SlideShare ist ein Scribd-Unternehmen logo
1 von 99
Downloaden Sie, um offline zu lesen
Using	
  Computa.onal	
  Vaccinology	
  to	
  Design	
  
Genome-­‐Derived	
  Vaccines	
  for	
  Infec.ous	
  Diseases,	
  
Cancer,	
  Allergy	
  and	
  Autoimmune	
  Disease	
  
22	
  January	
  2014	
  

Anne	
  S.	
  De	
  Groot,	
  Lenny	
  Moise,	
  Leslie	
  Cousens,	
  Frances	
  Terry,	
  
William	
  Mar<n	
  
Ins<tute	
  for	
  Immunology	
  and	
  Informa<cs,	
  University	
  of	
  Rhode	
  
Island	
  and	
  EpiVax,	
  Inc.	
  	
  
www.epvax.com	
  www.immunome.org	
  
	
  
	
  

1	
  
Your	
  Speaker	
  –	
  Annie	
  De	
  Groot	
  MD	
  

2	
  
The	
  Company:	
  EpiVax	
  

hOp://bit.ly/EpiPubs	
  	
  

3	
  
EpiVax	
  Collaborates	
  with	
  the	
  	
  
Ins*tute	
  for	
  Immunology	
  and	
  Informa*cs	
  @	
  URI	
  

Collabora<ve	
  Research	
  on	
  Immunome-­‐Derived	
  Accelerated	
  Vaccine	
  Design	
  and	
  Development	
  
Funded	
  by	
  the	
  NIH	
  CCHI	
  U19,	
  COBRE,	
  and	
  P01	
  awards.	
  www.immunome.org	
  

hOp://bit.ly/EpiPubs	
  	
  

4	
  
Addi.onal	
  Collaborators	
  

Bill	
  Mar<n	
  
Lenny	
  Moise	
  
Frances	
  Terry	
  
Leslie	
  Cousens	
  
Ryan	
  Tassone	
  
Howie	
  La<mer	
  
Mindy	
  Cote	
  
Lauren	
  Levitz	
  
Chris<ne	
  Boyle	
  

Mark	
  Poznansky	
  
Tim	
  Brauns	
  
Pierre	
  LeBlanc	
  
	
  

Ted	
  Ross	
  

Don	
  Drake,	
  Brian	
  Schanen	
  
AI058326,	
  AI058376,	
  	
  
AI078800,	
  AI082642	
  

Alan	
  Rothman	
  
Carey	
  Medin	
  
Andres	
  Gui<errez	
  
Danielle	
  Aguirre	
  
Joe	
  Desrosiers	
  
Thomas	
  Mather	
  
Wendy	
  Coy	
  
Loren	
  Fast	
  

Hardy	
  Kornfeld	
  
Jinhee	
  Lee	
  
Liisa	
  Selin	
  
Sharon	
  Frey	
  
Mark	
  Buller	
  
hOp://bit.ly/EpiPubs	
  	
   Jill	
  Schreiwer	
  

Connie	
  Schmaljohn	
  
Lesley	
  C.	
  Dupuy	
  
5	
  
Outline
•  Why Computational Immunology
•  Tools to Produce IDVs
–  Antigen selection
–  Vaccine design
–  New concepts

•  Case Studies

6	
  
Predic<ng	
  the	
  future	
  is	
  something	
  that	
  weather	
  experts	
  do	
  
with	
  the	
  assistance	
  of	
  informa<cs	
  models.	
  	
  
	
  
These	
  forecasts	
  enable	
  us	
  to	
  make	
  decisions	
  on	
  a	
  daily	
  
basis,	
  and	
  they	
  are	
  accurate	
  enough	
  to	
  mobilize	
  millions	
  if	
  
and	
  when	
  severe	
  storms	
  are	
  predicted.	
  	
  
	
  
Why	
  then,	
  are	
  we	
  so	
  slow	
  to	
  use	
  informa<cs	
  in	
  vaccine	
  and	
  
protein	
  therapeu<cs	
  design?	
  	
  
In	
  todays	
  talk,	
  I	
  will	
  discuss	
  the	
  use	
  of	
  immunoinforma<cs	
  tools	
  for	
  
vaccine	
  design,	
  mechanism	
  of	
  ac<on	
  studies,	
  and	
  efficacy	
  
evalua<ons.	
  	
  I	
  believe	
  that	
  the	
  <me	
  is	
  ripe	
  for	
  vaccine	
  developers	
  to	
  
ac<vely	
  apply,	
  evaluate	
  and	
  improve	
  vaccines	
  through	
  the	
  use	
  of	
  
computa<onal	
  immunogenicity	
  predic<on	
  tools.	
  
“Old	
  Style”	
  Vaccines	
  	
  

Grow	
  .	
  .	
  .	
  and	
  use	
  whole	
  pathogen
The	
  focus	
  of	
  our	
  work	
  
Can	
  we	
  make	
  vaccines	
  beJer/faster	
  	
  
BeOer	
  understanding	
  
	
  of	
  vaccine	
  MOA	
  

Whole	
  (live/
killed)	
  vaccines	
  

Subunit	
  vaccines	
  
(Flu,	
  Hepa<<s	
  B,	
  
HPV	
  vaccines,	
  for	
  
example)	
  

Genome-­‐
Derived,	
  Epitope	
  
Driven	
  (GD-­‐ED)	
  
Vaccines	
  
Improve	
  vaccine	
  
safety	
  and	
  
efficacy	
  
Accelerate	
  
Vaccine	
  Design	
  

hOp://bit.ly/EpiPubs	
  	
  

10	
  
iVAX	
  Vaccine	
  Design	
  Toolkit	
  
Why?	
  New	
  Vaccines	
  Needed	
  
•  For Example:
–  HIV
–  HCV
–  Malaria
–  Universal Influenza Vaccine
–  Vaccines against Cancer
–  Vaccines for immunotherapy of AI
–  Vaccines for diseases affecting food animals
Why?	
  Unacceptable	
  Delays	
  
•  For Example: Pandemic influenza 2009
–  Traditional flu vaccine production methods
require large lead time
–  20 weeks to first vaccine dose
–  “Pandemic” influenza had already peaked by
the time the first shots were being delivered.
–  Vaccine manufacturing failed the test.
–  Is H7N9 the next pandemic? If so, we are
worried. . .
Emergent	
  H7N9	
  disease	
  in	
  China	
  

hOp://bit.ly/EpiPubs	
  	
  

14	
  
Spread	
  to	
  Beijing	
  on	
  4/13/13	
  .	
  .	
  .	
  
Spread	
  to	
  Hong	
  Kong	
  on	
  12/6/	
  13	
  

15	
  
Markedly	
  Increased	
  ac.vity	
  in	
  
late	
  2013	
  and	
  early	
  2014!	
  

hOp://bit.ly/EpiPubs	
  	
  

16	
  
Con.nuing	
  Expansion	
  of	
  H7N9	
  
First	
  confirmed	
  cases	
  occurred	
  in	
  Shanghai	
  (3/30/13)	
  but	
  case	
  ac<vity	
  
rapidly	
  increased	
  in	
  Zheijang	
  and	
  Jiangsu	
  provinces	
  shortly	
  aier.	
  	
  
Now,	
  we	
  have	
  a	
  problem!	
  	
  

hOp://bit.ly/EpiPubs	
  	
  

17	
  

Image	
  credit	
  to	
  VDU	
  and	
  Dr.	
  Ian	
  M	
  Mackay	
  hOp://www.uq.edu.au/vdu/VDUInfluenza_H7N9.htm	
  
Ci.es	
  that	
  are	
  one	
  stop	
  from	
  H7N9	
  

An	
  es<mated	
  70%	
  of	
  the	
  world	
  popula<on	
  resides	
  within	
  two	
  hours’	
  travel	
  <me	
  of	
  des<na<on	
  
airports	
  (calculated	
  using	
  gridded	
  popula<on-­‐density	
  maps	
  and	
  a	
  data	
  set	
  of	
  global	
  travel	
  
<mes,	
  map	
  supplied	
  by	
  A.	
  J.	
  Tatem,	
  Z.	
  Huang	
  and	
  S.	
  I.	
  Hay	
  (2013).	
  	
  
H7N9	
  Morbidity	
  and	
  Mortality	
  
Quick	
  numbers...	
  
•  Total	
  confirmed	
  human	
  cases	
  of	
  
influenza	
  A	
  virus	
  H7N9:	
  >	
  200	
  
• 

Total	
  deaths	
  aOributed	
  to	
  infec<on	
  
with	
  influenza	
  A	
  virus	
  H7N9:	
  >	
  50	
  

• 

Case	
  Fatality	
  Rate	
  (CFR):	
  29%	
  (current)	
  	
  

• 

Average	
  <me	
  from	
  illness	
  onset	
  to	
  first	
  
confirma<on	
  of	
  H7N9	
  (days):	
  <10	
  	
  

• 

Median	
  age	
  of	
  the	
  H7N9-­‐confirmed	
  
cases	
  (including	
  deaths;	
  years):	
  63	
  	
  

• 

Males:	
  71%	
  of	
  cases,	
  74%	
  of	
  deaths	
  	
  

• 

Younger	
  pa<ents	
  are	
  recovering	
  .	
  .	
  .	
  	
  
hOp://pandemicinforma<onnews.blogspot.com	
  

hOp://www.uq.edu.au/vdu/VDUInfluenza_H7N9.htm	
  19	
  
Virus	
  Transmission	
  Mechanism	
  –	
  	
  
source	
  is	
  s.ll	
  at	
  large	
  
•  Human	
  to	
  human	
  
transmission	
  has	
  not	
  been	
  
proved	
  (or	
  disproved)	
  many	
  
cases	
  show	
  uninfected	
  family	
  
members	
  
	
  

•  Poultry	
  iden<fied	
  as	
  poten<al	
  
natural	
  host	
  and	
  H7N9	
  
samples	
  were	
  found	
  in	
  
poultry	
  market	
  environment	
  
in	
  Shanghai.	
  However	
  not	
  
many	
  poultry	
  vendors	
  
infected	
  and	
  many	
  cases	
  have	
  
no	
  indica<on	
  of	
  poultry	
  
exposure	
  

hOp://bit.ly/EpiPubs	
  	
  

Image	
  credit	
  to	
  VDU	
  and	
  Dr.	
  Ian	
  M	
  Mackay	
  hOp://
20	
  
www.uq.edu.au/vdu/VDUInfluenza_H7N9.htm	
  
Distribu.on	
  of	
  Cases	
  

This	
  picture	
  
shows	
  the	
  
geographically	
  
wide	
  distribu<on	
  
of	
  flu	
  cases	
  -­‐	
  
sugges<ng	
  
widespread	
  
distribu<on	
  of	
  the	
  
virus	
  rather	
  than	
  
a	
  point	
  outbreak.	
  	
  
	
  
hOp://bit.ly/EpiPubs	
  	
  

21	
  
Why	
  are	
  immunoinforma.cs	
  tools	
  
important	
  in	
  this	
  sedng?	
  
•  Immunoinforma<cs	
  predicted	
  low	
  
immunogenicity	
  of	
  ‘cri<cal	
  an<gen’	
  H7	
  HA	
  
•  hOp://bit.ly/H7N9_2013	
  
(reminder)	
  Flu	
  Vaccine	
  –	
  HA	
  protein	
  

Ian	
  Mackey	
  hOp://www.uq.edu.au/vduVDUInfluenza_H7N9.htm	
  
hOp://bit.ly/EpiPubs	
  	
  

23	
  
What	
  Can	
  We	
  Learn	
  About	
  H7N9?	
  	
  

HA	
  (hemagglu<nin)	
  is	
  the	
  ‘Cri<cal	
  An<gen’	
  
used	
  for	
  Flu	
  vaccines,	
  especially	
  
recombinant	
  vaccines	
  	
  –	
  	
  
–	
  which	
  are	
  currently	
  in	
  produc*on.	
  	
  

hOp://bit.ly/EpiPubs	
  	
  

24	
  
H7N9	
  is	
  a	
  unique	
  virus	
  
•  Low	
  conserva<on	
  of	
  HA,	
  NA	
  surface	
  proteins	
  
is	
  not	
  surprising	
  
•  Internal	
  proteins	
  are	
  more	
  conserved	
  

hOp://bit.ly/EpiPubs	
  	
  

25	
  
New	
  H7N9	
  Flu	
  is	
  Predicted	
  to	
  be	
  
80
POORLY	
  IMMUNOGENIC	
   Thrombopoietin
70
-

60

-

-

50

-

-

40

-

HA	
  A/California/07/2009	
  (H1N1)	
  
Tetanus Toxin

-

30

-

Influenza-HA
HA	
  A/Victoria/361/2011	
  (H3N2)	
  

-

20

-

-

10

-

-

00

-

-

-10

-

-

-20

-

IgG FC Region

-

-30

-

Fibrinogen-Alpha

-

-40

-

-

-50

-

-

-60

-

-

-70

-

-

-80

H7	
  HA	
  
Immunogenic	
  Poten.al	
  

-

Human EPO
EBV-BKRF3

HA	
  A/Texas/50/2012	
  	
  (H3N2)	
  
Albumin

Follitropin-Beta

Random	
  Expecta.on	
  
HA	
  A/chicken/Italy/13474/1999	
  (H7N1)	
  	
  .	
  .	
  .	
  .	
  .	
  .	
  .	
  .	
  .	
  -­‐6.23	
  
HA	
  A/Shanghai/1/2013	
  (H7N9)	
  .	
  .	
  .	
  .	
  .	
  .	
  .	
  	
  ..	
  .	
  .	
  .	
  .	
  .	
  .	
  .	
  -­‐8.11	
  
HA	
  A/mallard/Netherlands/09/2005	
  (H7N7)	
  .	
  .	
  .	
  .	
  .	
  .	
  -­‐8.63	
  
gB-2 (EPX Score: -24.56)
HA	
  A/mallard/Netherlands/12/2000	
  (H7N3)	
  ..	
  .	
  .	
  .	
  .	
  .-­‐9.91	
  

hOp://bit.ly/EpiPubs	
  	
  
Why	
  are	
  immunoinforma.cs	
  tools	
  
important	
  in	
  this	
  sedng?	
  
•  Immunoinforma<cs	
  predicted	
  low	
  
immunogenicity	
  of	
  ‘cri<cal	
  an<gen’	
  H7	
  HA	
  
•  Vaccine	
  was	
  developed	
  but	
  is	
  low	
  
immunogenicity	
  as	
  predicted.	
  

hOp://bit.ly/H7N9_NovaVax	
  
Unadjuvanted Influenza
Vaccine Effectiveness
Why	
  are	
  immunoinforma.cs	
  tools	
  
important	
  in	
  this	
  sedng?	
  

.	
  .	
  .	
  Low	
  and	
  S predicted	
  
•  Immunoinforma<cs	
  low	
  .	
  .	
  .	
   low	
  
immunogenicity	
  of	
  ‘cri<cal	
  an<gen’	
  H7	
  HA	
  
•  Vaccine	
  was	
  developed	
  but	
  is	
  low	
  
immunogenicity	
  as	
  predicted	
  
•  Sero-­‐conversion	
  is	
  delayed,	
  diminished	
  in	
  
pa<ents	
  infected	
  with	
  H7N9.	
  

hOp://bit.ly/H7N9_Serology	
  
Why	
  are	
  immunoinforma.cs	
  tools	
  
important	
  in	
  this	
  sedng?	
  
•  Immunoinforma<cs	
  predicted	
  low	
  
immunogenicity	
  of	
  ‘cri<cal	
  an<gen’	
  H7	
  HA	
  
•  Vaccine	
  was	
  developed	
  but	
  is	
  low	
  
immunogenicity	
  as	
  predicted	
  
•  Sero-­‐conversion	
  is	
  delayed,	
  diminished	
  in	
  
pa<ents	
  infected	
  with	
  H7N9.	
  
•  New	
  vaccine	
  approaches	
  are	
  needed.	
  
•  .	
  .	
  .	
  Now	
  that	
  you	
  are	
  convinced,	
  let’s	
  talk	
  
about	
  computa<onal	
  vaccine	
  design	
  
Outline
•  Why Computational Immunology
•  Tools to Produce IDVs
–  Antigen selection
–  Vaccine design
–  New concepts

•  Case Studies

31	
  
Computational Vaccinology:
Genomes-to-Vaccines	
  
Selection of vaccine antigens is key
•  Lots of Genomes now Published!
•  On line tools for Pathogen Gene finding
(GLIMMER, ORPHEUS, GeneMark)
•  Tools for selecting subsets of protein –
such as subcellular localization of
hypothetical proteins (PSORTb, CELLO,
Proteome Analyst)
Comparative Genomics Impacts
Vaccine Immunogen Selection	
  
Strain 1

dispensable	
  genes	
  

core	
  genome	
  

Strain 2

pangenome	
  

Strain 3

	
  	
  
strain-­‐specific	
  genes	
  
Immunome-Derived Vaccines . . .	
  
Payload	
  

Adjuvant	
  

Delivery	
  
Vehicle	
  

.	
  .	
  .	
  Need	
  “informa*on”	
  	
  
=	
  T	
  cell	
  and	
  B	
  cell	
  epitopes	
  
	
  
.	
  .	
  .	
  And	
  the	
  correct	
  “milieu”	
  	
  
=	
  delivery	
  vehicle,	
  adjuvants/TLR	
  ligands	
  
	
  
“Fine	
  tune”	
  the	
  immune	
  response?	
  

Vaccine	
  

. . And there is ample evidence that this approach
to vaccine design produces protective immunity
Payload:	
  Predic.ng	
  Epitopes	
  that	
  Drive	
  
Immune	
  Response	
  is	
  our	
  Exper.se	
  
Protein

MHC II Pocket

Peptide
Epitope

HLA (Human MHC), are comprised of
peptide specific pockets
EpiMatrix predicts how well a peptide
sequence will bind to a specific pocket.
Binding is the prerequisite for
immunogenicity
8 class II HLA supertypes which taken
together incorporate 95% of human
populations (and pockets) worldwide.

Mature
APC

Each 9-mer/10-mer is analyzed for
binding potential to each of those 8
allele matrices.
The	
  EpiMatrix	
  Score	
  describes	
  the	
  binding	
  affinity	
   .
of	
  the	
  pep<de	
  sequence	
  to	
  the	
  HLA	
  complex	
  

Southwood et al. J. Immunology 1998
Sturniolo et al. Nature Biotechnology, 1999

hOp://bit.ly/EpiPubs	
  	
  

37	
  
How	
  do	
  we	
  measure	
  Immunogenicity?	
  	
  
Vaccine	
  an<gen	
  
epitope	
  

epitope	
  

epitope	
  

1	
  	
  +	
  	
  1	
  	
  +	
  	
  1	
  	
  	
  	
  =	
  	
  Response	
  

Immune	
  response	
  to	
  a	
  vaccine	
  an<gen	
  can	
  be	
  predicted	
  by	
  measuring	
  
the	
  number	
  of	
  T	
  cell	
  epitopes	
  contained	
  in	
  the	
  an<gen	
  with	
  
immunoinforma<cs	
  tools.	
  	
  

hOp://bit.ly/EpiPubs	
  	
  
“Immunogenicity	
  Scale”	
  

Immunogenic	
  
proteins	
  

Non	
  	
  
Immunogenic	
  
proteins	
  

hOp://bit.ly/EpiPubs	
  	
  

41	
  
Easy	
  easy	
  to	
  deliver	
  as	
  pep<des	
  

ClustiMer: Screen for Epitope Clusters

DRB1*0101
DRB1*0301
DRB1*0401
DRB1*0701
DRB1*0801
DRB1*1101
DRB1*1301
DRB1*1501

42	
  
Conservatrix:
Overcome the Challenge of Variability

HIV

HCV

Influenza

43	
  
Conservatrix Finds Conserved 9-mers

CTRPNNTRK
CTRPNNTRK
CTRPNNTRK
CTRPNNTRK
CTRPNNTRK
CTRPNNTRK

CTRPNNTRK

Conserved
epitope

Identifying the most conserved 9-mers allows for protection
against more strains with fewer epitopes
44	
  
BlastiMer: Epitope Exclusion

Foreign	
  

Self	
  

In	
  all	
  of	
  our	
  vaccines	
  we	
  eliminate	
  cross-­‐reac<ve	
  epitopes	
  
Confidential

45	
  
Epitope	
  Cross-­‐Reac<vity	
  Impacts	
  
Vaccine	
  Immunogen	
  Selec<on	
  

Human
Poten.ally	
  
detrimental	
  cross-­‐
reac.ve	
  epitopes	
  

Human
Microbiome

Pathogen

	
  	
  
Protec.ve	
  epitopes	
  

Poten.ally	
  
detrimental	
  cross-­‐
reac.ve	
  epitopes	
  
hOp://bit.ly/EpiPubs	
  	
  

46	
  
JanusMatrix	
  
TCR

Each MHC ligand has two faces,
The MHC-binding face (aggretope),
and the TCR-interacting face (epitope)
The JanusMatrix algorithm searches for putative MHC
ligands which are identical at the contact residues but
may vary at the MHC-binding residues.

http://bit.ly/JanusMatrix
MHC
TCR
Find predicted 9-mer ligands with:
•  Identical T cell-facing residues
•  Same HLA allele and minimally
different MHC-facing residues

48

MHC/HLA
HCV	
  T	
  Effector	
  Epitopes	
  
HCV_G1_NS2_732

HCV_G1_1941

HCV_G1_DEXDC_1246
HCV_G1_1605

HCV_G1_NS2_748

HCV_G1_NS4B_1769

HCV_G1_2941

HCV_G1_2440
HCV_G1_2898

HCV_G1_NS4B_1725

HCV_G1_ENV_359
HCV_G1_2485

HCV_G1_NS4B_1876

HCV_G1_NS4B_1910
HCV_G1_ENV_255

HCV_G1_2879

HCV_G1_NS4B_1790
HCV_G1_NS4b_1798
HCV_G1_2913

HCV_G1_NS5A_1988

HCV_G1_2840

HCV_G1_NS2_909
Treg-­‐like-­‐Epitope:	
  HCV	
  

HC

V_

G

1_

NS

2_

79

4
Outline
•  Why Computational Immunology
•  Tools to Produce IDVs
–  Antigen selection
–  Vaccine design

•  Case Studies

51	
  
EpiAssembler Constructs
Immunogenic Consensus Sequences

CTRPNNTRK
CTRPNNTRK
CTRPNNTRK
CTRPNNTRK
CTRPNNTRK
CTRPNNTRK

Epi-Assembler
Immunogenic consensus
EpiAssembler: Core Epitope
STRAIN 01
STRAIN 02
STRAIN 03
STRAIN 04
STRAIN 05
STRAIN 06
STRAIN 07
STRAIN 08
STRAIN 09
STRAIN 10
STRAIN 11
STRAIN 12
STRAIN 13
STRAIN 14
STRAIN 15
STRAIN 16
STRAIN 17
STRAIN 18
STRAIN 19
STRAIN 20

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
X
Q
Q
Q

X
A
X
A
X
A
X
A
X
A
A
A
A
A
A
X
A
X
A
A

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W

P
P
P
X
P
P
P
X
P
P
P
X
P
X
P
P
X
P
X
P

K
K
K
K
K
K
K
K
K
R
x
K
K
K
K
K
K
K
K
K
K

V
V
X
V
V
X
V
V
X
V
V
V
V
X
V
V
V
X
V
V

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E

Q
X
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
X
Q
Q
Q
Q
Q

F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F

W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W

A
A
A
A
A
A
A
A
A
A
A
A
A
A
X
A
A
A
A
A

K
K
K
K
K
X
K
K
K
K
K
X
K
K
K
K
K
K
K
X

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

X
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M

W
W
W
W
W
W
X
W
W
W
W
W
W
W
W
W
W
W
W
W

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

X
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
X
F
F

F W A K H M W N F

I
I
I
X
I
I
I
I
X
I
I
I
I
I
I
I
I
I
I
I

S
S
S
S
S
S
S
S
S
X
S
S
S
S
S
X
S
S
S
S

X
G
G
X
G
G
G
G
X
G
G
G
G
X
G
G
G
G
X
G

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Q
Q
Q
Q
Q
Q
Q
Q
X
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

L
L
X
L
L
X
L
L
X
L
L
X
L
L
L
L
X
L
L
L
EpiAssembler: Flanking Epitopes
STRAIN 01
STRAIN 02
STRAIN 03
STRAIN 04
STRAIN 05
STRAIN 06
STRAIN 07
STRAIN 08
STRAIN 09
STRAIN 10
STRAIN 11
STRAIN 12
STRAIN 13
STRAIN 14
STRAIN 15
STRAIN 16
STRAIN 17
STRAIN 18
STRAIN 19
STRAIN 20

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
X
Q
Q
Q

Q

X
A
X
A
X
A
X
A
X
A
A
A
A
A
A
X
A
X
A
A

A

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

S

W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W

P
P
P
X
P
P
P
X
P
P
P
X
P
X
P
P
X
P
X
P

K
K
K
K
K
K
K
K
K
R
x
K
K
K
K
K
K
K
K
K
K

V
V
X
V
V
X
V
V
X
V
V
V
V
X
V
V
V
X
V
V

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E

Q
X
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
X
Q
Q
Q
Q
Q

F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F

W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W

A
A
A
A
A
A
A
A
A
A
A
A
A
A
X
A
A
A
A
A

K
K
K
K
K
X
K
K
K
K
K
X
K
K
K
K
K
K
K
X

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

X
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M

W
W
W
W
W
W
X
W
W
W
W
W
W
W
W
W
W
W
W
W

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

X
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
X
F
F

I
I
I
X
I
I
I
I
X
I
I
I
I
I
I
I
I
I
I
I

S
S
S
S
S
S
S
S
S
X
S
S
S
S
S
X
S
S
S
S

X
G
G
X
G
G
G
G
X
G
G
G
G
X
G
G
G
G
X
G

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Q
Q
Q
Q
Q
Q
Q
Q
X
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

F W A K H M W N F
M W N F I S G I Q
W P K V E Q F W A

W

P

K

V

E

Q

N

F

I

S

G

I

Q

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

L
L
X
L
L
X
L
L
X
L
L
X
L
L
L
L
X
L
L
L

Y

L
EpiAssembler:
Final Immunogenic Consensus Sequence
STRAIN 01
STRAIN 02
STRAIN 03
STRAIN 04
STRAIN 05
STRAIN 06
STRAIN 07
STRAIN 08
STRAIN 09
STRAIN 10
STRAIN 11
STRAIN 12
STRAIN 13
STRAIN 14
STRAIN 15
STRAIN 16
STRAIN 17
STRAIN 18
STRAIN 19
STRAIN 20

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
X
Q
Q
Q

Q

X
A
X
A
X
A
X
A
X
A
A
A
A
A
A
X
A
X
A
A

A

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

S

W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W

P
P
P
X
P
P
P
X
P
P
P
X
P
X
P
P
X
P
X
P

K
K
K
K
K
K
K
K
K
R
x
K
K
K
K
K
K
K
K
K
K

V
V
X
V
V
X
V
V
X
V
V
V
V
X
V
V
V
X
V
V

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E

Q
X
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
X
Q
Q
Q
Q
Q

F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F

W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W

A
A
A
A
A
A
A
A
A
A
A
A
A
A
X
A
A
A
A
A

K
K
K
K
K
X
K
K
K
K
K
X
K
K
K
K
K
K
K
X

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

X
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M

W
W
W
W
W
W
X
W
W
W
W
W
W
W
W
W
W
W
W
W

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

X
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
X
F
F

I
I
I
X
I
I
I
I
X
I
I
I
I
I
I
I
I
I
I
I

S
S
S
S
S
S
S
S
S
X
S
S
S
S
S
X
S
S
S
S

X
G
G
X
G
G
G
G
X
G
G
G
G
X
G
G
G
G
X
G

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Q
Q
Q
Q
Q
Q
Q
Q
X
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

F W A K H M W N F
M W N F I S G I Q
W P K V E Q F W A

W

P

K

V

E

Q

N

F

I

S

G

I

Q

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

L
L
X
L
L
X
L
L
X
L
L
X
L
L
L
L
X
L
L
L

Y

L

Q A S W P K V E Q F W A K H M W N F I S G I Q Y L
VaxCAD Identifies and
Eliminates Junctional Epitopes
VaxCAD will identify junctional epitopes and rearrange chosen epitopes to reduce
junctional epitope formation
-10

Epitope Cluster Score
Junctional Cluster Score

20

10

0

Peptides in Default order in construct HP_IIB
50

40

-10
HP4117
HP4061
HP4181
HP4111
HP4018
HP4070
HP4060
HP4157
HP4065
HP4001
HP4193
HP4034
HP4068
HP4168
HP4160
HP4175
HP4127
HP4126
HP4007
HP4154
HP4164
HP4119
HP4100
HP4120
HP4179

30

EpiMatrix Cluster Score

50

HP4117
HP4179
HP4007
HP4111
HP4018
HP4070
HP4034
HP4193
HP4065
HP4181
HP4157
HP4060
HP4068
HP4164
HP4160
HP4175
HP4127
HP4120
HP4126
HP4154
HP4168
HP4119
HP4100
HP4001
HP4061

EpiMatrix Cluster Score

VaxCAD Example

Epitope Cluster Score
Junctional Cluster Score

40

30

20

10
0

Peptides in Optimized order in construct HP_IIB

57	
  
Multi-Epitope Gene Design
Intended Protein Product: Many epitopes strung together in a “String-of-Beads”

DNA insert

DNA
Vector

Protein
product
(folded)

58	
  
Immunogenic Consensus Sequence
Formulations
DNA	
  –	
  chain	
  of	
  epitopes,	
  or	
  
pep<de	
  in	
  liposomes	
  

ICS-­‐op<mized	
  whole	
  proteins	
  

ICS-­‐op<mized	
  proteins	
  in	
  VLP	
  
In Vivo Model for Validation:
HLA Transgenic Mice

	
  


	
  


	
  


	
  


	
  


	
  


HLA A2

HLA B7

HLA A2/DR1

HLA DR2

HLA DR3

HLA DR4
Outline
•  Why Computational Immunology
•  Tools to Produce IDVs
•  Case Studies
–  Tularemia
–  Smallpox
–  H. pylori
–  VEEV (multi-pathogen vaccine)
–  Influenza
61	
  
Current	
  Vaccine	
  Design	
  Pipeline	
  
Burk/Tuly/
MP

Epitope
Discovery

Epitope
Validation

Construct
Design

Immunogenicity

Animal Model
Validation

Epitope
Discovery

Epitope
Validation

Construct
Design

Immunogenicity

Animal Model
Validation

Tularemia

Epitope
Discovery

Epitope
Validation

Construct
Design

Immunogenicity

Animal Model
Validation

Smallpox

Epitope
Discovery

Epitope
Validation

Construct
Design

Immunogenicity

Animal Model
Validation

H. pylori

Epitope
Discovery

Epitope
Validation

Construct
Design

Immunogenicity

Animal Model
Validation

VEEV

Epitope
Discovery

Epitope
Validation

Construct
Design

Immunogenicity

Animal Model
Validation

Influenza

Epitope
Discovery

Epitope
Validation

Construct
Design

Immunogenicity

Animal Model
Validation

HIV/TB

62
GDV	
  Approach	
  Applied	
  to	
  F.	
  tularensis	
  
In 24 months:
•  Took one genome
•  Mapped class I + Class II
•  Selected 165 epitopes
•  Confirmed in human
•  Cloned into vaccine
•  Performed Challenge studies. . .

McMurry	
  JA,	
  Gregory	
  SH,	
  Moise	
  L,	
  Rivera	
  DS,	
  Buus	
  S,	
  and	
  De	
  Groot	
  AS.	
  Diversity	
  of	
  Francisella	
  tularensis	
  Schu4	
  an<gens	
  recognized	
  by	
  T	
  
lymphocytes	
  aier	
  natural	
  infec<ons	
  in	
  humans:	
  Iden<fica<on	
  of	
  candidate	
  epitopes	
  for	
  inclusion	
  in	
  a	
  ra<onally	
  designed	
  tularemia	
  vaccine.	
  
Vaccine	
  2007	
  Apr	
  20;25(16):3179-­‐91.	
  
63	
  
High	
  Responder	
  Frequency	
  to	
  Class	
  II	
  
Epitopes	
  in	
  Pa.ents	
  with	
  Prior	
  Exposure	
  
22/25	
  pep<des;	
  
Average	
  response	
  to	
  
the	
  pool	
  was	
  over	
  
1,000	
  gamma	
  
producing	
  cells	
  per	
  
million	
  above	
  
background.	
  
	
  

Percent	
  of	
  subjects	
  responding	
  by	
  IFN	
  gamma	
  ELISpot
	
  
Significant	
  Spot	
  Forming	
  Cells	
  averaged	
  across	
  subjects
	
  
64	
  
TulyVax:	
  6	
  epitope	
  in	
  	
  
LVS	
  Challenge	
  Strain	
  
IFN-g SFC/10^6 splenocytes
over background

TulyVax	
  Immunogenicity	
  in	
  HLA	
  Tg	
  	
  
Epitope-­‐specific	
  IFNγ	
  Response	
  
950 300

Placebo-immunized

250
900 -

FT_II_v1-immunized

200
150
100
50

Schu4 peptides
with perfect LVS match

Schu4 peptides
with partial LVS match

3025

3024

3023

3007

3019

3015

3003

3001

F176

F102

3018

3017

3005

3004

0

Schu4 peptides
without LVS match

Nearly identical immunogenicity profile observed in HLA DR3 mouse
immunizations performed in collaboration with Dr. Terry Wu (UNM), illustrating
broad reactivity of immunoinformatic predicted epitopes.
TulyVax Efficacy
100%
TuliVax Immunized Mice
Placebo Recipient Mice

Percent Survival

80%
60%

57%

Rapidity:	
  from	
  genome	
  to	
  candidate	
  vaccine	
  in	
  24	
  months	
  .	
  .	
  .	
  	
  
40%
Efficacy:	
  14	
  epitope	
  vaccine	
  protects	
  against	
  live	
  challenge	
  
20%
0%

0%
0

7

8

9 10 11 12 13 14 15 16 17 18 19 20 21
Days after lethal bacterial challenge

14	
  epitopes:	
  T	
  cell-­‐epitope-­‐immunized	
  mice	
  were	
  protected	
  against	
  live	
  
challenge	
  with	
  tularemia.	
  Placebo-­‐recipient	
  mice	
  died	
  within	
  10	
  days.	
  
McMurry et al. Vaccine 2007;25:3179-91 and Gregory et al. Vaccine 2009 27:5299-306
Immunome-Derived Smallpox Vaccine:
VennVax

vaccinia

	
  	
  	
  	
  	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

smallpox

Immunogenic
Epitopes

Vaccine	
  

Shared
Immunogenic
Epitopes
VennVax Class II Epitopes are
Antigenic in Dryvax Vaccinees

20	
  

88%	
  of	
  predicted	
  T	
  cell	
  epitopes	
  confirmed	
  in	
  vitro	
  using	
  hu	
  PBMC	
  
Moise et al. Vaccine. 2009 27:6471-9
VennVax Immunization
in HLA DR3 Transgenic Mice
Immunizations
Days 0, 14, 28, 42
1. epitope DNA vaccine prime (IM)
2. epitope peptide boost (IN)

Moise L et al. Vaccine. 2011;29:501-11

Immunogenicity
Day 56

Challenge
Day 65
Survival	
  of	
  VennVax-­‐Vaccinated	
  
Mice	
  Aqer	
  Aerosol	
  Challenge	
  
100%	
  survival	
  of	
  Vaccinated	
  mice	
  vs.	
  17%	
  of	
  placebo	
  
	
  
100
90

Percent Survival

80
Placebo

70

Vaccinated

60
50
40
30
20
10
0

DNA	
  

00

100

boost	
  

DNA	
  

520

boost	
  

Challenge	
  

10 40
15
60
Day Post Immunization

17%	
  	
  

20

80

25

73	
  
Moise et al. Vaccine. 2011; 29:501-11
Protection Without
Vaccine-Induced Antibodies
3
Pre-challenge Placebo
Pre-challenge Vaccine

2.5

Post-challenge Placebo
Post-challenge Vaccine

OD 490

2

1.5

Post-challenge

1

0.5

Pre-challenge

0
100

200

400

800

1600

1/Dilution Factor

3200

6400

12800
Therapeutic H. pylori Vaccination
Week 0

Week 6

Week 12-19

H. pylori
SS1

H. pylori SS1 lysate IN

H. pylori
SS1

Week 51

1. epitope DNA vaccine prime IN
2. epitope peptide boost IN
IFN-gamma
and IL-4 ELISpot

H. pylori
SS1

1. epitope DNA vaccine prime IM
2. epitope peptide boost IN

Histology
H. pylori
SS1

1. control DNA prime IN
2. control peptide boost IN
HelicoVax: Broad Epitope Recognition

IFN-gamma Secretion in Response to Splenocyte Restimulation following immunization
Average Helico-Vax
Average SS1

600
500
400
300
200
100

SS1 (whole lysate-immunized mice) recognized few epitopes (white bars);
HelicoVax-immunized mice recognized 45 of 50 (dark bars). 45/50 were immunogenic.

ConA

HP POO L 6

HP POO L 5

HP POO L 4

HP 4179

HP 4175

HP 4164

HP 4160

HP 4157

HP 4154

HP 4127

HP 4120

HP 4119

HP 4117

HP 4111

HP 4070

HP 4068

HP 4060

HP 4018

HP POO L 3

HP POO L 2

HP POO L 1

HP 4199

HP 4197

HP 4189

HP 4174

HP 4165

HP 4156

HP 4153

HP 4152

HP 4077

HP 4071

HP 4067

HP 4055

HP 4054

HP 4040

HP 4032

HP 4029

0
HP 4009

SFC/10^6 over background

700
HelicoVax Eradicates H. pylori Infection
***	
  P<0.001	
  
**	
  P<0.01	
  
***	
  P<0.001	
  

800
600

H. pylori qPCR
(SSA/GAPDH)

180
160
140
120

This result accomplished in just over 24 months . . .
100
80
60
40
20
0

Lysate

pVAX

DNA IM

DNA IN
Moss et al, Vaccine 2011;29:2085-91
VEEV IDV Development:
Comparison with Whole Antigen Vaccine

Two Whole Gene Constructs
–  Ebola Zaire GP
–  VEEV 26S*
–  subcloned into pWRG-7077

VS.

One Multi-Epitope Construct
–  Ebola Zaire/Sudan GP epitopes
–  VEEV 26S epitopes
–  subcloned into pWRG-7077

*Dupuy LC, Richards MJ, Ellefsen B, Chau L, Luxembourg A, Hannaman D, Livingston BD,
Schmaljohn CS. A DNA Vaccine for Venezuelan Equine Encephalitis Virus Delivered by
Intramuscular Electro-poration Elicits High Levels of Neutralizing Antibodies in Multiple
Animal Models and Provides Protective Immunity to Mice and Nonhuman Primates. Clin
Vaccine Immunol. 2011 Mar 30.
IFNγ ELISpot responses to
VEEV peptide pools

VEEV E1

VEEV E2
VEEV IDV Elicits Antibody Response

USAMRIID DR3 Mouse Study
VEEV Challenge Group ELISA
Day 56 Serum Samples
5

Log10 Titer

4
3
2
1
0

Neg Con Arm Pos Con Arm Vaccine Arm
Whole Antigen Epitope-Driven
Negative
Control

Vaccine

Vaccine
VEEV IDV Protects
Against Lethal Challenge

100
90
80
70
60
50
40
30
20
10
0

USAMRIID DR3 Mouse Study
VEEV Challenge Weights

% Mean Starting Weight

Percent survival

USAMRIID DR3 Mouse Study
VEEV Challenge Survival

0

5

10

Days postchallenge

Neg Con Arm
100
Pos Con Arm
Vaccine Arm
90

Neg Con Control
Negative Arm
Pos Con Arm
Whole Antigen
Epitope-Driven
Vaccine Arm

80
70
60
50

Vaccine

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Days Postchallenge
What Drives Protection?

T	
  helper	
  Epitopes	
  

B	
  cell	
  
epitopes	
  

Other?	
  	
  CTL?	
  	
  
Th2?	
  	
  

Negative
Control

Whole Antigen
Vaccine

Subset of Th epitopes
stimulate IFNγ secretion"
"
Combination of immunogenic
Th epitopes that overlap B cell
epitopes???"
"
Contribution from other Th
epitopes (stimulate other
cytokines) that overlap with Bcell epitopes"
"
"
"
Th epitopes that stimulate
different subpopulations"
"
Epitope-Driven
"
Vaccine
"
What is clear: that whole Ag is
not necessary for protection"
T	
  cells	
  =	
  Immune	
  System	
  Body	
  Armor
	
  
T	
  cell	
  response	
  cannot	
  prevent	
  Infec<on	
  but	
  .	
  .	
  .	
  	
  
T	
  cell	
  response	
  can	
  arm	
  against	
  Disease	
  
The "New" Flu 
(H1N1 2009 California)

hOp://bit.ly/EpiPubs	
  	
  

84	
  
2009	
  Worry:	
  CDC	
  –	
  	
  
No	
  Cross-­‐reac.ve	
  Ab	
  
• 
• 
• 

Preliminary	
  studies	
  of	
  individuals	
  showed	
  that	
  
an<bodies	
  induced	
  by	
  seasonal	
  influenza	
  
vaccina<on	
  were	
  not	
  cross-­‐reac<ve	
  with	
  novel	
  
H1N1.	
  
What	
  if	
  the	
  T	
  cell	
  epitopes	
  were	
  cross-­‐reac<ve?	
  
Would	
  that	
  help?	
  	
  
(Note	
  that	
  the	
  situa<on	
  is	
  very	
  similar	
  for	
  H7N9	
  
–	
  no	
  cross-­‐reac<ve	
  an<body).	
  	
  

	
  
	
  

Centers	
  for	
  Disease	
  Control	
  and	
  Preven<on.	
  Serum	
  an<body	
  response	
  to	
  a	
  novel	
  influenza	
  
A	
  (H1N1)	
  virus	
  aier	
  vaccina<on	
  with	
  seasonal	
  influenza	
  vaccine.	
  MMWR	
  Morb	
  Mortal	
  
Wkly	
  Rep	
  2009;58(19):521–4.	
  	
  
hOp://bit.ly/EpiPubs	
  	
  

85	
  
2009	
  H1N1	
  contains	
  conserved	
  epitope	
  
Sequences	
  –	
  Predicted	
  Cross	
  Protec.on	
  

Immunogenic
T cell
epitopes

Enough	
  Cross-­‐
protec<ve	
  Epitopes	
  
that	
  Seasonal	
  Flu	
  
vaccina<on	
  or	
  
exposure	
  may	
  protect	
  

Conserved
T-Cell
Epitopes
hOp://bit.ly/EpiPubs	
  	
  

86	
  

De Groot et al. Vaccine 2009;27:5740-7
EpiVax	
  Predicted	
  Cross-­‐Protec.on	
  

hOp://www.ncbi.nlm.nih.gov/pubmed/19660593
	
  
hOp://bit.ly/EpiPubs	
  	
  

87	
  
Immuniza.on	
  with	
  FluVax	
  cross-­‐conserved	
  	
  
T	
  cell	
  epitopes	
  decreases	
  lung	
  viral	
  load	
  
10

8	
  
1.00E+08	
  
P=	
  0.002	
  

PFU/ml	
  

*

10

1.00E+07	
  
7	
  

10

	
  
A	
  handful	
  of	
  
conserved	
  
epitopes	
  
protected	
  
against	
  disease	
  

6	
  
1.00E+06	
  

Placebo	
  

FluVax	
  
2009	
  

Placebo	
  

2	
  Days	
  
hOp://bit.ly/H1N1_DR3_2013	
  
hOp://bit.ly/Moise_Universal_Flu	
  

Post-­‐Infec.on	
  
hOp://bit.ly/EpiPubs	
  	
  

FluVax	
  
2009	
  

4	
  Days	
  

90	
  
H1N1	
  Conclusions	
  
•  This work recapitulates other projects already completed:
Complete protection using ONLY T cell epitopes (H. pylori,
Tularemia, VennVax)
•  Results of our published studies demonstrate that conserved
T cell epitope sequences, important to viral fitness, also may
be immunologically significant contributors to protection
against newly emerging influenza strains.
•  The conserved epitope approach promises to answer the
need for prompt preparedness and delivery of a safe,
efficacious vaccine without requiring a new vaccine for every
emergent influenza strain.

hOp://bit.ly/H1N1_DR3_2013	
  
hOp://bit.ly/Moise_Universal_Flu	
  

hOp://bit.ly/EpiPubs	
  	
  

91	
  
What about H7N9?

hOp://bit.ly/EpiPubs	
  	
  

92	
  
What	
  Can	
  We	
  Learn	
  About	
  H7N9?	
  	
  
Epitopes	
  Novel	
  or	
  Conserved?	
  

H7N9	
  

Circula<ng	
  Flu	
  

As	
  it	
  turns	
  out	
  -­‐	
  -­‐	
  -­‐	
  
Very	
  Poor	
  Cross-­‐Conserva<on	
  –	
  Only	
  within	
  Internal	
  Proteins	
  
hOp://bit.ly/EpiPubs	
  	
  

93	
  
New	
  H7N9	
  Flu	
  is	
  Predicted	
  to	
  be	
  
80
POORLY	
  IMMUNOGENIC	
   Thrombopoietin
70
-

60

-

-

50

-

-

40

-

HA	
  A/California/07/2009	
  (H1N1)	
  
Tetanus Toxin

-

30

-

Influenza-HA
HA	
  A/Victoria/361/2011	
  (H3N2)	
  

-

20

-

-

10

-

-

00

-

-

-10

-

-

-20

-

IgG FC Region

-

-30

-

Fibrinogen-Alpha

-

-40

-

-

-50

-

-

-60

-

-

-70

-

-

-80

-

H7	
  HA	
  
Immunogenic	
  Poten.al	
  

Human EPO
EBV-BKRF3

HA	
  A/Texas/50/2012	
  	
  (H3N2)	
  
Albumin

Follitropin-Beta

hOp://bit.ly/H7N9_HVandI	
  

Random	
  Expecta.on	
  
HA	
  A/chicken/Italy/13474/1999	
  (H7N1)	
  	
  .	
  .	
  .	
  .	
  .	
  .	
  .	
  .	
  .	
  -­‐6.23	
  
HA	
  A/Shanghai/1/2013	
  (H7N9)	
  .	
  .	
  .	
  .	
  .	
  .	
  .	
  	
  ..	
  .	
  .	
  .	
  .	
  .	
  .	
  .	
  -­‐8.11	
  
HA	
  A/mallard/Netherlands/09/2005	
  (H7N7)	
  .	
  .	
  .	
  .	
  .	
  .	
  -­‐8.63	
  
gB-2 (EPX Score: -24.56)
HA	
  A/mallard/Netherlands/12/2000	
  (H7N3)	
  ..	
  .	
  .	
  .	
  .	
  .-­‐9.91	
  
This	
  is	
  a	
  unique	
  virus	
  
•  Low	
  conserva<on	
  of	
  HA,	
  NA	
  surface	
  proteins	
  
is	
  not	
  surprising	
  
•  Internal	
  proteins	
  are	
  more	
  conserved	
  
•  And	
  –	
  HA	
  is	
  has	
  unusually	
  low	
  immunogenicity	
  
•  Could	
  that	
  explain	
  why	
  infec<on	
  is	
  
widespread?	
  
•  Difficult	
  to	
  make	
  an<bodies	
  to	
  the	
  HA	
  
hOp://bit.ly/EpiPubs	
  	
  

96	
  
Differen<al	
  Cross-­‐reac<vity	
  with	
  the	
  human	
  
genome-­‐	
  significance?	
  	
  
New	
  and	
  unpublished:	
  The	
  “Classic	
  Epitope”	
  
Is	
  much	
  more	
  cross-­‐conserve	
  with	
  the	
  human	
  genome	
  in	
  the	
  case	
  of	
  H7N9.	
  

H1N1	
  

H7N9	
  

hOp://bit.ly/EpiPubs	
  	
  

97	
  
This	
  is	
  a	
  unique	
  virus	
  
•  Unusually	
  low	
  immunogenicity	
  
•  Cross-­‐reac<vity	
  with	
  human	
  genome	
  
•  How	
  do	
  we	
  overcome	
  this	
  problem?	
  

hOp://bit.ly/EpiPubs	
  	
  

98	
  
hOp://bit.ly/EpiPubs	
  	
  

99	
  
Immunoinforma.cs	
  Toolkit	
  
•  EpiMatrix – maps T cell epitopes
•  ClustiMer - Promiscuous / Supertype Epitopes
Seamless	
  Vaccine	
  
•  BlastiMer - Avoiding “self” - autoimmunity

Design	
  
•  Conservatrix – Identifies Conserved Segments
	
  
Integrated	
  toolkit	
  is	
  
•  EpiAssembler - Immunogenic Consensus Sequences
unique	
  to	
  iVax	
  

•  Aggregatrix – Optimizing the coverage of vaccines
•  VaxCAD - Processing and Assembly

hOp://bit.ly/EpiPubs	
  	
  

100	
  
FastVax: Vaccines on demand
•  High throughput computing
•  Immunoinformatics
•  Vaccine design algorithms

	
  
Rapid	
  deployment	
  
when	
  genome	
  
sequence	
  is	
  in	
  hand	
  
	
  

•  Vaccine Production
•  Delivery device
•  Animal safety/tox/immunogenicity/validation
•  Deployment by established distribution systems
Pilot	
  program	
  	
  
Funded	
  by	
  DARPA	
  

Prebuilt	
  
hOp://bit.ly/EpiPubs	
  	
  

101	
  
20	
  hours	
  -­‐	
  April	
  05	
  –	
  April	
  06	
  2013	
  
Extremely	
  Rapid	
  H7N9	
  Vaccine	
  Design	
  
April	
  05,	
  2013:	
  Obtain	
  H7N9	
  Sequences	
  (4	
  human-­‐sourced;	
  GISAID)	
  	
  
Obtain	
  all	
  available	
  	
  
H7N9	
  sequences	
  

EpiMatrix	
  Analysis:	
  Iden<fica<on	
  of	
  H7N9	
  Class	
  I	
  and	
  Class	
  II	
  Epitopes	
  
Compare	
  with	
  previous	
  epitopes	
  (IEDB)	
  
And	
  other	
  H7N9	
  strains;	
  create	
  final	
  list	
  
20	
  hours	
  (Logged).	
  

101	
  H7N9	
  ICS*	
  Class	
  II	
  Epitopes	
  +	
  586	
  Class	
  I	
  Epitopes	
  	
  	
  
Eliminate	
  Epitopes	
  	
  
highly	
  conserved	
  with	
  Human	
  
Design	
  vaccine:	
  12	
  hours	
  (Logged).	
  

April	
  06,	
  2013:	
  H7N9	
  Vaccine:	
  Two	
  Constructs,	
  Class	
  I	
  and	
  Class	
  II	
  
hOp://bit.ly/EpiPubs	
  	
  

102	
  
Gedng	
  FastVax	
  into	
  the	
  clinic:	
  4	
  Steps	
  
Emergency	
  use	
  
authoriza<on	
  

1.	
  In	
  silico	
  
Design	
  

2.	
  Produc<on	
  
and	
  Packaging	
  

3.	
  Clinical	
  
Trial	
  
(correlates	
  of	
  
immunity)	
  

4.	
  
Deployment	
  

Regulatory	
  
Agency	
  approval	
  

As	
  Currently	
  Proposed	
  with	
  Genome-­‐derived	
  Epitope-­‐driven	
  Influenza	
  Vaccines	
  (R21	
  /	
  NIAID	
  /	
  NIH)	
  
hOp://bit.ly/EpiPubs	
  

104	
  
H7N9	
  at	
  EpiVax	
  
•  String-­‐of-­‐epitopes	
  DNA	
  vaccine	
  (Doug	
  Lowrie)	
  
•  String-­‐of-­‐epitopes	
  Phage	
  vaccine	
  (Ft.	
  Detrick)	
  
•  Op<mized	
  HA	
  (fix	
  epitopes)	
  recombinant	
  
(TBD?)	
  
•  Op<mized	
  HA	
  +	
  epitope	
  string	
  VLP	
  (Ted	
  Ross)	
  
•  Collabora<on	
  with	
  NIID/Japan	
  –	
  in	
  progress	
  
EpiVax	
  Contacts:	
  	
  
Anthony	
  Marcello,	
  BDA,	
  amarcello@epivax.com	
  	
  
Anne	
  S.	
  De	
  Groot	
  CEO/CSO	
  annied@epivax.com	
  

105	
  
H7N9 Delivery vehicles
DNA	
  –	
  chain	
  of	
  epitopes,	
  or	
  
pep<de	
  in	
  liposomes	
  

ICS-­‐op<mized	
  whole	
  proteins	
  

ICS-­‐op<mized	
  proteins	
  in	
  VLP	
  
And	
  .	
  .	
  .	
  Cancer,	
  Allergy	
  and	
  Autoimmune	
  Disease?	
  
•	
  	
  	
  Payload+Adjuvant+	
  Delivery	
  vehicle	
  =	
  Vaccine	
  

•  Cancer	
  Vax	
  =	
  Epitopes	
  +	
  Adjuvant	
  +	
  ?	
  	
  
•  Tregitope	
  =	
  Novel	
  “adjuvant”	
  that	
  induces	
  tolerance	
  
•  Allergy	
  Vax	
  =	
  Epitopes	
  +Tregitope+Delivery	
  vehicle	
  
•  Autoimmunity	
  Vax=	
  AutoAg+Tregitope+Del.	
  vehicle	
  

107	
  
Outline
•  Why Computational Immunology
•  Tools to Produce IDVs
–  Antigen selection
–  Vaccine design
–  New concepts

•  Case Studies
•  . . . Questions?

108	
  
EpiVax:	
  Four	
  Core	
  Strengths	
  

Contact:	
  Anthony	
  Marcello,	
  BDA,	
  amarcello@epivax.com	
  	
  
Confiden<al	
  

Weitere ähnliche Inhalte

Was ist angesagt?

Antibody engineering by R.S.Priyengha
Antibody engineering by R.S.PriyenghaAntibody engineering by R.S.Priyengha
Antibody engineering by R.S.PriyenghaPriyengha R.S
 
Uni prot presentation
Uni prot presentationUni prot presentation
Uni prot presentationRida Khalid
 
The 'omics' revolution: How will it improve our understanding of infections a...
The 'omics' revolution: How will it improve our understanding of infections a...The 'omics' revolution: How will it improve our understanding of infections a...
The 'omics' revolution: How will it improve our understanding of infections a...WAidid
 
Transcriptomics and metabolomics
Transcriptomics and metabolomicsTranscriptomics and metabolomics
Transcriptomics and metabolomicsSukhjinder Singh
 
Personalized Medicine and the Omics Revolution by Professor Mike Snyder
Personalized Medicine and the Omics Revolution by Professor Mike SnyderPersonalized Medicine and the Omics Revolution by Professor Mike Snyder
Personalized Medicine and the Omics Revolution by Professor Mike SnyderThe Hive
 
Applications of bioinformatics
Applications of bioinformaticsApplications of bioinformatics
Applications of bioinformaticsSudha Rameshwari
 
Whole genome sequence
Whole genome sequenceWhole genome sequence
Whole genome sequencesababibi
 
SAGE (Serial analysis of Gene Expression)
SAGE (Serial analysis of Gene Expression)SAGE (Serial analysis of Gene Expression)
SAGE (Serial analysis of Gene Expression)talhakhat
 
Electrophoretic mobility shift assay
Electrophoretic mobility shift assay Electrophoretic mobility shift assay
Electrophoretic mobility shift assay iqraakbar8
 
16S Ribosomal DNA Sequence Analysis
16S Ribosomal DNA Sequence Analysis16S Ribosomal DNA Sequence Analysis
16S Ribosomal DNA Sequence AnalysisAbdulrahman Muhammad
 

Was ist angesagt? (20)

Genomics types
Genomics typesGenomics types
Genomics types
 
Biological databases
Biological databasesBiological databases
Biological databases
 
Antibody engineering by R.S.Priyengha
Antibody engineering by R.S.PriyenghaAntibody engineering by R.S.Priyengha
Antibody engineering by R.S.Priyengha
 
Uni prot presentation
Uni prot presentationUni prot presentation
Uni prot presentation
 
Bioinformatics introduction
Bioinformatics introductionBioinformatics introduction
Bioinformatics introduction
 
The 'omics' revolution: How will it improve our understanding of infections a...
The 'omics' revolution: How will it improve our understanding of infections a...The 'omics' revolution: How will it improve our understanding of infections a...
The 'omics' revolution: How will it improve our understanding of infections a...
 
Transcriptomics and metabolomics
Transcriptomics and metabolomicsTranscriptomics and metabolomics
Transcriptomics and metabolomics
 
Personalized Medicine and the Omics Revolution by Professor Mike Snyder
Personalized Medicine and the Omics Revolution by Professor Mike SnyderPersonalized Medicine and the Omics Revolution by Professor Mike Snyder
Personalized Medicine and the Omics Revolution by Professor Mike Snyder
 
Applications of bioinformatics
Applications of bioinformaticsApplications of bioinformatics
Applications of bioinformatics
 
Whole genome sequence
Whole genome sequenceWhole genome sequence
Whole genome sequence
 
Swiss PROT
Swiss PROT Swiss PROT
Swiss PROT
 
SAGE (Serial analysis of Gene Expression)
SAGE (Serial analysis of Gene Expression)SAGE (Serial analysis of Gene Expression)
SAGE (Serial analysis of Gene Expression)
 
Electrophoretic mobility shift assay
Electrophoretic mobility shift assay Electrophoretic mobility shift assay
Electrophoretic mobility shift assay
 
Comparative genomics
Comparative genomicsComparative genomics
Comparative genomics
 
Types of genomics ppt
Types of genomics pptTypes of genomics ppt
Types of genomics ppt
 
16S Ribosomal DNA Sequence Analysis
16S Ribosomal DNA Sequence Analysis16S Ribosomal DNA Sequence Analysis
16S Ribosomal DNA Sequence Analysis
 
Genomics
GenomicsGenomics
Genomics
 
Prosite
PrositeProsite
Prosite
 
Sage
SageSage
Sage
 
Comparitive genomics
Comparitive genomicsComparitive genomics
Comparitive genomics
 

Ähnlich wie Introduction to Computational Vaccinology and iVAX by EpiVax

Developing Better Methods of Cross-Reactive Influenza Vaccine Production
Developing Better Methods of Cross-Reactive Influenza Vaccine ProductionDeveloping Better Methods of Cross-Reactive Influenza Vaccine Production
Developing Better Methods of Cross-Reactive Influenza Vaccine ProductionRyan Bowe
 
Livestock vaccines: Development and market access
Livestock vaccines: Development and market accessLivestock vaccines: Development and market access
Livestock vaccines: Development and market accessExternalEvents
 
Recent advances in Vaccine_Dr. Mansij Biswas
Recent advances in Vaccine_Dr. Mansij BiswasRecent advances in Vaccine_Dr. Mansij Biswas
Recent advances in Vaccine_Dr. Mansij BiswasMansij Biswas
 
subtopic of COVID- 19 VACCINE DEVELOPMENT AND TYPES
 subtopic of COVID- 19 VACCINE DEVELOPMENT AND TYPES subtopic of COVID- 19 VACCINE DEVELOPMENT AND TYPES
subtopic of COVID- 19 VACCINE DEVELOPMENT AND TYPESGagan Sharma
 
Potential impacts of COVID-19 research on livestock health research and innov...
Potential impacts of COVID-19 research on livestock health research and innov...Potential impacts of COVID-19 research on livestock health research and innov...
Potential impacts of COVID-19 research on livestock health research and innov...ILRI
 
HIV VACCINES; DEVELOPMENT AND CHALLENGES.pptx
HIV VACCINES; DEVELOPMENT AND CHALLENGES.pptxHIV VACCINES; DEVELOPMENT AND CHALLENGES.pptx
HIV VACCINES; DEVELOPMENT AND CHALLENGES.pptxMuhammadFatihuYahaya
 
09 CeoMeeting- Session 4- Sentinext
09 CeoMeeting- Session 4- Sentinext09 CeoMeeting- Session 4- Sentinext
09 CeoMeeting- Session 4- SentinextMLSCF
 
Bacterialvaccine (1).ppt
Bacterialvaccine (1).pptBacterialvaccine (1).ppt
Bacterialvaccine (1).pptVandanaVats8
 
HealthBIO 2020_Tim Schenk_Janssen Finland
HealthBIO 2020_Tim Schenk_Janssen FinlandHealthBIO 2020_Tim Schenk_Janssen Finland
HealthBIO 2020_Tim Schenk_Janssen FinlandBusiness Turku
 
Dr iwalokun presentation_amls_lagosstate_2018
Dr iwalokun presentation_amls_lagosstate_2018Dr iwalokun presentation_amls_lagosstate_2018
Dr iwalokun presentation_amls_lagosstate_2018Iwalokun Abiodun
 
2017 09-07 Global Virome Project
2017 09-07 Global Virome Project2017 09-07 Global Virome Project
2017 09-07 Global Virome ProjectThe End Within
 
EpiVax FastVax 23Feb2010
EpiVax FastVax 23Feb2010EpiVax FastVax 23Feb2010
EpiVax FastVax 23Feb2010Annie De Groot
 
Coronavirus Pandemic Part III (C): Vaccines (rev01)
Coronavirus Pandemic Part III (C): Vaccines (rev01)Coronavirus Pandemic Part III (C): Vaccines (rev01)
Coronavirus Pandemic Part III (C): Vaccines (rev01)Kumaraguru Veerasamy
 
B_Safe System v2
B_Safe System v2B_Safe System v2
B_Safe System v2Eric Krohn
 
The essentials about vaccines and vaccination
The essentials about vaccines and vaccinationThe essentials about vaccines and vaccination
The essentials about vaccines and vaccinationGreenFacts
 
VACCINES AND ITS PRODUCTION
VACCINES AND ITS PRODUCTIONVACCINES AND ITS PRODUCTION
VACCINES AND ITS PRODUCTIONRathikaRagupathi
 
Gain of-function experiments on H7N9
Gain of-function experiments on H7N9Gain of-function experiments on H7N9
Gain of-function experiments on H7N9Harm Kiezebrink
 

Ähnlich wie Introduction to Computational Vaccinology and iVAX by EpiVax (20)

Developing Better Methods of Cross-Reactive Influenza Vaccine Production
Developing Better Methods of Cross-Reactive Influenza Vaccine ProductionDeveloping Better Methods of Cross-Reactive Influenza Vaccine Production
Developing Better Methods of Cross-Reactive Influenza Vaccine Production
 
Livestock vaccines: Development and market access
Livestock vaccines: Development and market accessLivestock vaccines: Development and market access
Livestock vaccines: Development and market access
 
Recent advances in Vaccine_Dr. Mansij Biswas
Recent advances in Vaccine_Dr. Mansij BiswasRecent advances in Vaccine_Dr. Mansij Biswas
Recent advances in Vaccine_Dr. Mansij Biswas
 
subtopic of COVID- 19 VACCINE DEVELOPMENT AND TYPES
 subtopic of COVID- 19 VACCINE DEVELOPMENT AND TYPES subtopic of COVID- 19 VACCINE DEVELOPMENT AND TYPES
subtopic of COVID- 19 VACCINE DEVELOPMENT AND TYPES
 
Vish Nene - Building back better: How can public food and agricultural resear...
Vish Nene - Building back better: How can public food and agricultural resear...Vish Nene - Building back better: How can public food and agricultural resear...
Vish Nene - Building back better: How can public food and agricultural resear...
 
Potential impacts of COVID-19 research on livestock health research and innov...
Potential impacts of COVID-19 research on livestock health research and innov...Potential impacts of COVID-19 research on livestock health research and innov...
Potential impacts of COVID-19 research on livestock health research and innov...
 
HIV VACCINES; DEVELOPMENT AND CHALLENGES.pptx
HIV VACCINES; DEVELOPMENT AND CHALLENGES.pptxHIV VACCINES; DEVELOPMENT AND CHALLENGES.pptx
HIV VACCINES; DEVELOPMENT AND CHALLENGES.pptx
 
09 CeoMeeting- Session 4- Sentinext
09 CeoMeeting- Session 4- Sentinext09 CeoMeeting- Session 4- Sentinext
09 CeoMeeting- Session 4- Sentinext
 
Bacterialvaccine (1).ppt
Bacterialvaccine (1).pptBacterialvaccine (1).ppt
Bacterialvaccine (1).ppt
 
HealthBIO 2020_Tim Schenk_Janssen Finland
HealthBIO 2020_Tim Schenk_Janssen FinlandHealthBIO 2020_Tim Schenk_Janssen Finland
HealthBIO 2020_Tim Schenk_Janssen Finland
 
Dr iwalokun presentation_amls_lagosstate_2018
Dr iwalokun presentation_amls_lagosstate_2018Dr iwalokun presentation_amls_lagosstate_2018
Dr iwalokun presentation_amls_lagosstate_2018
 
2017 09-07 Global Virome Project
2017 09-07 Global Virome Project2017 09-07 Global Virome Project
2017 09-07 Global Virome Project
 
EpiVax FastVax 23Feb2010
EpiVax FastVax 23Feb2010EpiVax FastVax 23Feb2010
EpiVax FastVax 23Feb2010
 
Coronavirus Pandemic Part III (C): Vaccines (rev01)
Coronavirus Pandemic Part III (C): Vaccines (rev01)Coronavirus Pandemic Part III (C): Vaccines (rev01)
Coronavirus Pandemic Part III (C): Vaccines (rev01)
 
STC talk
STC talk STC talk
STC talk
 
B_Safe System v2
B_Safe System v2B_Safe System v2
B_Safe System v2
 
HIV vaccines
HIV vaccinesHIV vaccines
HIV vaccines
 
The essentials about vaccines and vaccination
The essentials about vaccines and vaccinationThe essentials about vaccines and vaccination
The essentials about vaccines and vaccination
 
VACCINES AND ITS PRODUCTION
VACCINES AND ITS PRODUCTIONVACCINES AND ITS PRODUCTION
VACCINES AND ITS PRODUCTION
 
Gain of-function experiments on H7N9
Gain of-function experiments on H7N9Gain of-function experiments on H7N9
Gain of-function experiments on H7N9
 

Mehr von Annie De Groot

Clinica Esperanza/Hope Clinic "International Healthcare on the local bus line...
Clinica Esperanza/Hope Clinic "International Healthcare on the local bus line...Clinica Esperanza/Hope Clinic "International Healthcare on the local bus line...
Clinica Esperanza/Hope Clinic "International Healthcare on the local bus line...Annie De Groot
 
Extremely rapid h7 n9 vaccine design by epivax
Extremely rapid h7 n9 vaccine design by epivaxExtremely rapid h7 n9 vaccine design by epivax
Extremely rapid h7 n9 vaccine design by epivaxAnnie De Groot
 
Extremely rapid H7N9 vaccine design by EpiVax
Extremely rapid H7N9 vaccine design by EpiVaxExtremely rapid H7N9 vaccine design by EpiVax
Extremely rapid H7N9 vaccine design by EpiVaxAnnie De Groot
 
Cho Hcp Immunogenicity Iciw Bailey Kellog
Cho Hcp Immunogenicity Iciw Bailey KellogCho Hcp Immunogenicity Iciw Bailey Kellog
Cho Hcp Immunogenicity Iciw Bailey KellogAnnie De Groot
 
Cehc cdbg october 2010-march-2011
Cehc cdbg october 2010-march-2011Cehc cdbg october 2010-march-2011
Cehc cdbg october 2010-march-2011Annie De Groot
 
Arra Funding Comparison 15 Oct10
Arra Funding Comparison 15 Oct10Arra Funding Comparison 15 Oct10
Arra Funding Comparison 15 Oct10Annie De Groot
 
De Groot Nova Se Immunology Of Vaccines2009
De Groot Nova Se Immunology Of Vaccines2009De Groot Nova Se Immunology Of Vaccines2009
De Groot Nova Se Immunology Of Vaccines2009Annie De Groot
 

Mehr von Annie De Groot (7)

Clinica Esperanza/Hope Clinic "International Healthcare on the local bus line...
Clinica Esperanza/Hope Clinic "International Healthcare on the local bus line...Clinica Esperanza/Hope Clinic "International Healthcare on the local bus line...
Clinica Esperanza/Hope Clinic "International Healthcare on the local bus line...
 
Extremely rapid h7 n9 vaccine design by epivax
Extremely rapid h7 n9 vaccine design by epivaxExtremely rapid h7 n9 vaccine design by epivax
Extremely rapid h7 n9 vaccine design by epivax
 
Extremely rapid H7N9 vaccine design by EpiVax
Extremely rapid H7N9 vaccine design by EpiVaxExtremely rapid H7N9 vaccine design by EpiVax
Extremely rapid H7N9 vaccine design by EpiVax
 
Cho Hcp Immunogenicity Iciw Bailey Kellog
Cho Hcp Immunogenicity Iciw Bailey KellogCho Hcp Immunogenicity Iciw Bailey Kellog
Cho Hcp Immunogenicity Iciw Bailey Kellog
 
Cehc cdbg october 2010-march-2011
Cehc cdbg october 2010-march-2011Cehc cdbg october 2010-march-2011
Cehc cdbg october 2010-march-2011
 
Arra Funding Comparison 15 Oct10
Arra Funding Comparison 15 Oct10Arra Funding Comparison 15 Oct10
Arra Funding Comparison 15 Oct10
 
De Groot Nova Se Immunology Of Vaccines2009
De Groot Nova Se Immunology Of Vaccines2009De Groot Nova Se Immunology Of Vaccines2009
De Groot Nova Se Immunology Of Vaccines2009
 

Kürzlich hochgeladen

So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfpanagenda
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityIES VE
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Kaya Weers
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsRavi Sanghani
 
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...itnewsafrica
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotesMuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotesManik S Magar
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Mark Goldstein
 
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security ObservabilityGlenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security Observabilityitnewsafrica
 
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...Alkin Tezuysal
 
Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...itnewsafrica
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch TuesdayIvanti
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfNeo4j
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesKari Kakkonen
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfIngrid Airi González
 

Kürzlich hochgeladen (20)

So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a reality
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and Insights
 
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotesMuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
 
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security ObservabilityGlenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
 
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
 
Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch Tuesday
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdf
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examples
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdf
 

Introduction to Computational Vaccinology and iVAX by EpiVax

  • 1. Using  Computa.onal  Vaccinology  to  Design   Genome-­‐Derived  Vaccines  for  Infec.ous  Diseases,   Cancer,  Allergy  and  Autoimmune  Disease   22  January  2014   Anne  S.  De  Groot,  Lenny  Moise,  Leslie  Cousens,  Frances  Terry,   William  Mar<n   Ins<tute  for  Immunology  and  Informa<cs,  University  of  Rhode   Island  and  EpiVax,  Inc.     www.epvax.com  www.immunome.org       1  
  • 2. Your  Speaker  –  Annie  De  Groot  MD   2  
  • 3. The  Company:  EpiVax   hOp://bit.ly/EpiPubs     3  
  • 4. EpiVax  Collaborates  with  the     Ins*tute  for  Immunology  and  Informa*cs  @  URI   Collabora<ve  Research  on  Immunome-­‐Derived  Accelerated  Vaccine  Design  and  Development   Funded  by  the  NIH  CCHI  U19,  COBRE,  and  P01  awards.  www.immunome.org   hOp://bit.ly/EpiPubs     4  
  • 5. Addi.onal  Collaborators   Bill  Mar<n   Lenny  Moise   Frances  Terry   Leslie  Cousens   Ryan  Tassone   Howie  La<mer   Mindy  Cote   Lauren  Levitz   Chris<ne  Boyle   Mark  Poznansky   Tim  Brauns   Pierre  LeBlanc     Ted  Ross   Don  Drake,  Brian  Schanen   AI058326,  AI058376,     AI078800,  AI082642   Alan  Rothman   Carey  Medin   Andres  Gui<errez   Danielle  Aguirre   Joe  Desrosiers   Thomas  Mather   Wendy  Coy   Loren  Fast   Hardy  Kornfeld   Jinhee  Lee   Liisa  Selin   Sharon  Frey   Mark  Buller   hOp://bit.ly/EpiPubs     Jill  Schreiwer   Connie  Schmaljohn   Lesley  C.  Dupuy   5  
  • 6. Outline •  Why Computational Immunology •  Tools to Produce IDVs –  Antigen selection –  Vaccine design –  New concepts •  Case Studies 6  
  • 7. Predic<ng  the  future  is  something  that  weather  experts  do   with  the  assistance  of  informa<cs  models.       These  forecasts  enable  us  to  make  decisions  on  a  daily   basis,  and  they  are  accurate  enough  to  mobilize  millions  if   and  when  severe  storms  are  predicted.       Why  then,  are  we  so  slow  to  use  informa<cs  in  vaccine  and   protein  therapeu<cs  design?    
  • 8. In  todays  talk,  I  will  discuss  the  use  of  immunoinforma<cs  tools  for   vaccine  design,  mechanism  of  ac<on  studies,  and  efficacy   evalua<ons.    I  believe  that  the  <me  is  ripe  for  vaccine  developers  to   ac<vely  apply,  evaluate  and  improve  vaccines  through  the  use  of   computa<onal  immunogenicity  predic<on  tools.  
  • 9. “Old  Style”  Vaccines     Grow  .  .  .  and  use  whole  pathogen
  • 10. The  focus  of  our  work   Can  we  make  vaccines  beJer/faster     BeOer  understanding    of  vaccine  MOA   Whole  (live/ killed)  vaccines   Subunit  vaccines   (Flu,  Hepa<<s  B,   HPV  vaccines,  for   example)   Genome-­‐ Derived,  Epitope   Driven  (GD-­‐ED)   Vaccines   Improve  vaccine   safety  and   efficacy   Accelerate   Vaccine  Design   hOp://bit.ly/EpiPubs     10  
  • 11. iVAX  Vaccine  Design  Toolkit  
  • 12. Why?  New  Vaccines  Needed   •  For Example: –  HIV –  HCV –  Malaria –  Universal Influenza Vaccine –  Vaccines against Cancer –  Vaccines for immunotherapy of AI –  Vaccines for diseases affecting food animals
  • 13. Why?  Unacceptable  Delays   •  For Example: Pandemic influenza 2009 –  Traditional flu vaccine production methods require large lead time –  20 weeks to first vaccine dose –  “Pandemic” influenza had already peaked by the time the first shots were being delivered. –  Vaccine manufacturing failed the test. –  Is H7N9 the next pandemic? If so, we are worried. . .
  • 14. Emergent  H7N9  disease  in  China   hOp://bit.ly/EpiPubs     14  
  • 15. Spread  to  Beijing  on  4/13/13  .  .  .   Spread  to  Hong  Kong  on  12/6/  13   15  
  • 16. Markedly  Increased  ac.vity  in   late  2013  and  early  2014!   hOp://bit.ly/EpiPubs     16  
  • 17. Con.nuing  Expansion  of  H7N9   First  confirmed  cases  occurred  in  Shanghai  (3/30/13)  but  case  ac<vity   rapidly  increased  in  Zheijang  and  Jiangsu  provinces  shortly  aier.     Now,  we  have  a  problem!     hOp://bit.ly/EpiPubs     17   Image  credit  to  VDU  and  Dr.  Ian  M  Mackay  hOp://www.uq.edu.au/vdu/VDUInfluenza_H7N9.htm  
  • 18. Ci.es  that  are  one  stop  from  H7N9   An  es<mated  70%  of  the  world  popula<on  resides  within  two  hours’  travel  <me  of  des<na<on   airports  (calculated  using  gridded  popula<on-­‐density  maps  and  a  data  set  of  global  travel   <mes,  map  supplied  by  A.  J.  Tatem,  Z.  Huang  and  S.  I.  Hay  (2013).    
  • 19. H7N9  Morbidity  and  Mortality   Quick  numbers...   •  Total  confirmed  human  cases  of   influenza  A  virus  H7N9:  >  200   •  Total  deaths  aOributed  to  infec<on   with  influenza  A  virus  H7N9:  >  50   •  Case  Fatality  Rate  (CFR):  29%  (current)     •  Average  <me  from  illness  onset  to  first   confirma<on  of  H7N9  (days):  <10     •  Median  age  of  the  H7N9-­‐confirmed   cases  (including  deaths;  years):  63     •  Males:  71%  of  cases,  74%  of  deaths     •  Younger  pa<ents  are  recovering  .  .  .     hOp://pandemicinforma<onnews.blogspot.com   hOp://www.uq.edu.au/vdu/VDUInfluenza_H7N9.htm  19  
  • 20. Virus  Transmission  Mechanism  –     source  is  s.ll  at  large   •  Human  to  human   transmission  has  not  been   proved  (or  disproved)  many   cases  show  uninfected  family   members     •  Poultry  iden<fied  as  poten<al   natural  host  and  H7N9   samples  were  found  in   poultry  market  environment   in  Shanghai.  However  not   many  poultry  vendors   infected  and  many  cases  have   no  indica<on  of  poultry   exposure   hOp://bit.ly/EpiPubs     Image  credit  to  VDU  and  Dr.  Ian  M  Mackay  hOp:// 20   www.uq.edu.au/vdu/VDUInfluenza_H7N9.htm  
  • 21. Distribu.on  of  Cases   This  picture   shows  the   geographically   wide  distribu<on   of  flu  cases  -­‐   sugges<ng   widespread   distribu<on  of  the   virus  rather  than   a  point  outbreak.       hOp://bit.ly/EpiPubs     21  
  • 22. Why  are  immunoinforma.cs  tools   important  in  this  sedng?   •  Immunoinforma<cs  predicted  low   immunogenicity  of  ‘cri<cal  an<gen’  H7  HA   •  hOp://bit.ly/H7N9_2013  
  • 23. (reminder)  Flu  Vaccine  –  HA  protein   Ian  Mackey  hOp://www.uq.edu.au/vduVDUInfluenza_H7N9.htm   hOp://bit.ly/EpiPubs     23  
  • 24. What  Can  We  Learn  About  H7N9?     HA  (hemagglu<nin)  is  the  ‘Cri<cal  An<gen’   used  for  Flu  vaccines,  especially   recombinant  vaccines    –     –  which  are  currently  in  produc*on.     hOp://bit.ly/EpiPubs     24  
  • 25. H7N9  is  a  unique  virus   •  Low  conserva<on  of  HA,  NA  surface  proteins   is  not  surprising   •  Internal  proteins  are  more  conserved   hOp://bit.ly/EpiPubs     25  
  • 26. New  H7N9  Flu  is  Predicted  to  be   80 POORLY  IMMUNOGENIC   Thrombopoietin 70 - 60 - - 50 - - 40 - HA  A/California/07/2009  (H1N1)   Tetanus Toxin - 30 - Influenza-HA HA  A/Victoria/361/2011  (H3N2)   - 20 - - 10 - - 00 - - -10 - - -20 - IgG FC Region - -30 - Fibrinogen-Alpha - -40 - - -50 - - -60 - - -70 - - -80 H7  HA   Immunogenic  Poten.al   - Human EPO EBV-BKRF3 HA  A/Texas/50/2012    (H3N2)   Albumin Follitropin-Beta Random  Expecta.on   HA  A/chicken/Italy/13474/1999  (H7N1)    .  .  .  .  .  .  .  .  .  -­‐6.23   HA  A/Shanghai/1/2013  (H7N9)  .  .  .  .  .  .  .    ..  .  .  .  .  .  .  .  -­‐8.11   HA  A/mallard/Netherlands/09/2005  (H7N7)  .  .  .  .  .  .  -­‐8.63   gB-2 (EPX Score: -24.56) HA  A/mallard/Netherlands/12/2000  (H7N3)  ..  .  .  .  .  .-­‐9.91   hOp://bit.ly/EpiPubs    
  • 27. Why  are  immunoinforma.cs  tools   important  in  this  sedng?   •  Immunoinforma<cs  predicted  low   immunogenicity  of  ‘cri<cal  an<gen’  H7  HA   •  Vaccine  was  developed  but  is  low   immunogenicity  as  predicted.   hOp://bit.ly/H7N9_NovaVax  
  • 29. Why  are  immunoinforma.cs  tools   important  in  this  sedng?   .  .  .  Low  and  S predicted   •  Immunoinforma<cs  low  .  .  .   low   immunogenicity  of  ‘cri<cal  an<gen’  H7  HA   •  Vaccine  was  developed  but  is  low   immunogenicity  as  predicted   •  Sero-­‐conversion  is  delayed,  diminished  in   pa<ents  infected  with  H7N9.   hOp://bit.ly/H7N9_Serology  
  • 30. Why  are  immunoinforma.cs  tools   important  in  this  sedng?   •  Immunoinforma<cs  predicted  low   immunogenicity  of  ‘cri<cal  an<gen’  H7  HA   •  Vaccine  was  developed  but  is  low   immunogenicity  as  predicted   •  Sero-­‐conversion  is  delayed,  diminished  in   pa<ents  infected  with  H7N9.   •  New  vaccine  approaches  are  needed.   •  .  .  .  Now  that  you  are  convinced,  let’s  talk   about  computa<onal  vaccine  design  
  • 31. Outline •  Why Computational Immunology •  Tools to Produce IDVs –  Antigen selection –  Vaccine design –  New concepts •  Case Studies 31  
  • 33. Selection of vaccine antigens is key •  Lots of Genomes now Published! •  On line tools for Pathogen Gene finding (GLIMMER, ORPHEUS, GeneMark) •  Tools for selecting subsets of protein – such as subcellular localization of hypothetical proteins (PSORTb, CELLO, Proteome Analyst)
  • 34. Comparative Genomics Impacts Vaccine Immunogen Selection   Strain 1 dispensable  genes   core  genome   Strain 2 pangenome   Strain 3     strain-­‐specific  genes  
  • 35. Immunome-Derived Vaccines . . .   Payload   Adjuvant   Delivery   Vehicle   .  .  .  Need  “informa*on”     =  T  cell  and  B  cell  epitopes     .  .  .  And  the  correct  “milieu”     =  delivery  vehicle,  adjuvants/TLR  ligands     “Fine  tune”  the  immune  response?   Vaccine   . . And there is ample evidence that this approach to vaccine design produces protective immunity
  • 36. Payload:  Predic.ng  Epitopes  that  Drive   Immune  Response  is  our  Exper.se   Protein MHC II Pocket Peptide Epitope HLA (Human MHC), are comprised of peptide specific pockets EpiMatrix predicts how well a peptide sequence will bind to a specific pocket. Binding is the prerequisite for immunogenicity 8 class II HLA supertypes which taken together incorporate 95% of human populations (and pockets) worldwide. Mature APC Each 9-mer/10-mer is analyzed for binding potential to each of those 8 allele matrices. The  EpiMatrix  Score  describes  the  binding  affinity   . of  the  pep<de  sequence  to  the  HLA  complex   Southwood et al. J. Immunology 1998 Sturniolo et al. Nature Biotechnology, 1999 hOp://bit.ly/EpiPubs     37  
  • 37. How  do  we  measure  Immunogenicity?     Vaccine  an<gen   epitope   epitope   epitope   1    +    1    +    1        =    Response   Immune  response  to  a  vaccine  an<gen  can  be  predicted  by  measuring   the  number  of  T  cell  epitopes  contained  in  the  an<gen  with   immunoinforma<cs  tools.     hOp://bit.ly/EpiPubs    
  • 38. “Immunogenicity  Scale”   Immunogenic   proteins   Non     Immunogenic   proteins   hOp://bit.ly/EpiPubs     41  
  • 39. Easy  easy  to  deliver  as  pep<des   ClustiMer: Screen for Epitope Clusters DRB1*0101 DRB1*0301 DRB1*0401 DRB1*0701 DRB1*0801 DRB1*1101 DRB1*1301 DRB1*1501 42  
  • 40. Conservatrix: Overcome the Challenge of Variability HIV HCV Influenza 43  
  • 41. Conservatrix Finds Conserved 9-mers CTRPNNTRK CTRPNNTRK CTRPNNTRK CTRPNNTRK CTRPNNTRK CTRPNNTRK CTRPNNTRK Conserved epitope Identifying the most conserved 9-mers allows for protection against more strains with fewer epitopes 44  
  • 42. BlastiMer: Epitope Exclusion Foreign   Self   In  all  of  our  vaccines  we  eliminate  cross-­‐reac<ve  epitopes   Confidential 45  
  • 43. Epitope  Cross-­‐Reac<vity  Impacts   Vaccine  Immunogen  Selec<on   Human Poten.ally   detrimental  cross-­‐ reac.ve  epitopes   Human Microbiome Pathogen     Protec.ve  epitopes   Poten.ally   detrimental  cross-­‐ reac.ve  epitopes   hOp://bit.ly/EpiPubs     46  
  • 44. JanusMatrix   TCR Each MHC ligand has two faces, The MHC-binding face (aggretope), and the TCR-interacting face (epitope) The JanusMatrix algorithm searches for putative MHC ligands which are identical at the contact residues but may vary at the MHC-binding residues. http://bit.ly/JanusMatrix MHC TCR Find predicted 9-mer ligands with: •  Identical T cell-facing residues •  Same HLA allele and minimally different MHC-facing residues 48 MHC/HLA
  • 45. HCV  T  Effector  Epitopes   HCV_G1_NS2_732 HCV_G1_1941 HCV_G1_DEXDC_1246 HCV_G1_1605 HCV_G1_NS2_748 HCV_G1_NS4B_1769 HCV_G1_2941 HCV_G1_2440 HCV_G1_2898 HCV_G1_NS4B_1725 HCV_G1_ENV_359 HCV_G1_2485 HCV_G1_NS4B_1876 HCV_G1_NS4B_1910 HCV_G1_ENV_255 HCV_G1_2879 HCV_G1_NS4B_1790 HCV_G1_NS4b_1798 HCV_G1_2913 HCV_G1_NS5A_1988 HCV_G1_2840 HCV_G1_NS2_909
  • 47. Outline •  Why Computational Immunology •  Tools to Produce IDVs –  Antigen selection –  Vaccine design •  Case Studies 51  
  • 48. EpiAssembler Constructs Immunogenic Consensus Sequences CTRPNNTRK CTRPNNTRK CTRPNNTRK CTRPNNTRK CTRPNNTRK CTRPNNTRK Epi-Assembler Immunogenic consensus
  • 49. EpiAssembler: Core Epitope STRAIN 01 STRAIN 02 STRAIN 03 STRAIN 04 STRAIN 05 STRAIN 06 STRAIN 07 STRAIN 08 STRAIN 09 STRAIN 10 STRAIN 11 STRAIN 12 STRAIN 13 STRAIN 14 STRAIN 15 STRAIN 16 STRAIN 17 STRAIN 18 STRAIN 19 STRAIN 20 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q X Q Q Q X A X A X A X A X A A A A A A X A X A A S S S S S S S S S S S S S S S S S S S S W W W W W W W W W W W W W W W W W W W W P P P X P P P X P P P X P X P P X P X P K K K K K K K K K R x K K K K K K K K K K V V X V V X V V X V V V V X V V V X V V E E E E E E E E E E E E E E E E E E E E Q X Q Q Q Q Q Q Q Q Q Q Q Q X Q Q Q Q Q F F F F F F F F F F F F F F F F F F F F W W W W W W W W W W W W W W W W W W W W A A A A A A A A A A A A A A X A A A A A K K K K K X K K K K K X K K K K K K K X H H H H H H H H H H H H H H H H H H H H X M M M M M M M M M M M M M M M M M M M W W W W W W X W W W W W W W W W W W W W N N N N N N N N N N N N N N N N N N N N X F F F F F F F F F F F F F F F F X F F F W A K H M W N F I I I X I I I I X I I I I I I I I I I I S S S S S S S S S X S S S S S X S S S S X G G X G G G G X G G G G X G G G G X G I I I I I I I I I I I I I I I I I I I I Q Q Q Q Q Q Q Q X Q Q Q Q Q Q Q Q Q Q Q Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y L L X L L X L L X L L X L L L L X L L L
  • 50. EpiAssembler: Flanking Epitopes STRAIN 01 STRAIN 02 STRAIN 03 STRAIN 04 STRAIN 05 STRAIN 06 STRAIN 07 STRAIN 08 STRAIN 09 STRAIN 10 STRAIN 11 STRAIN 12 STRAIN 13 STRAIN 14 STRAIN 15 STRAIN 16 STRAIN 17 STRAIN 18 STRAIN 19 STRAIN 20 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q X Q Q Q Q X A X A X A X A X A A A A A A X A X A A A S S S S S S S S S S S S S S S S S S S S S W W W W W W W W W W W W W W W W W W W W P P P X P P P X P P P X P X P P X P X P K K K K K K K K K R x K K K K K K K K K K V V X V V X V V X V V V V X V V V X V V E E E E E E E E E E E E E E E E E E E E Q X Q Q Q Q Q Q Q Q Q Q Q Q X Q Q Q Q Q F F F F F F F F F F F F F F F F F F F F W W W W W W W W W W W W W W W W W W W W A A A A A A A A A A A A A A X A A A A A K K K K K X K K K K K X K K K K K K K X H H H H H H H H H H H H H H H H H H H H X M M M M M M M M M M M M M M M M M M M W W W W W W X W W W W W W W W W W W W W N N N N N N N N N N N N N N N N N N N N X F F F F F F F F F F F F F F F F X F F I I I X I I I I X I I I I I I I I I I I S S S S S S S S S X S S S S S X S S S S X G G X G G G G X G G G G X G G G G X G I I I I I I I I I I I I I I I I I I I I Q Q Q Q Q Q Q Q X Q Q Q Q Q Q Q Q Q Q Q F W A K H M W N F M W N F I S G I Q W P K V E Q F W A W P K V E Q N F I S G I Q Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y L L X L L X L L X L L X L L L L X L L L Y L
  • 51. EpiAssembler: Final Immunogenic Consensus Sequence STRAIN 01 STRAIN 02 STRAIN 03 STRAIN 04 STRAIN 05 STRAIN 06 STRAIN 07 STRAIN 08 STRAIN 09 STRAIN 10 STRAIN 11 STRAIN 12 STRAIN 13 STRAIN 14 STRAIN 15 STRAIN 16 STRAIN 17 STRAIN 18 STRAIN 19 STRAIN 20 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q X Q Q Q Q X A X A X A X A X A A A A A A X A X A A A S S S S S S S S S S S S S S S S S S S S S W W W W W W W W W W W W W W W W W W W W P P P X P P P X P P P X P X P P X P X P K K K K K K K K K R x K K K K K K K K K K V V X V V X V V X V V V V X V V V X V V E E E E E E E E E E E E E E E E E E E E Q X Q Q Q Q Q Q Q Q Q Q Q Q X Q Q Q Q Q F F F F F F F F F F F F F F F F F F F F W W W W W W W W W W W W W W W W W W W W A A A A A A A A A A A A A A X A A A A A K K K K K X K K K K K X K K K K K K K X H H H H H H H H H H H H H H H H H H H H X M M M M M M M M M M M M M M M M M M M W W W W W W X W W W W W W W W W W W W W N N N N N N N N N N N N N N N N N N N N X F F F F F F F F F F F F F F F F X F F I I I X I I I I X I I I I I I I I I I I S S S S S S S S S X S S S S S X S S S S X G G X G G G G X G G G G X G G G G X G I I I I I I I I I I I I I I I I I I I I Q Q Q Q Q Q Q Q X Q Q Q Q Q Q Q Q Q Q Q F W A K H M W N F M W N F I S G I Q W P K V E Q F W A W P K V E Q N F I S G I Q Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y L L X L L X L L X L L X L L L L X L L L Y L Q A S W P K V E Q F W A K H M W N F I S G I Q Y L
  • 52. VaxCAD Identifies and Eliminates Junctional Epitopes VaxCAD will identify junctional epitopes and rearrange chosen epitopes to reduce junctional epitope formation
  • 53. -10 Epitope Cluster Score Junctional Cluster Score 20 10 0 Peptides in Default order in construct HP_IIB 50 40 -10 HP4117 HP4061 HP4181 HP4111 HP4018 HP4070 HP4060 HP4157 HP4065 HP4001 HP4193 HP4034 HP4068 HP4168 HP4160 HP4175 HP4127 HP4126 HP4007 HP4154 HP4164 HP4119 HP4100 HP4120 HP4179 30 EpiMatrix Cluster Score 50 HP4117 HP4179 HP4007 HP4111 HP4018 HP4070 HP4034 HP4193 HP4065 HP4181 HP4157 HP4060 HP4068 HP4164 HP4160 HP4175 HP4127 HP4120 HP4126 HP4154 HP4168 HP4119 HP4100 HP4001 HP4061 EpiMatrix Cluster Score VaxCAD Example Epitope Cluster Score Junctional Cluster Score 40 30 20 10 0 Peptides in Optimized order in construct HP_IIB 57  
  • 54. Multi-Epitope Gene Design Intended Protein Product: Many epitopes strung together in a “String-of-Beads” DNA insert DNA Vector Protein product (folded) 58  
  • 55. Immunogenic Consensus Sequence Formulations DNA  –  chain  of  epitopes,  or   pep<de  in  liposomes   ICS-­‐op<mized  whole  proteins   ICS-­‐op<mized  proteins  in  VLP  
  • 56. In Vivo Model for Validation: HLA Transgenic Mice                   HLA A2 HLA B7 HLA A2/DR1 HLA DR2 HLA DR3 HLA DR4
  • 57. Outline •  Why Computational Immunology •  Tools to Produce IDVs •  Case Studies –  Tularemia –  Smallpox –  H. pylori –  VEEV (multi-pathogen vaccine) –  Influenza 61  
  • 58. Current  Vaccine  Design  Pipeline   Burk/Tuly/ MP Epitope Discovery Epitope Validation Construct Design Immunogenicity Animal Model Validation Epitope Discovery Epitope Validation Construct Design Immunogenicity Animal Model Validation Tularemia Epitope Discovery Epitope Validation Construct Design Immunogenicity Animal Model Validation Smallpox Epitope Discovery Epitope Validation Construct Design Immunogenicity Animal Model Validation H. pylori Epitope Discovery Epitope Validation Construct Design Immunogenicity Animal Model Validation VEEV Epitope Discovery Epitope Validation Construct Design Immunogenicity Animal Model Validation Influenza Epitope Discovery Epitope Validation Construct Design Immunogenicity Animal Model Validation HIV/TB 62
  • 59. GDV  Approach  Applied  to  F.  tularensis   In 24 months: •  Took one genome •  Mapped class I + Class II •  Selected 165 epitopes •  Confirmed in human •  Cloned into vaccine •  Performed Challenge studies. . . McMurry  JA,  Gregory  SH,  Moise  L,  Rivera  DS,  Buus  S,  and  De  Groot  AS.  Diversity  of  Francisella  tularensis  Schu4  an<gens  recognized  by  T   lymphocytes  aier  natural  infec<ons  in  humans:  Iden<fica<on  of  candidate  epitopes  for  inclusion  in  a  ra<onally  designed  tularemia  vaccine.   Vaccine  2007  Apr  20;25(16):3179-­‐91.   63  
  • 60. High  Responder  Frequency  to  Class  II   Epitopes  in  Pa.ents  with  Prior  Exposure   22/25  pep<des;   Average  response  to   the  pool  was  over   1,000  gamma   producing  cells  per   million  above   background.     Percent  of  subjects  responding  by  IFN  gamma  ELISpot   Significant  Spot  Forming  Cells  averaged  across  subjects   64  
  • 61. TulyVax:  6  epitope  in     LVS  Challenge  Strain  
  • 62. IFN-g SFC/10^6 splenocytes over background TulyVax  Immunogenicity  in  HLA  Tg     Epitope-­‐specific  IFNγ  Response   950 300 Placebo-immunized 250 900 - FT_II_v1-immunized 200 150 100 50 Schu4 peptides with perfect LVS match Schu4 peptides with partial LVS match 3025 3024 3023 3007 3019 3015 3003 3001 F176 F102 3018 3017 3005 3004 0 Schu4 peptides without LVS match Nearly identical immunogenicity profile observed in HLA DR3 mouse immunizations performed in collaboration with Dr. Terry Wu (UNM), illustrating broad reactivity of immunoinformatic predicted epitopes.
  • 63. TulyVax Efficacy 100% TuliVax Immunized Mice Placebo Recipient Mice Percent Survival 80% 60% 57% Rapidity:  from  genome  to  candidate  vaccine  in  24  months  .  .  .     40% Efficacy:  14  epitope  vaccine  protects  against  live  challenge   20% 0% 0% 0 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Days after lethal bacterial challenge 14  epitopes:  T  cell-­‐epitope-­‐immunized  mice  were  protected  against  live   challenge  with  tularemia.  Placebo-­‐recipient  mice  died  within  10  days.   McMurry et al. Vaccine 2007;25:3179-91 and Gregory et al. Vaccine 2009 27:5299-306
  • 64. Immunome-Derived Smallpox Vaccine: VennVax vaccinia                                 smallpox Immunogenic Epitopes Vaccine   Shared Immunogenic Epitopes
  • 65. VennVax Class II Epitopes are Antigenic in Dryvax Vaccinees 20   88%  of  predicted  T  cell  epitopes  confirmed  in  vitro  using  hu  PBMC   Moise et al. Vaccine. 2009 27:6471-9
  • 66. VennVax Immunization in HLA DR3 Transgenic Mice Immunizations Days 0, 14, 28, 42 1. epitope DNA vaccine prime (IM) 2. epitope peptide boost (IN) Moise L et al. Vaccine. 2011;29:501-11 Immunogenicity Day 56 Challenge Day 65
  • 67. Survival  of  VennVax-­‐Vaccinated   Mice  Aqer  Aerosol  Challenge   100%  survival  of  Vaccinated  mice  vs.  17%  of  placebo     100 90 Percent Survival 80 Placebo 70 Vaccinated 60 50 40 30 20 10 0 DNA   00 100 boost   DNA   520 boost   Challenge   10 40 15 60 Day Post Immunization 17%     20 80 25 73   Moise et al. Vaccine. 2011; 29:501-11
  • 68. Protection Without Vaccine-Induced Antibodies 3 Pre-challenge Placebo Pre-challenge Vaccine 2.5 Post-challenge Placebo Post-challenge Vaccine OD 490 2 1.5 Post-challenge 1 0.5 Pre-challenge 0 100 200 400 800 1600 1/Dilution Factor 3200 6400 12800
  • 69. Therapeutic H. pylori Vaccination Week 0 Week 6 Week 12-19 H. pylori SS1 H. pylori SS1 lysate IN H. pylori SS1 Week 51 1. epitope DNA vaccine prime IN 2. epitope peptide boost IN IFN-gamma and IL-4 ELISpot H. pylori SS1 1. epitope DNA vaccine prime IM 2. epitope peptide boost IN Histology H. pylori SS1 1. control DNA prime IN 2. control peptide boost IN
  • 70. HelicoVax: Broad Epitope Recognition IFN-gamma Secretion in Response to Splenocyte Restimulation following immunization Average Helico-Vax Average SS1 600 500 400 300 200 100 SS1 (whole lysate-immunized mice) recognized few epitopes (white bars); HelicoVax-immunized mice recognized 45 of 50 (dark bars). 45/50 were immunogenic. ConA HP POO L 6 HP POO L 5 HP POO L 4 HP 4179 HP 4175 HP 4164 HP 4160 HP 4157 HP 4154 HP 4127 HP 4120 HP 4119 HP 4117 HP 4111 HP 4070 HP 4068 HP 4060 HP 4018 HP POO L 3 HP POO L 2 HP POO L 1 HP 4199 HP 4197 HP 4189 HP 4174 HP 4165 HP 4156 HP 4153 HP 4152 HP 4077 HP 4071 HP 4067 HP 4055 HP 4054 HP 4040 HP 4032 HP 4029 0 HP 4009 SFC/10^6 over background 700
  • 71. HelicoVax Eradicates H. pylori Infection ***  P<0.001   **  P<0.01   ***  P<0.001   800 600 H. pylori qPCR (SSA/GAPDH) 180 160 140 120 This result accomplished in just over 24 months . . . 100 80 60 40 20 0 Lysate pVAX DNA IM DNA IN Moss et al, Vaccine 2011;29:2085-91
  • 72. VEEV IDV Development: Comparison with Whole Antigen Vaccine Two Whole Gene Constructs –  Ebola Zaire GP –  VEEV 26S* –  subcloned into pWRG-7077 VS. One Multi-Epitope Construct –  Ebola Zaire/Sudan GP epitopes –  VEEV 26S epitopes –  subcloned into pWRG-7077 *Dupuy LC, Richards MJ, Ellefsen B, Chau L, Luxembourg A, Hannaman D, Livingston BD, Schmaljohn CS. A DNA Vaccine for Venezuelan Equine Encephalitis Virus Delivered by Intramuscular Electro-poration Elicits High Levels of Neutralizing Antibodies in Multiple Animal Models and Provides Protective Immunity to Mice and Nonhuman Primates. Clin Vaccine Immunol. 2011 Mar 30.
  • 73. IFNγ ELISpot responses to VEEV peptide pools VEEV E1 VEEV E2
  • 74. VEEV IDV Elicits Antibody Response USAMRIID DR3 Mouse Study VEEV Challenge Group ELISA Day 56 Serum Samples 5 Log10 Titer 4 3 2 1 0 Neg Con Arm Pos Con Arm Vaccine Arm Whole Antigen Epitope-Driven Negative Control Vaccine Vaccine
  • 75. VEEV IDV Protects Against Lethal Challenge 100 90 80 70 60 50 40 30 20 10 0 USAMRIID DR3 Mouse Study VEEV Challenge Weights % Mean Starting Weight Percent survival USAMRIID DR3 Mouse Study VEEV Challenge Survival 0 5 10 Days postchallenge Neg Con Arm 100 Pos Con Arm Vaccine Arm 90 Neg Con Control Negative Arm Pos Con Arm Whole Antigen Epitope-Driven Vaccine Arm 80 70 60 50 Vaccine 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Days Postchallenge
  • 76. What Drives Protection? T  helper  Epitopes   B  cell   epitopes   Other?    CTL?     Th2?     Negative Control Whole Antigen Vaccine Subset of Th epitopes stimulate IFNγ secretion" " Combination of immunogenic Th epitopes that overlap B cell epitopes???" " Contribution from other Th epitopes (stimulate other cytokines) that overlap with Bcell epitopes" " " " Th epitopes that stimulate different subpopulations" " Epitope-Driven " Vaccine " What is clear: that whole Ag is not necessary for protection"
  • 77. T  cells  =  Immune  System  Body  Armor   T  cell  response  cannot  prevent  Infec<on  but  .  .  .     T  cell  response  can  arm  against  Disease  
  • 78. The "New" Flu (H1N1 2009 California) hOp://bit.ly/EpiPubs     84  
  • 79. 2009  Worry:  CDC  –     No  Cross-­‐reac.ve  Ab   •  •  •  Preliminary  studies  of  individuals  showed  that   an<bodies  induced  by  seasonal  influenza   vaccina<on  were  not  cross-­‐reac<ve  with  novel   H1N1.   What  if  the  T  cell  epitopes  were  cross-­‐reac<ve?   Would  that  help?     (Note  that  the  situa<on  is  very  similar  for  H7N9   –  no  cross-­‐reac<ve  an<body).         Centers  for  Disease  Control  and  Preven<on.  Serum  an<body  response  to  a  novel  influenza   A  (H1N1)  virus  aier  vaccina<on  with  seasonal  influenza  vaccine.  MMWR  Morb  Mortal   Wkly  Rep  2009;58(19):521–4.     hOp://bit.ly/EpiPubs     85  
  • 80. 2009  H1N1  contains  conserved  epitope   Sequences  –  Predicted  Cross  Protec.on   Immunogenic T cell epitopes Enough  Cross-­‐ protec<ve  Epitopes   that  Seasonal  Flu   vaccina<on  or   exposure  may  protect   Conserved T-Cell Epitopes hOp://bit.ly/EpiPubs     86   De Groot et al. Vaccine 2009;27:5740-7
  • 81. EpiVax  Predicted  Cross-­‐Protec.on   hOp://www.ncbi.nlm.nih.gov/pubmed/19660593   hOp://bit.ly/EpiPubs     87  
  • 82. Immuniza.on  with  FluVax  cross-­‐conserved     T  cell  epitopes  decreases  lung  viral  load   10 8   1.00E+08   P=  0.002   PFU/ml   * 10 1.00E+07   7   10   A  handful  of   conserved   epitopes   protected   against  disease   6   1.00E+06   Placebo   FluVax   2009   Placebo   2  Days   hOp://bit.ly/H1N1_DR3_2013   hOp://bit.ly/Moise_Universal_Flu   Post-­‐Infec.on   hOp://bit.ly/EpiPubs     FluVax   2009   4  Days   90  
  • 83. H1N1  Conclusions   •  This work recapitulates other projects already completed: Complete protection using ONLY T cell epitopes (H. pylori, Tularemia, VennVax) •  Results of our published studies demonstrate that conserved T cell epitope sequences, important to viral fitness, also may be immunologically significant contributors to protection against newly emerging influenza strains. •  The conserved epitope approach promises to answer the need for prompt preparedness and delivery of a safe, efficacious vaccine without requiring a new vaccine for every emergent influenza strain. hOp://bit.ly/H1N1_DR3_2013   hOp://bit.ly/Moise_Universal_Flu   hOp://bit.ly/EpiPubs     91  
  • 85. What  Can  We  Learn  About  H7N9?     Epitopes  Novel  or  Conserved?   H7N9   Circula<ng  Flu   As  it  turns  out  -­‐  -­‐  -­‐   Very  Poor  Cross-­‐Conserva<on  –  Only  within  Internal  Proteins   hOp://bit.ly/EpiPubs     93  
  • 86. New  H7N9  Flu  is  Predicted  to  be   80 POORLY  IMMUNOGENIC   Thrombopoietin 70 - 60 - - 50 - - 40 - HA  A/California/07/2009  (H1N1)   Tetanus Toxin - 30 - Influenza-HA HA  A/Victoria/361/2011  (H3N2)   - 20 - - 10 - - 00 - - -10 - - -20 - IgG FC Region - -30 - Fibrinogen-Alpha - -40 - - -50 - - -60 - - -70 - - -80 - H7  HA   Immunogenic  Poten.al   Human EPO EBV-BKRF3 HA  A/Texas/50/2012    (H3N2)   Albumin Follitropin-Beta hOp://bit.ly/H7N9_HVandI   Random  Expecta.on   HA  A/chicken/Italy/13474/1999  (H7N1)    .  .  .  .  .  .  .  .  .  -­‐6.23   HA  A/Shanghai/1/2013  (H7N9)  .  .  .  .  .  .  .    ..  .  .  .  .  .  .  .  -­‐8.11   HA  A/mallard/Netherlands/09/2005  (H7N7)  .  .  .  .  .  .  -­‐8.63   gB-2 (EPX Score: -24.56) HA  A/mallard/Netherlands/12/2000  (H7N3)  ..  .  .  .  .  .-­‐9.91  
  • 87. This  is  a  unique  virus   •  Low  conserva<on  of  HA,  NA  surface  proteins   is  not  surprising   •  Internal  proteins  are  more  conserved   •  And  –  HA  is  has  unusually  low  immunogenicity   •  Could  that  explain  why  infec<on  is   widespread?   •  Difficult  to  make  an<bodies  to  the  HA   hOp://bit.ly/EpiPubs     96  
  • 88. Differen<al  Cross-­‐reac<vity  with  the  human   genome-­‐  significance?     New  and  unpublished:  The  “Classic  Epitope”   Is  much  more  cross-­‐conserve  with  the  human  genome  in  the  case  of  H7N9.   H1N1   H7N9   hOp://bit.ly/EpiPubs     97  
  • 89. This  is  a  unique  virus   •  Unusually  low  immunogenicity   •  Cross-­‐reac<vity  with  human  genome   •  How  do  we  overcome  this  problem?   hOp://bit.ly/EpiPubs     98  
  • 91. Immunoinforma.cs  Toolkit   •  EpiMatrix – maps T cell epitopes •  ClustiMer - Promiscuous / Supertype Epitopes Seamless  Vaccine   •  BlastiMer - Avoiding “self” - autoimmunity Design   •  Conservatrix – Identifies Conserved Segments   Integrated  toolkit  is   •  EpiAssembler - Immunogenic Consensus Sequences unique  to  iVax   •  Aggregatrix – Optimizing the coverage of vaccines •  VaxCAD - Processing and Assembly hOp://bit.ly/EpiPubs     100  
  • 92. FastVax: Vaccines on demand •  High throughput computing •  Immunoinformatics •  Vaccine design algorithms   Rapid  deployment   when  genome   sequence  is  in  hand     •  Vaccine Production •  Delivery device •  Animal safety/tox/immunogenicity/validation •  Deployment by established distribution systems Pilot  program     Funded  by  DARPA   Prebuilt   hOp://bit.ly/EpiPubs     101  
  • 93. 20  hours  -­‐  April  05  –  April  06  2013   Extremely  Rapid  H7N9  Vaccine  Design   April  05,  2013:  Obtain  H7N9  Sequences  (4  human-­‐sourced;  GISAID)     Obtain  all  available     H7N9  sequences   EpiMatrix  Analysis:  Iden<fica<on  of  H7N9  Class  I  and  Class  II  Epitopes   Compare  with  previous  epitopes  (IEDB)   And  other  H7N9  strains;  create  final  list   20  hours  (Logged).   101  H7N9  ICS*  Class  II  Epitopes  +  586  Class  I  Epitopes       Eliminate  Epitopes     highly  conserved  with  Human   Design  vaccine:  12  hours  (Logged).   April  06,  2013:  H7N9  Vaccine:  Two  Constructs,  Class  I  and  Class  II   hOp://bit.ly/EpiPubs     102  
  • 94. Gedng  FastVax  into  the  clinic:  4  Steps   Emergency  use   authoriza<on   1.  In  silico   Design   2.  Produc<on   and  Packaging   3.  Clinical   Trial   (correlates  of   immunity)   4.   Deployment   Regulatory   Agency  approval   As  Currently  Proposed  with  Genome-­‐derived  Epitope-­‐driven  Influenza  Vaccines  (R21  /  NIAID  /  NIH)   hOp://bit.ly/EpiPubs   104  
  • 95. H7N9  at  EpiVax   •  String-­‐of-­‐epitopes  DNA  vaccine  (Doug  Lowrie)   •  String-­‐of-­‐epitopes  Phage  vaccine  (Ft.  Detrick)   •  Op<mized  HA  (fix  epitopes)  recombinant   (TBD?)   •  Op<mized  HA  +  epitope  string  VLP  (Ted  Ross)   •  Collabora<on  with  NIID/Japan  –  in  progress   EpiVax  Contacts:     Anthony  Marcello,  BDA,  amarcello@epivax.com     Anne  S.  De  Groot  CEO/CSO  annied@epivax.com   105  
  • 96. H7N9 Delivery vehicles DNA  –  chain  of  epitopes,  or   pep<de  in  liposomes   ICS-­‐op<mized  whole  proteins   ICS-­‐op<mized  proteins  in  VLP  
  • 97. And  .  .  .  Cancer,  Allergy  and  Autoimmune  Disease?   •      Payload+Adjuvant+  Delivery  vehicle  =  Vaccine   •  Cancer  Vax  =  Epitopes  +  Adjuvant  +  ?     •  Tregitope  =  Novel  “adjuvant”  that  induces  tolerance   •  Allergy  Vax  =  Epitopes  +Tregitope+Delivery  vehicle   •  Autoimmunity  Vax=  AutoAg+Tregitope+Del.  vehicle   107  
  • 98. Outline •  Why Computational Immunology •  Tools to Produce IDVs –  Antigen selection –  Vaccine design –  New concepts •  Case Studies •  . . . Questions? 108  
  • 99. EpiVax:  Four  Core  Strengths   Contact:  Anthony  Marcello,  BDA,  amarcello@epivax.com     Confiden<al