Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Upcoming SlideShare
What to Upload to SlideShare
What to Upload to SlideShare
Loading in …3
×
1 of 41

스타트업을 위한 Confluent 세미나

1

Share

Download to read offline

Part 1. Why Kafka for Digital Native Business?
Part 2. 고객과의 대화 - Bagelcode’s Success Story
Part 3. Scenario 기반 Demo

Related Books

Free with a 30 day trial from Scribd

See all

Related Audiobooks

Free with a 30 day trial from Scribd

See all

스타트업을 위한 Confluent 세미나

  1. 1. Part 1. Kafka, 어떻게 시작할까? Confluent Startup Webinar Series 간종석 - Account Executive, Confluent 최영일 - Data Engineer, Bagelcode Engin Cukuroglu, PhD - Solution Engineer, Confluent 황주필 - Solution Engineer, Confluent
  2. 2. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Part 1. Why Kafka for Digital Native Business? Part 2. 고객과의 대화 - Bagelcode’s Success Story Part 3. Scenario 기반 Demo Q&A Today’s Contents
  3. 3. Set Your Data in Motion
  4. 4. The Rise of Event Streaming 2010 Apache Kafka Confluent 설립자들이 LinkedIn에서 개발 2014 2020 70% Fortune 500 기업이 신뢰하고 사용중인 Apache Kafka 4
  5. 5. The Rise of Data in Motion 금융 & 은행 보험 통신 여행 & 리테일 10 OUT OF 10 8 OUT OF 8 Fortune 500 Companies Using Apache Kafka 70% 운송수단 에너지 & 유틸리티 엔터테인먼트 기술 8 OUT OF 10 9 OUT OF 10 10 OUT OF 10 10 OUT OF 10 10 OUT OF 10 8 OUT OF 10
  6. 6. Real-time Data 구매/세일즈 배송 트레이드 고객 경험 Data in Motion: 새로운 패러다임 Continuously Process Streams of Data in Real-time “우리는 데이터 뿐만아니라 우리의 생각을 at rest 하는 방식에서 in motion의 형태로 전환해야 했습니다.” — 실시간 스트림 프로세싱 풍부한 프론트엔드 고객 경험 실시간 백앤드 운영
  7. 7. Modernize your apps 차세대 아키텍처가 지원하는 Realtime Insight로 애플리케이션의 가치를 높이십시오 데이터 통합 Database changes Log events IoT events Web events Connected car Fraud detection Customer 360 Personalized promotions 실시간 데이터로 구동되는 앱 Quality assurance SIEM/SOC Inventory management Proactive patient care Sentiment analysis Capital management Modernize Your Apps Amazon Kinesis Amazon S3 7
  8. 8. Part 1. Why Kafka for Digital Native Business?
  9. 9. Why Apache Kafka for Digital Native Business? Time to Market 가속화 Confluent로 시작한 후 1 주 이내에 대규모 Kafka 배포 TCO 절감 효과 (Total Cost Of Ownership) 낮은 인프라 비용, 유지 보수 및 다운 타임 위험을 줄이고, 보다 효율적으로 운영 ROI 극대화 (Return On Investment) 프로젝트를 더 빠르게 시작하고 실시간 데이터를 활용하여 더 높은 수익을 제공 9
  10. 10. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Cloud-native: Confluent Cloud completes Apache Kafka as a Cloud native Kafka Service 무제한 데이터 저장 용량 제공으로 실시간 앱 및 유스케이스에 더 큰 데이터 세트를 제공 즉시 확장(scale-up)하고 인프라 오버 프로비저닝을 방지하기 위해 축소(scale- down) 다양한 글로벌 인프라 환경에서 클러스터를 운영하여 조직 내에 일관된 데이터 페브릭 제공 탄력적인 확장 글로벌 인프라 무제한 용량 단순한 kafka를 넘어서 완전한 Data in Motion 플랫폼으로 더 빠르게 구축 및 운영 완전 관리형
  11. 11. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Part 2. 고객과의 대화 - Bagelcode 최영일 Tech Lead - Data Engineering, Bagelcode 간종석 Account Executive for Startups, Confluent
  12. 12. Part 3. Scenario 기반 Demo Engin Cukuroglu, PhD - Solution Engineer, Confluent 황주필 - Solution Engineer, Confluent
  13. 13. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Monoliths vs Microservices Microservices (마이크로서비스) Independently deployable and upgradable (독립적인 배포 및 업그레이드) Scalable and agile = faster feature delivery (빠른 기능 구현 가능) Leverages new technologies (새로운 기술 적용 용이) Monoliths (모놀리틱) ❖ Scalability issues (스케일 확장이 어려움) ❖ Difficult to change (아키택쳐 변경의 어려움) ❖ Difficult to adopt new technologies (새로운 기술 추가에 제약)
  14. 14. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. How to create Problems? (아키택쳐 디자인 중간에 발생하는 문제들) Ap ps D W Ap ps Ap ps D B • I know how to create an app (어떻게 앱을 만드는지 알고 있습니다.) • I need database and monitoring (데이터베이스 구성과 모니터링이 필요합니다.) • Look! I created another app and I need DataWarehouse (새로운 앱을 생성했고, 데이터웨어하우스가 필요합니다!) • Here goes another app (다른 앱을 또 만들었어요!) • I heard microservices are cool! (요즘에 마이크로서비스가 좋다던데요?!)
  15. 15. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. How to create Problems? 15
  16. 16. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. How to confuse the engineers? D W Ap ps Ap ps D B Sa as Sa as Sa as Sa as Sa as Sa as D W D B D B D B D B Ap ps Ap ps Ap ps Ap ps O n Prem O n Cloud
  17. 17. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. How do engineers solve this problem? 17
  18. 18. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. How do the engineers solve this problem? 18
  19. 19. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. How do the engineers solve this problem? DW Apps Apps DB Saas Saas DW D B Apps Apps
  20. 20. Architecture
  21. 21. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Kafka Architecture 21
  22. 22. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Kafka Architecture 22 Brokers
  23. 23. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Kafka Architecture 23
  24. 24. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Kafka Architecture 24 Consumer Producer Brokers
  25. 25. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Kafka Architecture 25
  26. 26. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Kafka Architecture 26 Consumer Producer Kafka Streams Brokers
  27. 27. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Kafka Architecture 27
  28. 28. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Kafka Architecture 28 Consumer Produce r Kafka Streams KsqlDB Brokers
  29. 29. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Kafka Architecture 29
  30. 30. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Kafka Architecture 30 Consumer Producer Kafka Streams KsqlDB Schema Registry Brokers
  31. 31. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Kafka Architecture 31
  32. 32. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Kafka Architecture 32 Consumer Producer Kafka Streams KsqlDB Schema Registry Kafka Connect Brokers
  33. 33. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Kafka Architecture 33
  34. 34. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Kafka Architecture 34 Consumer Producer Kafka Streams KsqlDB Schema Registry Kafka Connect Brokers Rest Proxy
  35. 35. Demo
  36. 36. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. Bookshop Order Management (서점 주문 관리) 36 Bookshop Order Management Visualize (시각화) Create Order (주문 생성) Order Details (주문 정보) Shipping Details (배송 정보)
  37. 37. Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. 37 Schema Registry (스키마 레지스트리) Brokers (카프카 브로커) Admin (관리자) Register Schemas (스키마 등록) Create Topics (토픽 생성) ShipBooks- consumer (배송 컨슈머) CachedSR Consume ShipBooks-producer (배송 프로듀서) Produce Analyze (분석) Visualize (시각화) BookOrder-producer (주문 프로듀서) CachedSR Produce Retrieve Schemas (스키마 검색) Kafka Connect (카프카 커넥트) Consume Retrieve Schemas (스키마 검색) Bookshop Order Management (서점 주문 관리)
  38. 38. Demo 화면
  39. 39. 지금 바로 시작하세요 ! Confluent Cloud 계정 생성 - $400 크레딧 제공 https://www.confluent.io/get- started/ 1:1 솔루션 디자인 Office Hour 진행 설문지 피드백
  40. 40. Set Your Data in Motion Now! 감사합니다! 문의 이메일: jkan@confluent.io

×