SlideShare a Scribd company logo
1 of 5
Download to read offline
GBH Enterprises, Ltd.

Naphtha Steam Reforming Catalyst
Reduction with Methanol

Process Information Disclaimer
Information contained in this publication or as otherwise supplied to Users is
believed to be accurate and correct at time of going to press, and is given in
good faith, but it is for the User to satisfy itself of the suitability of the Product for
its own particular purpose. GBHE gives no warranty as to the fitness of the
Product for any particular purpose and any implied warranty or condition
(statutory or otherwise) is excluded except to the extent that exclusion is
prevented by law. GBHE accepts no liability for loss, damage or personnel injury
caused or resulting from reliance on this information. Freedom under Patent,
Copyright and Designs cannot be assumed.

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
Naphtha Steam Reforming Catalyst Reduction with Methanol
Scope
This procedure applies to the in situ reduction of VULCAN Series steam
reforming catalysts using methanol cracking to form hydrogen over the catalyst in
the steam reformer.
The procedure is likely to be applied to plants using only heavier feeds (e.g.: LPG
and/or naphtha) and some combination of VULCAN Series catalysts.
Introduction
A small number of steam reforming plants do not have an available source of the
commonly used reducing media (e.g.: hydrogen, hydrogen-rich off-gas, natural
gas). These plants will usually operate on LPG and/or naphtha feed only where
cracking of this hydrocarbon is not usually advised for reduction of the steam
reforming catalyst. In such circumstances, the plant may be designed to use the
installed steam reforming catalyst to crack methanol to provide hydrogen for the
reformer catalyst reduction. A once through method should be used to avoid
the potential of methanation of carbon oxides produced in the methanol
cracking. By control of the steam to methanol ratio and reformer exit
temperature, oxidized catalyst cracks methanol to generate hydrogen which then
effects a degree of catalyst reduction. Once some reduced nickel is present,
methanol cracking becomes efficient and the period in which methanol is
observed in the process condensate is kept to a minimum.
Procedure
1. Ensure the primary reformer catalyst is heated in a nitrogen flow to above the
dew point of the process stream. Once this temperature is exceeded by at
least 50°C (90°F), continue heating with process steam. The system pressure
should be in the usual range for the reformer start-up circulation loop
(typically 10 – 15 bara).

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
2. Heat the reformer to a measured inlet temperature in the range 475 to 500°C
(887-932°F) and a measured exit temperature of 780 to 800°C (14361472°F). If the plant design does not allow the inlet temperature to attain this
level, then the inlet temperature should be as high as possible within the
constraints of the plant. Temperature losses to the point of exit temperature
measurement are usual at this low load of operation and the actual tube exit
temperature will be higher than these values. Regular (1/2 hourly)
inspections, ideally with an accurate IR pyrometer, of the reformer are
necessary to check for possible overheating.
3. At the above temperatures, control the steam flow through the primary
reformer insofar as this is possible to remain within tube skin temperature
limits and to satisfy the ratio of steam to methanol as specified in (4)
4. Inject methanol at an initial rate to satisfy a steam to methanol molar ratio of
an absolute minimum of 25:1. This will be sufficient to carry-out the catalyst
reduction, but the process will be slow and methanol will be present in the
condensate for the period. To minimize the time to produce hydrogen and
limit the amount of methanol in the condensate, lower molar ratios of steam to
methanol should be targeted in the range 20:1 to 18:1.
5. Process condensate containing methanol will need proper attention. Initial
levels of methanol could exceed 1000 ppmw, but will reduce quickly once
cracking occurs over the reforming catalyst
6. Maintain continuous methanol injection at the required rate for at least one (1)
hour.
7. Take samples for analysis of the reformer exit for hydrogen and process
condensate for methanol every 30 minutes over the first two hours of
methanol injection. Thereafter, reduce the frequency to every 60 minutes for
as long as necessary.
8. If no hydrogen is detected after 2 hours and the methanol levels in the
process condensate remain high (>>100 ppmw), then the molar ratio of
methanol to steam is possibly incorrect and/or the reforming temperature is
low.

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
9. Once hydrogen is measured, the H2O/H2 molar ratio should be recorded (from
a combination of analysis and calculation of the amount injected and cracked
methanol). The target point is when the H2O/H2 molar ratio enters the target
reduction range of 6:1 – 8:1. The molar ratio may be allowed to go as low as
4:1 without cause for concern in terms of the catalysts.
10. Once the H2O/H2 molar ratio is in the range 6:1 – 8:1, maintain the methanol
injection rate. Continue to analyze at 60-minute intervals and calculate the
H2O/H2 molar ratio in the exit.
11. Maintain reducing conditions (H2O/H2 molar ratio in the range 6:1 – 8:1) for
the following times depending on the recent shutdown history of the catalyst.
See Table 1.
12. Following this, introduce hydrocarbon feed as described in the Operating
Manual for VULCAN Series Naphtha Steam Reforming Catalysts.

Table 1 – Catalyst Reduction Times

Catalyst Steaming
Period
(Hours)
<3
3-8
>8
Fresh Catalyst Charge

Period of Reduction
(Hours)

No reduction required
6 hours of reduction
12 hours of reduction
18 hours of reduction

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com

More Related Content

What's hot

Selection of Reboilers for Distillation Columns
Selection of Reboilers for Distillation ColumnsSelection of Reboilers for Distillation Columns
Selection of Reboilers for Distillation ColumnsGerard B. Hawkins
 
Fixed Bed Reactor Scale-up Checklist
Fixed Bed Reactor Scale-up ChecklistFixed Bed Reactor Scale-up Checklist
Fixed Bed Reactor Scale-up ChecklistGerard B. Hawkins
 
Getting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen PlantGetting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen PlantGerard B. Hawkins
 
Methanol Flowsheets - A Competitive Review
Methanol Flowsheets - A Competitive ReviewMethanol Flowsheets - A Competitive Review
Methanol Flowsheets - A Competitive ReviewGerard B. Hawkins
 
101 Things That Can Go Wrong on a Primary Reformer - Best Practices Guide
101 Things That Can Go Wrong on a Primary Reformer -  Best Practices Guide101 Things That Can Go Wrong on a Primary Reformer -  Best Practices Guide
101 Things That Can Go Wrong on a Primary Reformer - Best Practices GuideGerard B. Hawkins
 
Critical Variables in Catalytic Reforming and Unit Monitoring Best Practices
Critical Variables in Catalytic Reforming and Unit Monitoring Best PracticesCritical Variables in Catalytic Reforming and Unit Monitoring Best Practices
Critical Variables in Catalytic Reforming and Unit Monitoring Best PracticesGerard B. Hawkins
 
Calculation of Caloric Value and other Characteristic Data of Fuel Gas
Calculation of Caloric Value and other Characteristic Data of Fuel GasCalculation of Caloric Value and other Characteristic Data of Fuel Gas
Calculation of Caloric Value and other Characteristic Data of Fuel GasGerard B. Hawkins
 
Calculation of an Ammonia Plant Energy Consumption:
Calculation of an Ammonia Plant Energy Consumption:  Calculation of an Ammonia Plant Energy Consumption:
Calculation of an Ammonia Plant Energy Consumption: Gerard B. Hawkins
 
Pressure Relief Systems Vol 2
Pressure Relief Systems   Vol 2Pressure Relief Systems   Vol 2
Pressure Relief Systems Vol 2Gerard B. Hawkins
 
Low Temperature Shift Catalyst Reduction Procedure
Low Temperature Shift Catalyst Reduction ProcedureLow Temperature Shift Catalyst Reduction Procedure
Low Temperature Shift Catalyst Reduction ProcedureGerard B. Hawkins
 
Hydrogen Plant Monitoring & Methane Steam Reformer Troubleshooting
Hydrogen Plant Monitoring & Methane Steam Reformer TroubleshootingHydrogen Plant Monitoring & Methane Steam Reformer Troubleshooting
Hydrogen Plant Monitoring & Methane Steam Reformer TroubleshootingGerard B. Hawkins
 
Steam Reforming - Practical Operations
Steam Reforming - Practical OperationsSteam Reforming - Practical Operations
Steam Reforming - Practical OperationsGerard B. Hawkins
 
High Temperature Shift Catalyst Reduction Procedure
High Temperature Shift Catalyst Reduction ProcedureHigh Temperature Shift Catalyst Reduction Procedure
High Temperature Shift Catalyst Reduction ProcedureGerard B. Hawkins
 
(LTS) Low Temperature Shift Catalyst - Comprehensive Overview
(LTS) Low Temperature Shift Catalyst - Comprehensive Overview(LTS) Low Temperature Shift Catalyst - Comprehensive Overview
(LTS) Low Temperature Shift Catalyst - Comprehensive OverviewGerard B. Hawkins
 
Ammonia Synthesis Catalyst Chemistry and Operator Training
Ammonia Synthesis Catalyst Chemistry and Operator TrainingAmmonia Synthesis Catalyst Chemistry and Operator Training
Ammonia Synthesis Catalyst Chemistry and Operator TrainingGerard B. Hawkins
 
Ammonia-PPT GTEs.pptx
Ammonia-PPT GTEs.pptxAmmonia-PPT GTEs.pptx
Ammonia-PPT GTEs.pptxSheikhSaad18
 
Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers - Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers - Gerard B. Hawkins
 
Introduction To Syngas Plant Flowsheet Options
Introduction To Syngas Plant Flowsheet OptionsIntroduction To Syngas Plant Flowsheet Options
Introduction To Syngas Plant Flowsheet OptionsGerard B. Hawkins
 
Reduction & Startup of Pre-reforming Catalysts
Reduction & Startup of Pre-reforming CatalystsReduction & Startup of Pre-reforming Catalysts
Reduction & Startup of Pre-reforming CatalystsGerard B. Hawkins
 

What's hot (20)

Selection of Reboilers for Distillation Columns
Selection of Reboilers for Distillation ColumnsSelection of Reboilers for Distillation Columns
Selection of Reboilers for Distillation Columns
 
Fixed Bed Reactor Scale-up Checklist
Fixed Bed Reactor Scale-up ChecklistFixed Bed Reactor Scale-up Checklist
Fixed Bed Reactor Scale-up Checklist
 
Getting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen PlantGetting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen Plant
 
Methanol Flowsheets - A Competitive Review
Methanol Flowsheets - A Competitive ReviewMethanol Flowsheets - A Competitive Review
Methanol Flowsheets - A Competitive Review
 
101 Things That Can Go Wrong on a Primary Reformer - Best Practices Guide
101 Things That Can Go Wrong on a Primary Reformer -  Best Practices Guide101 Things That Can Go Wrong on a Primary Reformer -  Best Practices Guide
101 Things That Can Go Wrong on a Primary Reformer - Best Practices Guide
 
Critical Variables in Catalytic Reforming and Unit Monitoring Best Practices
Critical Variables in Catalytic Reforming and Unit Monitoring Best PracticesCritical Variables in Catalytic Reforming and Unit Monitoring Best Practices
Critical Variables in Catalytic Reforming and Unit Monitoring Best Practices
 
Calculation of Caloric Value and other Characteristic Data of Fuel Gas
Calculation of Caloric Value and other Characteristic Data of Fuel GasCalculation of Caloric Value and other Characteristic Data of Fuel Gas
Calculation of Caloric Value and other Characteristic Data of Fuel Gas
 
Calculation of an Ammonia Plant Energy Consumption:
Calculation of an Ammonia Plant Energy Consumption:  Calculation of an Ammonia Plant Energy Consumption:
Calculation of an Ammonia Plant Energy Consumption:
 
Pressure Relief Systems Vol 2
Pressure Relief Systems   Vol 2Pressure Relief Systems   Vol 2
Pressure Relief Systems Vol 2
 
Low Temperature Shift Catalyst Reduction Procedure
Low Temperature Shift Catalyst Reduction ProcedureLow Temperature Shift Catalyst Reduction Procedure
Low Temperature Shift Catalyst Reduction Procedure
 
Hydrogen Plant Monitoring & Methane Steam Reformer Troubleshooting
Hydrogen Plant Monitoring & Methane Steam Reformer TroubleshootingHydrogen Plant Monitoring & Methane Steam Reformer Troubleshooting
Hydrogen Plant Monitoring & Methane Steam Reformer Troubleshooting
 
Ammonia plant flowsheets
Ammonia plant flowsheetsAmmonia plant flowsheets
Ammonia plant flowsheets
 
Steam Reforming - Practical Operations
Steam Reforming - Practical OperationsSteam Reforming - Practical Operations
Steam Reforming - Practical Operations
 
High Temperature Shift Catalyst Reduction Procedure
High Temperature Shift Catalyst Reduction ProcedureHigh Temperature Shift Catalyst Reduction Procedure
High Temperature Shift Catalyst Reduction Procedure
 
(LTS) Low Temperature Shift Catalyst - Comprehensive Overview
(LTS) Low Temperature Shift Catalyst - Comprehensive Overview(LTS) Low Temperature Shift Catalyst - Comprehensive Overview
(LTS) Low Temperature Shift Catalyst - Comprehensive Overview
 
Ammonia Synthesis Catalyst Chemistry and Operator Training
Ammonia Synthesis Catalyst Chemistry and Operator TrainingAmmonia Synthesis Catalyst Chemistry and Operator Training
Ammonia Synthesis Catalyst Chemistry and Operator Training
 
Ammonia-PPT GTEs.pptx
Ammonia-PPT GTEs.pptxAmmonia-PPT GTEs.pptx
Ammonia-PPT GTEs.pptx
 
Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers - Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers -
 
Introduction To Syngas Plant Flowsheet Options
Introduction To Syngas Plant Flowsheet OptionsIntroduction To Syngas Plant Flowsheet Options
Introduction To Syngas Plant Flowsheet Options
 
Reduction & Startup of Pre-reforming Catalysts
Reduction & Startup of Pre-reforming CatalystsReduction & Startup of Pre-reforming Catalysts
Reduction & Startup of Pre-reforming Catalysts
 

Viewers also liked

006 isomerization of hydrocarbons
006 isomerization of hydrocarbons006 isomerization of hydrocarbons
006 isomerization of hydrocarbonsElizabeth Indah P
 
Fuel and combustion
Fuel and combustionFuel and combustion
Fuel and combustionRaju Mirdha
 
PD230 Catalytic Reforming
PD230 Catalytic ReformingPD230 Catalytic Reforming
PD230 Catalytic ReformingpetroEDGE
 
Catalytic Reforming Technology - Infographics
Catalytic Reforming Technology - InfographicsCatalytic Reforming Technology - Infographics
Catalytic Reforming Technology - InfographicsGerard B. Hawkins
 
Reactions of isomerization of n butane
Reactions of isomerization of n butaneReactions of isomerization of n butane
Reactions of isomerization of n butaneKareem Tharaa
 
octane and cetane numbers
octane and cetane numbersoctane and cetane numbers
octane and cetane numbersajitthorat
 
Fuels, Octane number & Cetane number
Fuels, Octane number & Cetane numberFuels, Octane number & Cetane number
Fuels, Octane number & Cetane numberRipal Maravia
 
Catalytic reforming process
Catalytic reforming processCatalytic reforming process
Catalytic reforming processIhsan Wassan
 
Isomerization And Dextrinization S
Isomerization And Dextrinization SIsomerization And Dextrinization S
Isomerization And Dextrinization Sanshulber
 
03 Chemical Engineering Plant Design And Economics
03 Chemical Engineering Plant Design And Economics03 Chemical Engineering Plant Design And Economics
03 Chemical Engineering Plant Design And Economicsguestac67362
 
ppt of fuel and combustion
ppt of fuel and combustionppt of fuel and combustion
ppt of fuel and combustionSiddiqui Arif
 
Isomerism Power point
Isomerism Power pointIsomerism Power point
Isomerism Power pointsuresh gdvm
 
CI Engine Knocking
CI Engine KnockingCI Engine Knocking
CI Engine KnockingRajat Seth
 

Viewers also liked (20)

006 isomerization of hydrocarbons
006 isomerization of hydrocarbons006 isomerization of hydrocarbons
006 isomerization of hydrocarbons
 
catalytic reforming
catalytic reformingcatalytic reforming
catalytic reforming
 
cv
cvcv
cv
 
Fuel and combustion
Fuel and combustionFuel and combustion
Fuel and combustion
 
PD230 Catalytic Reforming
PD230 Catalytic ReformingPD230 Catalytic Reforming
PD230 Catalytic Reforming
 
Catalytic Reforming Technology - Infographics
Catalytic Reforming Technology - InfographicsCatalytic Reforming Technology - Infographics
Catalytic Reforming Technology - Infographics
 
Reactions of isomerization of n butane
Reactions of isomerization of n butaneReactions of isomerization of n butane
Reactions of isomerization of n butane
 
KIT_Isomerization unit
KIT_Isomerization unitKIT_Isomerization unit
KIT_Isomerization unit
 
Naphtha Sulfur Guards
Naphtha Sulfur GuardsNaphtha Sulfur Guards
Naphtha Sulfur Guards
 
Isome hoa pdf
Isome hoa pdfIsome hoa pdf
Isome hoa pdf
 
Octane number
Octane numberOctane number
Octane number
 
octane and cetane numbers
octane and cetane numbersoctane and cetane numbers
octane and cetane numbers
 
Fuels, Octane number & Cetane number
Fuels, Octane number & Cetane numberFuels, Octane number & Cetane number
Fuels, Octane number & Cetane number
 
Catalytic reforming process
Catalytic reforming processCatalytic reforming process
Catalytic reforming process
 
Isomerization And Dextrinization S
Isomerization And Dextrinization SIsomerization And Dextrinization S
Isomerization And Dextrinization S
 
03 Chemical Engineering Plant Design And Economics
03 Chemical Engineering Plant Design And Economics03 Chemical Engineering Plant Design And Economics
03 Chemical Engineering Plant Design And Economics
 
ppt of fuel and combustion
ppt of fuel and combustionppt of fuel and combustion
ppt of fuel and combustion
 
Isomerism Power point
Isomerism Power pointIsomerism Power point
Isomerism Power point
 
2.1 fuels and combustion
2.1 fuels and combustion2.1 fuels and combustion
2.1 fuels and combustion
 
CI Engine Knocking
CI Engine KnockingCI Engine Knocking
CI Engine Knocking
 

Similar to Naphtha Steam Reforming Catalyst Reduction with Methanol

Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking
Naphtha Steam Reforming Catalyst Reduction by NH3 CrackingNaphtha Steam Reforming Catalyst Reduction by NH3 Cracking
Naphtha Steam Reforming Catalyst Reduction by NH3 CrackingGerard B. Hawkins
 
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTSSTEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTSGerard B. Hawkins
 
Guidelines for Charging Primary Reforming Catalyst via Wet Method
Guidelines for Charging Primary Reforming Catalyst via Wet MethodGuidelines for Charging Primary Reforming Catalyst via Wet Method
Guidelines for Charging Primary Reforming Catalyst via Wet MethodGerard B. Hawkins
 
METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...
METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...
METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...Gerard B. Hawkins
 
Determination of Carbon Dioxide, Ethane And Nitrogen in Natural Gas by Gas C...
Determination of Carbon Dioxide, Ethane  And Nitrogen in Natural Gas by Gas C...Determination of Carbon Dioxide, Ethane  And Nitrogen in Natural Gas by Gas C...
Determination of Carbon Dioxide, Ethane And Nitrogen in Natural Gas by Gas C...Gerard B. Hawkins
 
Discharge and Reduction Procedures for Methanation Catalyst
Discharge and Reduction Procedures for Methanation CatalystDischarge and Reduction Procedures for Methanation Catalyst
Discharge and Reduction Procedures for Methanation CatalystGerard B. Hawkins
 
Methanation Catalyst Start Up Procedures
Methanation Catalyst Start Up Procedures Methanation Catalyst Start Up Procedures
Methanation Catalyst Start Up Procedures Gerard B. Hawkins
 
H - Acid Caustic Fusion Stage
H - Acid Caustic Fusion StageH - Acid Caustic Fusion Stage
H - Acid Caustic Fusion StageGerard B. Hawkins
 
In-Situ Oxidation Procedure for High and Low Temperature Shift Catalysts
In-Situ Oxidation Procedure for High and Low Temperature Shift CatalystsIn-Situ Oxidation Procedure for High and Low Temperature Shift Catalysts
In-Situ Oxidation Procedure for High and Low Temperature Shift CatalystsGerard B. Hawkins
 
Fixed Bed Adsorber Design Guidelines
Fixed Bed Adsorber Design GuidelinesFixed Bed Adsorber Design Guidelines
Fixed Bed Adsorber Design GuidelinesGerard B. Hawkins
 
METHANOL PLANT - SHALE GAS FEED PRETREATMENT
METHANOL PLANT - SHALE GAS FEED PRETREATMENTMETHANOL PLANT - SHALE GAS FEED PRETREATMENT
METHANOL PLANT - SHALE GAS FEED PRETREATMENTGerard B. Hawkins
 
Design and Operation of NHT Strippers to Protect Catalytic Reformers
Design and Operation of NHT Strippers to Protect Catalytic Reformers Design and Operation of NHT Strippers to Protect Catalytic Reformers
Design and Operation of NHT Strippers to Protect Catalytic Reformers Gerard B. Hawkins
 
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...Gerard B. Hawkins
 
Air / Steam Regeneration Procedure for Primary Reforming Ccatalyst
Air / Steam Regeneration Procedure for Primary Reforming CcatalystAir / Steam Regeneration Procedure for Primary Reforming Ccatalyst
Air / Steam Regeneration Procedure for Primary Reforming CcatalystGerard B. Hawkins
 
Determination of Oxygen in Anhydrous Ammonia
Determination of Oxygen in Anhydrous AmmoniaDetermination of Oxygen in Anhydrous Ammonia
Determination of Oxygen in Anhydrous AmmoniaGerard B. Hawkins
 
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDSSYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDSGerard B. Hawkins
 
Hydrogenation Reactor Run Away Conditions
Hydrogenation Reactor Run Away ConditionsHydrogenation Reactor Run Away Conditions
Hydrogenation Reactor Run Away ConditionsGerard B. Hawkins
 
Reactor Arrangement for Continuous Vapor Phase Chlorination
Reactor Arrangement for Continuous Vapor Phase ChlorinationReactor Arrangement for Continuous Vapor Phase Chlorination
Reactor Arrangement for Continuous Vapor Phase ChlorinationGerard B. Hawkins
 

Similar to Naphtha Steam Reforming Catalyst Reduction with Methanol (20)

Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking
Naphtha Steam Reforming Catalyst Reduction by NH3 CrackingNaphtha Steam Reforming Catalyst Reduction by NH3 Cracking
Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking
 
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTSSTEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
 
Guidelines for Charging Primary Reforming Catalyst via Wet Method
Guidelines for Charging Primary Reforming Catalyst via Wet MethodGuidelines for Charging Primary Reforming Catalyst via Wet Method
Guidelines for Charging Primary Reforming Catalyst via Wet Method
 
METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...
METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...
METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...
 
Determination of Carbon Dioxide, Ethane And Nitrogen in Natural Gas by Gas C...
Determination of Carbon Dioxide, Ethane  And Nitrogen in Natural Gas by Gas C...Determination of Carbon Dioxide, Ethane  And Nitrogen in Natural Gas by Gas C...
Determination of Carbon Dioxide, Ethane And Nitrogen in Natural Gas by Gas C...
 
Discharge and Reduction Procedures for Methanation Catalyst
Discharge and Reduction Procedures for Methanation CatalystDischarge and Reduction Procedures for Methanation Catalyst
Discharge and Reduction Procedures for Methanation Catalyst
 
Methanation Catalyst Start Up Procedures
Methanation Catalyst Start Up Procedures Methanation Catalyst Start Up Procedures
Methanation Catalyst Start Up Procedures
 
H - Acid Caustic Fusion Stage
H - Acid Caustic Fusion StageH - Acid Caustic Fusion Stage
H - Acid Caustic Fusion Stage
 
In-Situ Oxidation Procedure for High and Low Temperature Shift Catalysts
In-Situ Oxidation Procedure for High and Low Temperature Shift CatalystsIn-Situ Oxidation Procedure for High and Low Temperature Shift Catalysts
In-Situ Oxidation Procedure for High and Low Temperature Shift Catalysts
 
Fixed Bed Adsorber Design Guidelines
Fixed Bed Adsorber Design GuidelinesFixed Bed Adsorber Design Guidelines
Fixed Bed Adsorber Design Guidelines
 
METHANOL PLANT - SHALE GAS FEED PRETREATMENT
METHANOL PLANT - SHALE GAS FEED PRETREATMENTMETHANOL PLANT - SHALE GAS FEED PRETREATMENT
METHANOL PLANT - SHALE GAS FEED PRETREATMENT
 
Design and Operation of NHT Strippers to Protect Catalytic Reformers
Design and Operation of NHT Strippers to Protect Catalytic Reformers Design and Operation of NHT Strippers to Protect Catalytic Reformers
Design and Operation of NHT Strippers to Protect Catalytic Reformers
 
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...
 
Air / Steam Regeneration Procedure for Primary Reforming Ccatalyst
Air / Steam Regeneration Procedure for Primary Reforming CcatalystAir / Steam Regeneration Procedure for Primary Reforming Ccatalyst
Air / Steam Regeneration Procedure for Primary Reforming Ccatalyst
 
Determination of Oxygen in Anhydrous Ammonia
Determination of Oxygen in Anhydrous AmmoniaDetermination of Oxygen in Anhydrous Ammonia
Determination of Oxygen in Anhydrous Ammonia
 
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDSSYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
 
Psychrometry
PsychrometryPsychrometry
Psychrometry
 
Hydrogenation Reactor Run Away Conditions
Hydrogenation Reactor Run Away ConditionsHydrogenation Reactor Run Away Conditions
Hydrogenation Reactor Run Away Conditions
 
Reactor Arrangement for Continuous Vapor Phase Chlorination
Reactor Arrangement for Continuous Vapor Phase ChlorinationReactor Arrangement for Continuous Vapor Phase Chlorination
Reactor Arrangement for Continuous Vapor Phase Chlorination
 
Hydrogen Compressors
Hydrogen CompressorsHydrogen Compressors
Hydrogen Compressors
 

More from Gerard B. Hawkins

GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy GasesGAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy GasesGerard B. Hawkins
 
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...Gerard B. Hawkins
 
Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming Gerard B. Hawkins
 
Piping and Vessels Flushing and Cleaning Procedure
Piping and Vessels Flushing and Cleaning ProcedurePiping and Vessels Flushing and Cleaning Procedure
Piping and Vessels Flushing and Cleaning ProcedureGerard B. Hawkins
 
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS Gerard B. Hawkins
 
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...Gerard B. Hawkins
 
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...Gerard B. Hawkins
 
EMERGENCY ISOLATION OF CHEMICAL PLANTS
EMERGENCY ISOLATION OF CHEMICAL PLANTS EMERGENCY ISOLATION OF CHEMICAL PLANTS
EMERGENCY ISOLATION OF CHEMICAL PLANTS Gerard B. Hawkins
 
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...Gerard B. Hawkins
 
Purificación – Mecanismos de Reacción
Purificación – Mecanismos de Reacción Purificación – Mecanismos de Reacción
Purificación – Mecanismos de Reacción Gerard B. Hawkins
 
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide Gerard B. Hawkins
 
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...Gerard B. Hawkins
 
GBHE Over View jan_13_español
GBHE Over View jan_13_españolGBHE Over View jan_13_español
GBHE Over View jan_13_españolGerard B. Hawkins
 
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...Gerard B. Hawkins
 
FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...
FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...
FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...Gerard B. Hawkins
 
Burner Design, Operation and Maintenance on Ammonia Plants
Burner Design, Operation and Maintenance on Ammonia PlantsBurner Design, Operation and Maintenance on Ammonia Plants
Burner Design, Operation and Maintenance on Ammonia PlantsGerard B. Hawkins
 
DEACTIVATION OF METHANOL SYNTHESIS CATALYSTS
DEACTIVATION OF METHANOL SYNTHESIS CATALYSTSDEACTIVATION OF METHANOL SYNTHESIS CATALYSTS
DEACTIVATION OF METHANOL SYNTHESIS CATALYSTSGerard B. Hawkins
 
Catalyst Catastrophes in Syngas Production - II
Catalyst Catastrophes in Syngas Production - IICatalyst Catastrophes in Syngas Production - II
Catalyst Catastrophes in Syngas Production - IIGerard B. Hawkins
 

More from Gerard B. Hawkins (20)

Pressure Relief Systems
Pressure Relief Systems Pressure Relief Systems
Pressure Relief Systems
 
GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy GasesGAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy Gases
 
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
 
Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming
 
Pickling & Passivation
Pickling & PassivationPickling & Passivation
Pickling & Passivation
 
Piping and Vessels Flushing and Cleaning Procedure
Piping and Vessels Flushing and Cleaning ProcedurePiping and Vessels Flushing and Cleaning Procedure
Piping and Vessels Flushing and Cleaning Procedure
 
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
 
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
 
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
 
EMERGENCY ISOLATION OF CHEMICAL PLANTS
EMERGENCY ISOLATION OF CHEMICAL PLANTS EMERGENCY ISOLATION OF CHEMICAL PLANTS
EMERGENCY ISOLATION OF CHEMICAL PLANTS
 
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
 
Purificación – Mecanismos de Reacción
Purificación – Mecanismos de Reacción Purificación – Mecanismos de Reacción
Purificación – Mecanismos de Reacción
 
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide
 
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
 
GBHE Over View jan_13_español
GBHE Over View jan_13_españolGBHE Over View jan_13_español
GBHE Over View jan_13_español
 
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
 
FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...
FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...
FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...
 
Burner Design, Operation and Maintenance on Ammonia Plants
Burner Design, Operation and Maintenance on Ammonia PlantsBurner Design, Operation and Maintenance on Ammonia Plants
Burner Design, Operation and Maintenance on Ammonia Plants
 
DEACTIVATION OF METHANOL SYNTHESIS CATALYSTS
DEACTIVATION OF METHANOL SYNTHESIS CATALYSTSDEACTIVATION OF METHANOL SYNTHESIS CATALYSTS
DEACTIVATION OF METHANOL SYNTHESIS CATALYSTS
 
Catalyst Catastrophes in Syngas Production - II
Catalyst Catastrophes in Syngas Production - IICatalyst Catastrophes in Syngas Production - II
Catalyst Catastrophes in Syngas Production - II
 

Recently uploaded

Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Principled Technologies
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdflior mazor
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024The Digital Insurer
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 

Recently uploaded (20)

Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 

Naphtha Steam Reforming Catalyst Reduction with Methanol

  • 1. GBH Enterprises, Ltd. Naphtha Steam Reforming Catalyst Reduction with Methanol Process Information Disclaimer Information contained in this publication or as otherwise supplied to Users is believed to be accurate and correct at time of going to press, and is given in good faith, but it is for the User to satisfy itself of the suitability of the Product for its own particular purpose. GBHE gives no warranty as to the fitness of the Product for any particular purpose and any implied warranty or condition (statutory or otherwise) is excluded except to the extent that exclusion is prevented by law. GBHE accepts no liability for loss, damage or personnel injury caused or resulting from reliance on this information. Freedom under Patent, Copyright and Designs cannot be assumed. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 2. Naphtha Steam Reforming Catalyst Reduction with Methanol Scope This procedure applies to the in situ reduction of VULCAN Series steam reforming catalysts using methanol cracking to form hydrogen over the catalyst in the steam reformer. The procedure is likely to be applied to plants using only heavier feeds (e.g.: LPG and/or naphtha) and some combination of VULCAN Series catalysts. Introduction A small number of steam reforming plants do not have an available source of the commonly used reducing media (e.g.: hydrogen, hydrogen-rich off-gas, natural gas). These plants will usually operate on LPG and/or naphtha feed only where cracking of this hydrocarbon is not usually advised for reduction of the steam reforming catalyst. In such circumstances, the plant may be designed to use the installed steam reforming catalyst to crack methanol to provide hydrogen for the reformer catalyst reduction. A once through method should be used to avoid the potential of methanation of carbon oxides produced in the methanol cracking. By control of the steam to methanol ratio and reformer exit temperature, oxidized catalyst cracks methanol to generate hydrogen which then effects a degree of catalyst reduction. Once some reduced nickel is present, methanol cracking becomes efficient and the period in which methanol is observed in the process condensate is kept to a minimum. Procedure 1. Ensure the primary reformer catalyst is heated in a nitrogen flow to above the dew point of the process stream. Once this temperature is exceeded by at least 50°C (90°F), continue heating with process steam. The system pressure should be in the usual range for the reformer start-up circulation loop (typically 10 – 15 bara). Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 3. 2. Heat the reformer to a measured inlet temperature in the range 475 to 500°C (887-932°F) and a measured exit temperature of 780 to 800°C (14361472°F). If the plant design does not allow the inlet temperature to attain this level, then the inlet temperature should be as high as possible within the constraints of the plant. Temperature losses to the point of exit temperature measurement are usual at this low load of operation and the actual tube exit temperature will be higher than these values. Regular (1/2 hourly) inspections, ideally with an accurate IR pyrometer, of the reformer are necessary to check for possible overheating. 3. At the above temperatures, control the steam flow through the primary reformer insofar as this is possible to remain within tube skin temperature limits and to satisfy the ratio of steam to methanol as specified in (4) 4. Inject methanol at an initial rate to satisfy a steam to methanol molar ratio of an absolute minimum of 25:1. This will be sufficient to carry-out the catalyst reduction, but the process will be slow and methanol will be present in the condensate for the period. To minimize the time to produce hydrogen and limit the amount of methanol in the condensate, lower molar ratios of steam to methanol should be targeted in the range 20:1 to 18:1. 5. Process condensate containing methanol will need proper attention. Initial levels of methanol could exceed 1000 ppmw, but will reduce quickly once cracking occurs over the reforming catalyst 6. Maintain continuous methanol injection at the required rate for at least one (1) hour. 7. Take samples for analysis of the reformer exit for hydrogen and process condensate for methanol every 30 minutes over the first two hours of methanol injection. Thereafter, reduce the frequency to every 60 minutes for as long as necessary. 8. If no hydrogen is detected after 2 hours and the methanol levels in the process condensate remain high (>>100 ppmw), then the molar ratio of methanol to steam is possibly incorrect and/or the reforming temperature is low. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 4. 9. Once hydrogen is measured, the H2O/H2 molar ratio should be recorded (from a combination of analysis and calculation of the amount injected and cracked methanol). The target point is when the H2O/H2 molar ratio enters the target reduction range of 6:1 – 8:1. The molar ratio may be allowed to go as low as 4:1 without cause for concern in terms of the catalysts. 10. Once the H2O/H2 molar ratio is in the range 6:1 – 8:1, maintain the methanol injection rate. Continue to analyze at 60-minute intervals and calculate the H2O/H2 molar ratio in the exit. 11. Maintain reducing conditions (H2O/H2 molar ratio in the range 6:1 – 8:1) for the following times depending on the recent shutdown history of the catalyst. See Table 1. 12. Following this, introduce hydrocarbon feed as described in the Operating Manual for VULCAN Series Naphtha Steam Reforming Catalysts. Table 1 – Catalyst Reduction Times Catalyst Steaming Period (Hours) <3 3-8 >8 Fresh Catalyst Charge Period of Reduction (Hours) No reduction required 6 hours of reduction 12 hours of reduction 18 hours of reduction Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 5. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com