis : target the person that are the most likely to churn
•  What is the gain / person for an action ?
•  Objective : maximize this gain
•  Targeting highly probable churner -> minimize
But not the difference !
•  Intuitive examples :
•  : action is expected to make the situation worst. Spam ?
•  : user does not care, is already lost
Upli&	
  =	
  Model	
  
E(Gi) = vi(PC
(Y = 1|X) PT
(Y = 1|X)) c
PT
(Y = 1|X)
PC
(Y = 1) ⇡ PT
(Y = 1)
P
PC
(Y = 1) < PT
(Y = 1)
Uplift
•  Model effect of the action
•  4 groups of customers / patients
•  1  Responded because of the action
(the people we want)
•  2  Responded, but would have responded anyway
(unnecessary costs)
•  3  Did not respond and the action had no impact
(unnecessary costs)
•  4  Did not respond because the action had a negative impact
(negative impact)
•  Incomplete knowledge
Uplift Examples
•  Healthcare :
•  A typical medical trial:
•  treatment group: gets the treatment
•  control group: gets placebo (or another treatment)
•  do a statistical test to show that the treatment is better than placebo
•  With uplift modeling we can find out for whom the treatment works best
•  Personalized medicine
•  Ex : What is the gain in survival probability ?
-> classification/uplift problem
Uplift Examples
•  Churn :
•  E-gaming
•  Other Ex : Coyote
•  Retail :
•  Compare coupons campaigns
Uplift Examples
•  Mailing : Hillstrom challenge
•  2 campaigns :
•  one men email
•  one woman email
•  Question : who are the people to target / that have the best response rate
Uplift Examples
•  Common pattern
•  Experiment or A/B testing -> Test and control
•  Warning : Control can be biased easily :
•  Targeted most probable churners and control is the rest
•  Call only the people that come to a shop
•  Limited experiment trial -> no bandit algorithm :
(once a medicine experiment is done, you don’t continue the “exploration”)
-> relatively large and discrete in time feedbacks.
Uplift modelling
•  Three main methods :
•  Two models approach
•  Class variable modification
•  Modification of existing machine learning models
Uplift modelling : Two model approach
•  Build a model on treatment to get
•  Build a model on control to get
•  Set :
PT
(Y |X)
PC
(Y |X)
P = PT
(Y |X) PC
(Y |X)
Uplift modelling : Two model approach
•  Advantages :
•  Standard ML models can be used
•  In theory, two good estimators -> a good uplift model
•  Works well in practice
•  Generalize to regression and multi-treatment easily
•  Drawbacks
•  Difference of estimators is probably not the best estimator of the difference
•  The two classifier can ignore the weaker uplift signal (since it’s not their target)
•  Algorithm focusing on estimating the difference should perform better
Uplift modelling : Class variable modification
•  Introduced in Jaskowski, Jaroszewicz 2012
•  Allows any classifier to be updated to uplift modeling
•  Let denote the group membership (Treatment or Control)
•  Let’s define the new target variable :
•  This corresponds to flipping the target in the control dataset.
G 2 {T, C}
Z =
8
<
:
1 if G = T and Y = 1
1 if G = C and Y = 0
0 otherwise
Uplift modelling : Class variable modification
•  Why does it work ?
•  By design (A/B test warning !), should be independent from
•  Possibly with a reweighting of the datasets we should have :
thus
P(Z = 1|X) = PT
(Y = 1|X)P(G = T|X) + PC
(Y = 0|X)P(G = C|X)
P(Z = 1|X) = PT
(Y = 1|X)P(G = T) + PC
(Y = 0|X)P(G = C)
G X
P(G = T) = P(G = C) = 1/2
2P(Z = 1|X) = PT
(Y = 1|X) + PC
(Y = 0|X)
Uplift modelling : Class variable modification
•  Why does it work ?
Thus
And sorting by is the same as sorting by
2P(Z = 1|X) = PT
(Y = 1|X) + PC
(Y = 0|X)
= PT
(Y = 1|X) + 1 PC
(Y = 1|X)
P = 2P(Z = 1|X) 1
P(Z = 1|X) P
Uplift modelling : Class variable modification
•  Summary :
•  Flip class for control dataset
•  Concatenate test and control dataset
•  Build a classifier
•  Target users with highest probability
•  Advantages :
•  Any classifier can be used
•  Directly predict uplift (and not each class separately)
•  Single model on a larger dataset (instead of two small ones)
•  Drawbacks :
•  Complex decision surface -> model can perform poorly
•  Interpretation : what is AUC in this case ?
Uplift modeling : Other methods
•  Based on decision trees :
•  Rzepakowski Jaroszewicz 2012
new decision tree split criterion based on information theory
•  Soltys Rzepakowski Jaroszewicz 2013
Ensemble methods for uplift modeling
(out of today scope)
Evaluation
•  We used :
•  2 model approach. -> AUC ? Not very informative.
•  1 model approach -> does AUC means something ?
•  How can we evaluate / compare them ?
•  Cross Validation :
•  4 datasets : treatment/control x train/test
•  Problem :
•  We don’t have a clear 0/1 target.
•  We would need to know for each customer
•  Response to treatment
•  Response to control
-> not possible
Evaluation
•  Gain for group of customers :
•  Gain for the 10% highest scoring customers =
% of successes for top 10% treated customers − % of successes for top 10% control
customers
•  Uplift curve ? :
•  Difference between two lift curve
•  Interpretation : net gain in success rate if a given percentage of the population is treated
•  Pb : no theoretic maximum
•  Pb 2 : weird behaviour for 2 wizard models.
Evaluation : Qini
•  Qini Measure :
•  Similar to Gini (Area under lift curve). Lift Curve <-> Qini Curve
•  Parametric curve defined by :
•  When taking the first observations
•  is the total number of 1 seen in target observations
•  is the total number of 1 seen in control observations
•  is the total number of target observations
•  is the total number of control observations
•  Balanced setting :
t
f(t) = YT (t) YC(t) ⇤ NC(t)/NT (t)
YT
YC
NC
NT
f(t) = YT (t) YC(t)
Evaluation : Qini
•  Personal intuition :
•  We can’t know everything :
•  treated that convert, not treated that don’t convert. What would have happen ?
•  But we don’t want to see :
•  Treated not converting
•  Not treated converting (in our top list)
•  In we want to minimize :
•  Very similar to lift taking into account only negative examples.
t
NT (t) YT (t) + YC(t)
Evaluation : Qini
f(t) = YT (t) YC(t)
Evaluation : Qini
•  Best model :
•  Take first all positive in target and last all positive in control.
•  No theoretic best model :
•  depends on possibility of negative effect
•  Displayed for no negative effect
•  Random model :
•  Corresponds to global effect of treatment
•  Hillstrom Dataset :
•  For women models are comparable and useful
•  For men, there is no clear individuals to target
Evaluation : Qini
f(t) = YT (t) YC(t)
Evaluation : Qini
•  Back to our study :
•  Class modification performs best
•  Two models approach performs poorly
•  A/B test failure :
•  Control dataset is way to small !
•  Class modification model very close to lift
•  Two model slightly better than random
-> need to redo the A/B test.
Conclusion
•  Uplift :
•  Surprisingly little literature / examples
•  The theory is rather easy to test
•  Two models
•  Class modification
•  The intuition and evaluation are not easy to grasp
•  On the client side :
•  I don’t loose hope we’ll do the A/B test again
•  A good lead to select the best offer for a customer
A few references
•  Data :
•  Churn in gaming :
WOWAH dataset (blog post to come)
•  Uplift for healthcare :
Colon Dataset
•  Uplift in mailing :
Hillstrom data challenge
•  Uplift in General :
Simulated data :
(blog post to come)
A few references
•  Application
•  Uplift modeling for clinical trial data (Jaskowski, Jaroszewicz)
•  Uplift Modeling in Direct Marketing (Rzepakowski, Jaroszewicz)
A few references
•  Modeling techniques :
•  Rzepakowski Jaroszewicz 2011 (decision trees)
•  Soltys Rzepakowski Jaroszewicz 2013 (ensemble for uplift)
•  Jaskowski Jaroszewicz 2012 (Class modification model)
A few references
•  Evaluation
•  Using Control Groups to Target on Predicted Lift (Radcliffe)
•  Testing a New Metric for Uplift Models (Mesalles Naranjo)
Thank you for your attention !

Weitere ähnliche Inhalte

Was ist angesagt?

Artwork Personalization at Netflix
Artwork Personalization at NetflixArtwork Personalization at Netflix
Artwork Personalization at Netflix
Justin Basilico
 

Was ist angesagt? (20)

Foundation Models in Recommender Systems
Foundation Models in Recommender SystemsFoundation Models in Recommender Systems
Foundation Models in Recommender Systems
 
Netflix talk at ML Platform meetup Sep 2019
Netflix talk at ML Platform meetup Sep 2019Netflix talk at ML Platform meetup Sep 2019
Netflix talk at ML Platform meetup Sep 2019
 
Recent Trends in Personalization at Netflix
Recent Trends in Personalization at NetflixRecent Trends in Personalization at Netflix
Recent Trends in Personalization at Netflix
 
Déjà Vu: The Importance of Time and Causality in Recommender Systems
Déjà Vu: The Importance of Time and Causality in Recommender SystemsDéjà Vu: The Importance of Time and Causality in Recommender Systems
Déjà Vu: The Importance of Time and Causality in Recommender Systems
 
Making Netflix Machine Learning Algorithms Reliable
Making Netflix Machine Learning Algorithms ReliableMaking Netflix Machine Learning Algorithms Reliable
Making Netflix Machine Learning Algorithms Reliable
 
Artwork Personalization at Netflix
Artwork Personalization at NetflixArtwork Personalization at Netflix
Artwork Personalization at Netflix
 
Causal Inference in Marketing
Causal Inference in MarketingCausal Inference in Marketing
Causal Inference in Marketing
 
Personalized Page Generation for Browsing Recommendations
Personalized Page Generation for Browsing RecommendationsPersonalized Page Generation for Browsing Recommendations
Personalized Page Generation for Browsing Recommendations
 
Deep Learning for Recommender Systems
Deep Learning for Recommender SystemsDeep Learning for Recommender Systems
Deep Learning for Recommender Systems
 
Why start using uplift models for more efficient marketing campaigns
Why start using uplift models for more efficient marketing campaignsWhy start using uplift models for more efficient marketing campaigns
Why start using uplift models for more efficient marketing campaigns
 
Genetic algorithm for hyperparameter tuning
Genetic algorithm for hyperparameter tuningGenetic algorithm for hyperparameter tuning
Genetic algorithm for hyperparameter tuning
 
Counterfactual Learning for Recommendation
Counterfactual Learning for RecommendationCounterfactual Learning for Recommendation
Counterfactual Learning for Recommendation
 
Learning to Rank for Recommender Systems - ACM RecSys 2013 tutorial
Learning to Rank for Recommender Systems -  ACM RecSys 2013 tutorialLearning to Rank for Recommender Systems -  ACM RecSys 2013 tutorial
Learning to Rank for Recommender Systems - ACM RecSys 2013 tutorial
 
Missing values in recommender models
Missing values in recommender modelsMissing values in recommender models
Missing values in recommender models
 
Recent Trends in Personalization: A Netflix Perspective
Recent Trends in Personalization: A Netflix PerspectiveRecent Trends in Personalization: A Netflix Perspective
Recent Trends in Personalization: A Netflix Perspective
 
Stephanie deWet, Software Engineer, Pinterest at MLconf SF 2016
Stephanie deWet, Software Engineer, Pinterest at MLconf SF 2016Stephanie deWet, Software Engineer, Pinterest at MLconf SF 2016
Stephanie deWet, Software Engineer, Pinterest at MLconf SF 2016
 
Warsaw Data Science - Factorization Machines Introduction
Warsaw Data Science -  Factorization Machines IntroductionWarsaw Data Science -  Factorization Machines Introduction
Warsaw Data Science - Factorization Machines Introduction
 
CounterFactual Explanations.pdf
CounterFactual Explanations.pdfCounterFactual Explanations.pdf
CounterFactual Explanations.pdf
 
Personalizing "The Netflix Experience" with Deep Learning
Personalizing "The Netflix Experience" with Deep LearningPersonalizing "The Netflix Experience" with Deep Learning
Personalizing "The Netflix Experience" with Deep Learning
 
Unified Approach to Interpret Machine Learning Model: SHAP + LIME
Unified Approach to Interpret Machine Learning Model: SHAP + LIMEUnified Approach to Interpret Machine Learning Model: SHAP + LIME
Unified Approach to Interpret Machine Learning Model: SHAP + LIME
 

Ähnlich wie Introduction to Uplift Modelling

Ähnlich wie Introduction to Uplift Modelling (20)

Meetup_FGVA_Uplift @ Dataiku
Meetup_FGVA_Uplift @ DataikuMeetup_FGVA_Uplift @ Dataiku
Meetup_FGVA_Uplift @ Dataiku
 
ABTest-20231020.pptx
ABTest-20231020.pptxABTest-20231020.pptx
ABTest-20231020.pptx
 
Pp ts for machine learning
Pp ts for machine learningPp ts for machine learning
Pp ts for machine learning
 
Metrics in Security Operations
Metrics in Security OperationsMetrics in Security Operations
Metrics in Security Operations
 
Basic Statistical Concepts.pdf
Basic Statistical Concepts.pdfBasic Statistical Concepts.pdf
Basic Statistical Concepts.pdf
 
joe-olsen.pptx
joe-olsen.pptxjoe-olsen.pptx
joe-olsen.pptx
 
Quantitative methodology part one.compressed
Quantitative methodology part one.compressedQuantitative methodology part one.compressed
Quantitative methodology part one.compressed
 
chi_square test.pptx
chi_square test.pptxchi_square test.pptx
chi_square test.pptx
 
EMOD_Optimization_Presentation.pptx
EMOD_Optimization_Presentation.pptxEMOD_Optimization_Presentation.pptx
EMOD_Optimization_Presentation.pptx
 
Chi-square test.pptx
Chi-square test.pptxChi-square test.pptx
Chi-square test.pptx
 
Causality without headaches
Causality without headachesCausality without headaches
Causality without headaches
 
RM MLM PPT March_22nd 2023.pptx
RM MLM PPT March_22nd 2023.pptxRM MLM PPT March_22nd 2023.pptx
RM MLM PPT March_22nd 2023.pptx
 
EMOD Optimization Presentation School.pptx
EMOD Optimization Presentation School.pptxEMOD Optimization Presentation School.pptx
EMOD Optimization Presentation School.pptx
 
Qm 0809
Qm 0809 Qm 0809
Qm 0809
 
sample_size_Determination .pdf
sample_size_Determination .pdfsample_size_Determination .pdf
sample_size_Determination .pdf
 
Sample Size And Gpower Module
Sample Size And Gpower ModuleSample Size And Gpower Module
Sample Size And Gpower Module
 
Marketing Experimentation - Part I
Marketing Experimentation - Part IMarketing Experimentation - Part I
Marketing Experimentation - Part I
 
Common mistakes in measurement uncertainty calculations
Common mistakes in measurement uncertainty calculationsCommon mistakes in measurement uncertainty calculations
Common mistakes in measurement uncertainty calculations
 
Session 20.ppt
Session 20.pptSession 20.ppt
Session 20.ppt
 
R - what do the numbers mean? #RStats
R - what do the numbers mean? #RStatsR - what do the numbers mean? #RStats
R - what do the numbers mean? #RStats
 

KĂźrzlich hochgeladen

Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...
Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...
Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...
amitlee9823
 
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
amitlee9823
 
Call Girls In Attibele ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Attibele ☎ 7737669865 🥵 Book Your One night StandCall Girls In Attibele ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Attibele ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 
CHEAP Call Girls in Rabindra Nagar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Rabindra Nagar  (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Rabindra Nagar  (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Rabindra Nagar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Probability Grade 10 Third Quarter Lessons
Probability Grade 10 Third Quarter LessonsProbability Grade 10 Third Quarter Lessons
Probability Grade 10 Third Quarter Lessons
JoseMangaJr1
 
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
amitlee9823
 
Call Girls Begur Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Begur Just Call 👗 7737669865 👗 Top Class Call Girl Service BangaloreCall Girls Begur Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Begur Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
amitlee9823
 
Call Girls Indiranagar Just Call 👗 9155563397 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 9155563397 👗 Top Class Call Girl Service B...Call Girls Indiranagar Just Call 👗 9155563397 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 9155563397 👗 Top Class Call Girl Service B...
only4webmaster01
 
➥🔝 7737669865 🔝▻ Mathura Call-girls in Women Seeking Men 🔝Mathura🔝 Escorts...
➥🔝 7737669865 🔝▻ Mathura Call-girls in Women Seeking Men  🔝Mathura🔝   Escorts...➥🔝 7737669865 🔝▻ Mathura Call-girls in Women Seeking Men  🔝Mathura🔝   Escorts...
➥🔝 7737669865 🔝▻ Mathura Call-girls in Women Seeking Men 🔝Mathura🔝 Escorts...
amitlee9823
 
hybrid Seed Production In Chilli & Capsicum.pptx
hybrid Seed Production In Chilli & Capsicum.pptxhybrid Seed Production In Chilli & Capsicum.pptx
hybrid Seed Production In Chilli & Capsicum.pptx
9to5mart
 
Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...
amitlee9823
 

KĂźrzlich hochgeladen (20)

Call me @ 9892124323 Cheap Rate Call Girls in Vashi with Real Photo 100% Secure
Call me @ 9892124323  Cheap Rate Call Girls in Vashi with Real Photo 100% SecureCall me @ 9892124323  Cheap Rate Call Girls in Vashi with Real Photo 100% Secure
Call me @ 9892124323 Cheap Rate Call Girls in Vashi with Real Photo 100% Secure
 
Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...
Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...
Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...
 
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
 
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
 
Call Girls In Attibele ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Attibele ☎ 7737669865 🥵 Book Your One night StandCall Girls In Attibele ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Attibele ☎ 7737669865 🥵 Book Your One night Stand
 
CHEAP Call Girls in Rabindra Nagar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Rabindra Nagar  (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Rabindra Nagar  (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Rabindra Nagar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
 
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Probability Grade 10 Third Quarter Lessons
Probability Grade 10 Third Quarter LessonsProbability Grade 10 Third Quarter Lessons
Probability Grade 10 Third Quarter Lessons
 
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
 
Call Girls Begur Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Begur Just Call 👗 7737669865 👗 Top Class Call Girl Service BangaloreCall Girls Begur Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Begur Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
 
Call Girls Indiranagar Just Call 👗 9155563397 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 9155563397 👗 Top Class Call Girl Service B...Call Girls Indiranagar Just Call 👗 9155563397 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 9155563397 👗 Top Class Call Girl Service B...
 
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
 
➥🔝 7737669865 🔝▻ Mathura Call-girls in Women Seeking Men 🔝Mathura🔝 Escorts...
➥🔝 7737669865 🔝▻ Mathura Call-girls in Women Seeking Men  🔝Mathura🔝   Escorts...➥🔝 7737669865 🔝▻ Mathura Call-girls in Women Seeking Men  🔝Mathura🔝   Escorts...
➥🔝 7737669865 🔝▻ Mathura Call-girls in Women Seeking Men 🔝Mathura🔝 Escorts...
 
Detecting Credit Card Fraud: A Machine Learning Approach
Detecting Credit Card Fraud: A Machine Learning ApproachDetecting Credit Card Fraud: A Machine Learning Approach
Detecting Credit Card Fraud: A Machine Learning Approach
 
DATA SUMMIT 24 Building Real-Time Pipelines With FLaNK
DATA SUMMIT 24  Building Real-Time Pipelines With FLaNKDATA SUMMIT 24  Building Real-Time Pipelines With FLaNK
DATA SUMMIT 24 Building Real-Time Pipelines With FLaNK
 
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
 
Anomaly detection and data imputation within time series
Anomaly detection and data imputation within time seriesAnomaly detection and data imputation within time series
Anomaly detection and data imputation within time series
 
hybrid Seed Production In Chilli & Capsicum.pptx
hybrid Seed Production In Chilli & Capsicum.pptxhybrid Seed Production In Chilli & Capsicum.pptx
hybrid Seed Production In Chilli & Capsicum.pptx
 
Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...
 
Capstone Project on IBM Data Analytics Program
Capstone Project on IBM Data Analytics ProgramCapstone Project on IBM Data Analytics Program
Capstone Project on IBM Data Analytics Program
 

Introduction to Uplift Modelling

  • 1. Introduction to Uplift Modelling An online gaming application
  • 2. A few words about me •  Senior Data Scientist at Dataiku (worked on churn prediction, fraud detection, bot detection, recommender systems, graph analytics, smart cities, … ) •  Occasional Kaggle competitor •  Mostly code with python and SQL •  Twitter @prrgutierrez
  • 3. Plan •  Introduction / Clients situation •  Uplift use case examples •  Uplift modelling •  Uplift evaluation & results
  • 4. Client situation •  French Online Gaming Company (RPG) •  A lot of users are leaving •  let’s do a churn prediction model ! •  Target : no come back in 14 or 28 days. (14 missing days -> 80 % of chance not to come back 28 missing days -> 90 % of chance not to come back) •  Features : •  Connection features : •  Time played in 1,7,15,30,… days •  Time since last connection •  Connection frequency •  Days of week / hours of days played •  Equivalent for payments and subscriptions •  Age, sex, country •  Number of account, is a bot … •  No in game features (no data)    
  • 5. Client situation •  Model Results : •  AUC 0.88 •  Very stable model •  Marketing actions : •  7 different actions based on customer segmentation (offers, promotion, … ) •  A/B test -> -5 % churn for persons contacted by email •  Going further : •  Feature engineering : guilds, close network, in game actions, … •  Study long term churn …
  • 6. Client situation •  But wait ! •  Strong hypothesis : target the person that are the most likely to churn
  • 7. Client situation •  But wait ! •  Strong hypothesis : target the person that are the most likely to churn •  What is the gain / person for an action ? •  cost of action •  value of the customer •  independent variables •  “treated” population and “control” population •  •  Value with action : •  Value without action : •  Gain (if independent of treatment ) : c vi i X T C Y = ⇢ 1 if customer churn 0 otherwise ET (Vi) = vi(1 PT (Y = 1|X)) c EC (Vi) = vi(1 PC (Y = 1|X)) vi E(Gi) = vi(PC (Y = 1|X) PT (Y = 1|X)) c
  • 8. Client situation •  But wait ! •  Strong hypothesis : target the person that are the most likely to churn •  What is the gain / person for an action ? •  Objective : maximize this gain •  Targeting highly probable churner -> minimize But not the difference ! •  Intuitive examples : •  : action is expected to make the situation worst. Spam ? •  : user does not care, is already lost Upli&  =  Model   E(Gi) = vi(PC (Y = 1|X) PT (Y = 1|X)) c PT (Y = 1|X) PC (Y = 1) ⇡ PT (Y = 1) P PC (Y = 1) < PT (Y = 1)
  • 9. Uplift •  Model effect of the action •  4 groups of customers / patients •  1  Responded because of the action (the people we want) •  2  Responded, but would have responded anyway (unnecessary costs) •  3  Did not respond and the action had no impact (unnecessary costs) •  4  Did not respond because the action had a negative impact (negative impact) •  Incomplete knowledge
  • 10. Uplift Examples •  Healthcare : •  A typical medical trial: •  treatment group: gets the treatment •  control group: gets placebo (or another treatment) •  do a statistical test to show that the treatment is better than placebo •  With uplift modeling we can find out for whom the treatment works best •  Personalized medicine •  Ex : What is the gain in survival probability ? -> classification/uplift problem
  • 11. Uplift Examples •  Churn : •  E-gaming •  Other Ex : Coyote •  Retail : •  Compare coupons campaigns
  • 12. Uplift Examples •  Mailing : Hillstrom challenge •  2 campaigns : •  one men email •  one woman email •  Question : who are the people to target / that have the best response rate
  • 13. Uplift Examples •  Common pattern •  Experiment or A/B testing -> Test and control •  Warning : Control can be biased easily : •  Targeted most probable churners and control is the rest •  Call only the people that come to a shop •  Limited experiment trial -> no bandit algorithm : (once a medicine experiment is done, you don’t continue the “exploration”) -> relatively large and discrete in time feedbacks.
  • 14. Uplift modelling •  Three main methods : •  Two models approach •  Class variable modification •  Modification of existing machine learning models
  • 15. Uplift modelling : Two model approach •  Build a model on treatment to get •  Build a model on control to get •  Set : PT (Y |X) PC (Y |X) P = PT (Y |X) PC (Y |X)
  • 16. Uplift modelling : Two model approach •  Advantages : •  Standard ML models can be used •  In theory, two good estimators -> a good uplift model •  Works well in practice •  Generalize to regression and multi-treatment easily •  Drawbacks •  Difference of estimators is probably not the best estimator of the difference •  The two classifier can ignore the weaker uplift signal (since it’s not their target) •  Algorithm focusing on estimating the difference should perform better
  • 17. Uplift modelling : Class variable modification •  Introduced in Jaskowski, Jaroszewicz 2012 •  Allows any classifier to be updated to uplift modeling •  Let denote the group membership (Treatment or Control) •  Let’s define the new target variable : •  This corresponds to flipping the target in the control dataset. G 2 {T, C} Z = 8 < : 1 if G = T and Y = 1 1 if G = C and Y = 0 0 otherwise
  • 18. Uplift modelling : Class variable modification •  Why does it work ? •  By design (A/B test warning !), should be independent from •  Possibly with a reweighting of the datasets we should have : thus P(Z = 1|X) = PT (Y = 1|X)P(G = T|X) + PC (Y = 0|X)P(G = C|X) P(Z = 1|X) = PT (Y = 1|X)P(G = T) + PC (Y = 0|X)P(G = C) G X P(G = T) = P(G = C) = 1/2 2P(Z = 1|X) = PT (Y = 1|X) + PC (Y = 0|X)
  • 19. Uplift modelling : Class variable modification •  Why does it work ? Thus And sorting by is the same as sorting by 2P(Z = 1|X) = PT (Y = 1|X) + PC (Y = 0|X) = PT (Y = 1|X) + 1 PC (Y = 1|X) P = 2P(Z = 1|X) 1 P(Z = 1|X) P
  • 20. Uplift modelling : Class variable modification •  Summary : •  Flip class for control dataset •  Concatenate test and control dataset •  Build a classifier •  Target users with highest probability •  Advantages : •  Any classifier can be used •  Directly predict uplift (and not each class separately) •  Single model on a larger dataset (instead of two small ones) •  Drawbacks : •  Complex decision surface -> model can perform poorly •  Interpretation : what is AUC in this case ?
  • 21. Uplift modeling : Other methods •  Based on decision trees : •  Rzepakowski Jaroszewicz 2012 new decision tree split criterion based on information theory •  Soltys Rzepakowski Jaroszewicz 2013 Ensemble methods for uplift modeling (out of today scope)
  • 22. Evaluation •  We used : •  2 model approach. -> AUC ? Not very informative. •  1 model approach -> does AUC means something ? •  How can we evaluate / compare them ? •  Cross Validation : •  4 datasets : treatment/control x train/test •  Problem : •  We don’t have a clear 0/1 target. •  We would need to know for each customer •  Response to treatment •  Response to control -> not possible
  • 23. Evaluation •  Gain for group of customers : •  Gain for the 10% highest scoring customers = % of successes for top 10% treated customers − % of successes for top 10% control customers •  Uplift curve ? : •  Difference between two lift curve •  Interpretation : net gain in success rate if a given percentage of the population is treated •  Pb : no theoretic maximum •  Pb 2 : weird behaviour for 2 wizard models.
  • 24. Evaluation : Qini •  Qini Measure : •  Similar to Gini (Area under lift curve). Lift Curve <-> Qini Curve •  Parametric curve defined by : •  When taking the first observations •  is the total number of 1 seen in target observations •  is the total number of 1 seen in control observations •  is the total number of target observations •  is the total number of control observations •  Balanced setting : t f(t) = YT (t) YC(t) ⇤ NC(t)/NT (t) YT YC NC NT f(t) = YT (t) YC(t)
  • 25. Evaluation : Qini •  Personal intuition : •  We can’t know everything : •  treated that convert, not treated that don’t convert. What would have happen ? •  But we don’t want to see : •  Treated not converting •  Not treated converting (in our top list) •  In we want to minimize : •  Very similar to lift taking into account only negative examples. t NT (t) YT (t) + YC(t)
  • 26. Evaluation : Qini f(t) = YT (t) YC(t)
  • 27. Evaluation : Qini •  Best model : •  Take first all positive in target and last all positive in control. •  No theoretic best model : •  depends on possibility of negative effect •  Displayed for no negative effect •  Random model : •  Corresponds to global effect of treatment •  Hillstrom Dataset : •  For women models are comparable and useful •  For men, there is no clear individuals to target
  • 28. Evaluation : Qini f(t) = YT (t) YC(t)
  • 29. Evaluation : Qini •  Back to our study : •  Class modification performs best •  Two models approach performs poorly •  A/B test failure : •  Control dataset is way to small ! •  Class modification model very close to lift •  Two model slightly better than random -> need to redo the A/B test.
  • 30. Conclusion •  Uplift : •  Surprisingly little literature / examples •  The theory is rather easy to test •  Two models •  Class modification •  The intuition and evaluation are not easy to grasp •  On the client side : •  I don’t loose hope we’ll do the A/B test again •  A good lead to select the best offer for a customer
  • 31. A few references •  Data : •  Churn in gaming : WOWAH dataset (blog post to come) •  Uplift for healthcare : Colon Dataset •  Uplift in mailing : Hillstrom data challenge •  Uplift in General : Simulated data : (blog post to come)
  • 32. A few references •  Application •  Uplift modeling for clinical trial data (Jaskowski, Jaroszewicz) •  Uplift Modeling in Direct Marketing (Rzepakowski, Jaroszewicz)
  • 33. A few references •  Modeling techniques : •  Rzepakowski Jaroszewicz 2011 (decision trees) •  Soltys Rzepakowski Jaroszewicz 2013 (ensemble for uplift) •  Jaskowski Jaroszewicz 2012 (Class modification model)
  • 34. A few references •  Evaluation •  Using Control Groups to Target on Predicted Lift (Radcliffe) •  Testing a New Metric for Uplift Models (Mesalles Naranjo)
  • 35. Thank you for your attention !